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POINTS SIMPLES ET POINTS SINGULIERS
DES COURBES PLANES

PAR

Iv. Tze~xorr (Sofia).

1. — Courbes d’équation ¢ (x,y) = 0; points simples et points
singuliers. — Soit
¢z, y) =0 (1)

I’équation d’une courbe plane C et M (z, ¥) un point de cette
courbe. Nous supposons que les dérivées partielles de ¢ d’ordre
< 6 par exemple sont continues au point M. Alors M; (z + Az,
y + Ay) étant un point variable de C, infiniment voisin de M, on
aura ¢ (¢ + Az, y + Ay) = 0, d’ou 'on déduit

d¢ O¢ 1(0%¢ , , 0% <P
axAx+ayAy+2—l<6?Ax+2axayAx L2

_|..

1 /0%, o 63 5 0% 2 3CPA3)
—3< SAz +% AocA +3 ayAxAy+ - Yy
1 )

4!

4 x5

6
+6,<5@Ax6+...>=0 (@)
En introduisant les vecteurs
—  09r 0@ =2 - -
grad ¢ _G_xl’._l_ —y], MM, = Azt + Ayj ,

R K oy o w .
ou i et j désignent les vecteurs-unitaires des axes ox et oy, I'équa-
tion (2) s’écrit:

MM, grad o + %MM1 grad (MM, grad o)

+ §1~' MM, grad [MM1 grad (MM, grad cp)] + ... =0. (29




POINTS SIMPLES ET POINTS SINGULIERS 93

Nous nous proposons de déterminer la position du point M,
(c’est-a-dire de la courbe C) par rapport a la tangente (T) & la
courbe C au point M. Pour cela nous devons déterminer I'in-

connue MM de l’equatlon (2.
Nous désignerons par U, le vecteur-unitaire de la tangente (T):

Ut=003ai+sincxj, (3)

« étant langle (compris entre 0 et =) que fait la tangente avec
I’axe des z. Nous désignerons par U, le vecteur-unitaire porté par
la normale (N) et faisant avec ox 'angle « + %:

—

Un - cos(oc -+ —723)7+ sin <oc + %)7 = — sin oc_i>—l— cos cac?> . (&)

Cela posé, supposons que Mﬁl soit de la forme

MM, = MQ; + QM = 2U; + 2p Uy , (5)

2 et Ap étant deux quantités scalaires infiniment petites, dont la
seconde Ap est infiniment petite par rapport & la premiére A

Pour connaitre le vecteur MT\TH il suffit de connaitre «, A, p. ou
bien — a« et p, car 'infiniment petit A peut étre choisi arbitraire-
ment (le point M; infiniment voisin de M pouvant étre choisi
arbitrairement). En portant la valeur de (5) dans I’équation (2')
nous obtiendrons une équation dont nous tirerons les inconnues «
et w. Pour simplifier nous écrirons

U, = Uigrad g, e U; grad (U; grad o) , T~ = Ungrade ,

t ’ n

dch = - 5 N ‘
du, dU,, = Uppgrad ‘(Un grad ¢) = Upgrad (U;grad o) ,

Avec ces notations ’équation (2') s’écrira

o, L de A (Ee L, Py
70, T o, +2'<dU 2 dUth * “d_UZ>

a3 3
G a d®e
-+ 3 12 13
<dU “autau, T "y, au;, e dUi)

A (die d*o s o die de
N + 62 4+ 4yd _ 149
4’( “avtau, TV autaut T Y au et T a0
A /dbo déeo
= + . + === v J =20
"5 (dU;’ > (dU§ N > ©)

)
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Le point M sera un point simple, si gm ¢ # 0; sinon M est.
un point singulier.

2. — Point simple : é_m_a g = g—z;? -+ gg—j> # (0. — L’équation
(6) donne a la limite (g.— 0 et A — 0):

a9
du,

_ T 0¢ 09

= Ujgradgo = 0 ou 005a6—+smaa—g 0. (7)
La condition U; grad ¢ = 0 exprime que le vecteur é;ad ¢ est

perpendiculaire au vecteur U;, c’est-a-dire a la tangente (T).

L’angle « (0 < o < =) que fait U, avec ox est déterminé par

%9 09 | "

« étant connu, on déterminera ensuite p. en fonction de A & partir
de I’équation

e Bo o, P P
U.U+~<ﬁ+ ‘—i{}—i“i*uﬁf) (8)

Bo do ds
+, + +—( T +~, 4+ o) =0.
31\ U U, 51\ aU;

Nous aurons plusieurs cas particuliers a distinguer:

. . , d?
1. Pownt simple a courbure non nulle : ; ® 0. — Dans ce
t

cas, en négligeant les infiniments petits d’ordres supérieurs, on
obtient

do X d¢ _ _ ., __ Arde dp
Mm+§g&—0> H”‘!’-l“—_zdi'dUn’

« et p étant connus, ’équation (5) donne pour Mﬁl I’expression

— > N /de d
MM, = MO, + O, M, = )\Ut—~2—!<dU2.d[;P>Un :

en y remplacant A par — A nous obtenons

' R (de  de\
ew . n
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d’ou 'on déduit

MO, = — MO, = AU ,
_ _ d*¢ do
O, M, = 0, M, = — <dU - )U

ce qui montre qu’au voisinage d’un point simple & courbure
non nulle la courbe est située d’'un seul coté de la tangente

2
T'MT. Le signe de — Z—GCB d—dU—— détermine sila courbe est située

du coté de U, ou du cdté opposé.
2
Nous montrerons que la condition g{-}% # 0 exprime que la

t
,1 .
courbure - est non nulle. En effet, nous avons

M &M

aM = “Cds = dsU, , &M = —F ds + 25U, .

En multipliant par g?aa ¢, on obtient

o —— ds® do

d*M grad ¢ = 4

Mais on tire de (1) les relations

d d RrAp—.
do E%dx—{——(a—@dydegradcp:O :

d?¢ = d*M gradcp + dM grad(do) = 0 ,

dont la seconde peut étre écrite sous la forme

d¢ = #Mgrad ¢ + dM grad (dM grad o) = 0 (10)

ou
d2M grad g2 T2 (107
grad ¢ = — ds dU2 . (107)

En tenant compte de (10’) ’équation (9) devient

d*¢ do

dU? dU

n
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On tire de (7)

cosa  sin « 1
% 0% |gmdel
0y

par conséquent
s
dUy d2M grad Igrado
P 4% rad |
a0 M |grad o

d2q (O(p) o 00 0039 92@(92>2
d22\dy dz 0y 0z Oy oy:\0x

B

. . . . a? d?
2. Point d’inflexion simple: — = 0, —=

= — £ 0. — Dans ce
2 9 3
dU; dU;

cas la courbure au point M est nulle. Les
simples sont déterminés par I’équation

_ 0%¢ (0 ¢ %9 09 O0g 0% (6<P> _
olz, y) =0, .5_:::2(;3_3/) 26x6y0x6y+c‘)y TR (13)

points d’inflexion

3
a condition toutefois que 9—% = 0.
t
L’équation (8) donne pour p la valeur approchée suivante:

do 22 do 2 /d3e  do
+ —— =90, == S AT i S S S
Hau, 31 quy b= Y (de dUn>
L’équation (b) donne dans ce cas
—_— —_— — ) 3 N
MO, = — MO, = AU, 01M1:_02M___ Lo . de\y .
dU? " du,

On en conclut qu’au voisinage d’un point d’inflexion M (z, y)

; o do
la courbe (C) traverse la tangente T'MT. Lorsque — ot

P du,
, MM, . U,
est > 0, I'arc 3MM2 est du coté de {

est <0, c’est 'inverse qui a lieu.

n

t
3
; lorsque — d—_‘% . e
t dUn
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: o . . - dPo o
3. Point ordinaire simple a courbure nulle: — = 0, — =0,
~ du; dU;
dto d
e ; # 0. — Dans ce cas le signe de —-——— : 22 montre de
aU dU "
quel coté de la tangente T'MT est située la courbe.
4. On généralise facilement.
3. — Point singulier : éi‘;d © = 0. — Les coordonnées z, y
d'un point singulier satisfont aux équations
_ orid o — O __ Op __ _
o =0, grade =0 ou a-a;——(), —55——0, o = 0
D 2 0= 22 ot 1’ 6 ‘
ans ce cas av, EIT et ’équation (6) — apres suppres-

sion du facteur ~2- et passage a la limite A — 0, p. — 0 — donne

d?o . 0%¢ 5
dU: = 0 ou 2 cos2 o« + szay

02 . 0%2¢q .
- COSocsmoc—{——%smzoc:O,(M)
, 0y

d’ou 'on déduit pour « deux valeurs: «,, «, comprises entre O
et .

Pour ces valeurs de z, y et « I’équation (6) prend la forme

2 2
nymfi__q)‘__ + 2£l_§z_ + A da(PS + 3u %3@.___ + 3“2ﬁd3<9 30
JU? dU: dU dU

n n

2 /e s L s s s
TG T R 5 el e M A SR 3 B E
s, T auta T an e T M o

2 [ dso & & A/ dS
+ = (22 45 —htopr- S ¢ (22 ) =

60 <dUt “avtau, T Y autat? > " 360 <de v
d’ou I’on déduira p en fonction de .

. T Yz * d2
Remarque. Nous montrerons que, lorsque 1’équation —d~2 = 0
2

. : d
a des racines simples, Ei_U—t?iiPIT n’est pas nul pour ces racines,
n

LEnseignement mathém., 38me année, 1939 et 1940. 7
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En effet, on tire de (3) et (4) 'équation

da " de T T Yo (16)

Alors

d /do d . > . o
Z&(ﬂﬁ) = E&[Ut grad (U, grad cp)} = 2U, grad (U; grad ¢) = 2

dU, dU,

par conséquent

e 1 .d [d¢\ _
dU,dU, ~ 2da ) -

. 0%¢ 0%¢ _ 0% 5
~—008a51nm<a—x—2—}—QOxaytgaqLth o) +

0%¢ 02 1
2 ]
08 a(bxby 6y2tga> :

d2
On en conclut que ¥

= () dans le cas d’une racine double
dU,dU,_

, . d?
de ’équation —>

5

- = 0, car cette racine satisfait aussi a ’équation
t

%o 0% .
O“i‘azl/" e 6—:1;5 tg o = 0
02 02 , .
Pour cette valeur de tg « = — ———+-: % on vérifie sans
o0x 0y Oy
. a2 d [ do d2o
eine que —; = .| 57— | — — est # 0.
P 1 du:  do (dUthn> dU:

t

, A 1y . d?

On démontre de méme que: si ’équation —= = 0 n’a que des
t

. i . d?
racines simples, la fonction ———

n’est pas nulle pour ces
dU; dU,, > P

. 1y ; d®
racines ; si ’équation —

- = (0 a une racine double, la fonction
t
3 1 d /[d? : d? Ty .
_Pe 1.4 [N 0, mais ——+— £ 0; si Péquation
dU; dU 3 do \ qU; dU; dU’
t n t t n
3
'if% = ( a une racine triple, on a
dU;
Po _, e _, @
dU7dU, " dU,dU T aul

n
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On généralise facilement.

Ier cas. Racines tmaginaires; point isolé. — Lorsque «; et o,
) —_—— ——>
ne sont pas réels, les vecteurs U;, U, ne le sont pas non plus;
. . , L oapl
par conséquent la courbe ne posséde pas des points réels M;, M,,

2 2 “ % . . . ,
M,, M, au voisinage du point M. C’est un poini isolé.

I1e cas. Racines réelles distinctes. — Plusieurs cas sont a dis-
i tinguer:

: . o o
1. Point ordinaire double & tangentes distinctes: —x # 0. —

t
i Dans ce cas on obtient de I’équation (15) la valeur approchée

de p suivante:

; d?e - Addo . . A /B  dPo
0,40, T3 aul A <dU§ " du,du, )

| 2da dU;
En faisant le méme raisonnement que plus haut (§ 2, 1) nous
concluons que le point M est un point ordinaire double a tan-
gentes différentes. La situation de la courbe par rapport a cha-
cune des tangentes dépend du signe de la quantité

, . d? 1 d [d? ,
le dénominateur P = 2\ étant # 0, car ay #~ a,.
dU,dU, : )

_ Pe  do ou P ddvo
dU, dUdU, dU; ~ dequy

- . . . . 3
2. Pownt d’inflexion double a tangentes distinctes: Z—U% = 0,

dto

pree # 0. — Dans ce cas on obtient de I’équation (15)
t

d2 0] )\2 d4 @ - )\2 d4 (P d2 P
2 —_—_— —_— = O == = — - . .
“aCan, T aagy 00 v T M i (dU§ au, dUn>

Nous concluons comme plus haut (§ 2, 2) que le point M est
un point d’inflexion double & tangentes distinctes. La situation
de la courbe par rapport & chacune des tangentes dépend du
signe de

_dle  dPo
du;  dUdu, -
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11 pourrait arriver que, par exemple, pour « = «; on ait un
point d’inflexion et pour o = &, un point ordinaire.
3. On généralise facilement.

a * ’ ’ * dz

IT1Te cas. Racines égales. — Lorsque l’équation =%

t

; N d?

admet une racine double: « = a;, «; annulera aussi ZZ———(% ou

*dU, Fl
_Pe (voir remarque), sans annuler @ Alors I’équation (15)
dU,dU ’ du?’ ’

n
ne contient pas le terme en p. On a plusieurs cas particuliers a

distinguer:
. .y . ks
1. Pownt de rebroussement de premiére espéce: JI% #+ . —
t

L’équation (15) donne pour p I’équation approchée

d? A d? 3 D
? :§+§ L=0, p=p,==x,/ 2(Te Do)
AUy 2 U 3 \avt at?

Alors on tire de (b)

/

1

— s s 3 2 i~
MM1:M01+OM”:XUt_F;\‘/_%(dCP:d@)Un’

—> —_— e — A —

2 MM, — MO, + O M, — ->\Ut~—~x\/+ S0 Un,
——>9 — ———>9 — __T_‘—— —>
MM, = MO, + OM, = 2Uy —ny/— 5 (...) Un
—_—9 —_ ——>9 — A e

2MM2=M01+02M2:——7\Ut+)\\/—{—?( ) Un

On voit donc que dans tous les cas il n’y aura que deux

branches réelles, tangentes a la demi-droite 3 $$, lorsque
— S%% : % est ) z 0.

2. Point isolé; point double ordinaire & tangenies confondues ;
point de rebroussement de deuxiéme espéce: % = 0, Ezlﬁ #= 0. —

Dans ce cas I’équation (15) donne

2 d3 22 g4
dU dU;dU, 124U,

n

7 0, o=, = (et br. (17)
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Nous avons trois cas & distinguer:

a) Racines imaginaires. Dans ce cas nous avons un point isolé.
b) Racines réelles distinctes. Dans ce cas nous avons

——1

MM = MO, + O,M, = AU, + (a + 8) 22U, ,

H

MM, = MO, + O,M, = — 20, + la + ) 22U, ,

[ ———>9

MM = MO, + O,M, = AU, + (a — 5) 22U, ,

—_—9

MM, = MO, + O,M,

l\') [ P-‘

|

— 2T, + (a — b) 2T, ,

ce qui montre (§ 2, 1) que le point M est un point double ordinaire,
les deux branches de la courbe étant tangentes & une méme
droite T'MT. Les deux branches sont situées du méme coté de
cette droite ou des deux coOtés de cette droite, suivant que
~a 4+ b et a— b sont du méme signe ou de signes différents.
¢) Racines égales. — Dans ce cas
Aodde  dPo

H:Vu,g:‘”‘:‘“i SR —
dUthn d[)n

Alors I’équation (5) ne donne que deux points voisins de M,
tandis qu’il faut qu’ils soient quatre. Dans ce cas il faut pousser
Papproximation plus loin et retenir dans I’équation (15) des
termes d’ordre supérieur. Nous avons

d?e VALY My dio 23 ddo

(o — w)® + Ap? + +=—==0.
v’ SN e T autau, T B0 a0

En posant w =y, + c=ai + ¢ on obtient pour e les
valeurs suivantes:

dio 1 d° a2
e=4ay /[ BO 2 do | 1 de] do
\/ [ dU, dU 3 dU: du, 60 dU? dU?’L

Par conséquent p,, = A(a = V/Ac), ou

1 v_qulf_r o
24040, Ut
et
c = — | a? d3(9_7) ‘?_‘,Ziq’_ __1__d5q) . d? ¢ .
dU,dU, 3 dujdu, = 60qul|  qu?
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Alors I’équation (5) donne

MM, = MO, + O, M, = U, + » [~—; &t?;—d%,,; : g;‘% e \/XEJ U, »
MM, = MO, + O;M, = — 2 U + 22[............. + V=% U,
\ MM, = MO, + O, M, = — U, + %[, — V%] U, ,
| W0 = N0, + O30 — — a0+ 22[eeerreee =T

On voit donc que, dans tous les cas, il n’y aura que deux

, \ . . MT >
branches réelles, tangentes & la demi-droite ;MT’ lorsque ¢ — 0,

et situés du méme coté de cette demi-droite. On a par conséquent
un point de rebroussement de deuxiéme espéce.
On généralise facilement, lorsque ¢ = 0.

4. — Points singuliers: 5;213 o = 0, g—i&?l (IZ é?cﬁ o) = 0.
— Dans ce cas z et y annulent les dérivées partielles du Ier et du
1€ ordres. Alors ’équation (15) ne contient pas les deux premiers

termes et on obtient une équation, d’ot 'on déduit 1’équation
suivante pour w«:

o _
dU;
ou
0% . 03¢ 5 . 03¢ s B ..
578 COS o+ 3WCOS o sin o + 3~axaygcoso¢sm o + 35 sin® o = 0 .
(18)
On aura ensuite 1’équation suivante pour w.:
d? d®o d?
Byt 4 Zpd— u %
dU dU dy, dU’ du;,
A /de d e \
SRR T AT e +—~ ...):0.
4\ aU; dU; dU,, dU; )

Lorsque les trois racines de (18) sont réelles et distinctes, on
peut avoir un point ordinaire triple ou bien un point d’inflexion
triple, etc. de tangentes distinctes. Lorsque 1’équation (18)
a une racine double, on peut avoir des points de rebrousse-
ment, ete.

La méthode & suivre est tout a fait analogue a celle suivie au
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5. — Remarque. — 11 est bien entendu que les résultats pré-
cédents ne sont valables que lorsque la fonction ¢ remplit les
conditions nécessaires pour I’application de la formule de Taylor.
Il peut arriver que la courbe (C) ait des points singuliers dus aux
discontinuités de ¢ et de ses dérivées. La méthode précédente ne
s’applique pas évidemment a ces points singuliers.

6. — Applications. — Nous ferons quelques applications de
la théorie précédente pour étudier la portion d’une courbe par
rapport & la tangente en un point singulier. Pour faire cela il
faut avoir I’équation (6). On peut y arriver en exprimant que le
point M, de coordonnées x4+ Az, y -+ Ay est situé sur la
courbe (C); comme

MM, = Azi 4+ Ay] = AU, + apuU, =

= A{cosa — psina)r + Afsinae + pcosa)j

on est ramené a I’équation

@[x + Alcosa — psina), y + A(sina + {}.COSOL)] =0 . (19

Exemples : 1° ¢ = a3 4+ y3 — 32y = 0. Point singulier
x = 0,y = 0. L’équation (19) est

Cos a Sino 4 1 (Cos? o — sin? a) — p2sin o cos o — A [cos® o + sin®«
+ 3ucosa sina (sino — cosa) 4+ 3u2 cosa sin « (sin o + cOS )

+ pd(sin®a + cos® oc)] = .

L’angle « est déterminé par 1’équation cos o - sin o — 0-

)

. T — - —: - — -

par conséquent o; = 0, «, = 35 Up=1; U,=7j; U, =j,
— —

Uy, = —1. Nous avons un point double & tangentes distinctes.

Pour déterminer la portion de la courbe par rapport a ces tan-

gentes, on doit déterminer p; on obtient

cos® o -+ sind o
coS2 @ — sin2 o

I

)
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Pour «y = 0, u, = 2; pour 0-2:%7 ey = — A. Alors
( MM = a7 + %7, )ﬁﬁ::ﬁ—v}?,
ﬁ—ﬁl = 5T a——ﬁz_ — o
MM, = — X1 + A, MM, = — X1 — 2]

Nous avons done un point ordinaire double a deux tangentes
distinctes. ’

20 9 = y? —2yx* + 2* — 25 = 0. Point singulier z = 0,
y = 0. Equation (19) est
sin?o + 2psino cosa + up*cos?o — 2A(sin o + w@cosa) (coS o — wsin a)?
+ A(cos o — wsina)t — A3(cos o — psina)® = 0 .
d’ou sin? o = 0, o = 0 (racine double) Gt =s _L’, Gn = 7
Pour ¢ =0, ona p?2 —2xp + 22 — 2 =0 ou (p — A2 —
— 7\3 — O, d’ou {J.]_’2 — )‘\ :t )\\/.7_\—-

On obtient
MM, =20, 4+ 22(1 + /2 U,
MM, = 2U; — 22(1 — A/2) Uy, -

Par conséquent l’origine est un point de rebroussement de
deuxiéme espéece.

30 o =y’ + axt — b2xy* = 0. Point singulier x = 0, y = 0.
Equation (19):
A (sino 4+ pcos«)® + art{coso — psina)t —
— 0223 (cos o — psina) (sine + pmcosal? = 0
d’ou
— b2cosa sin?a + pb?(sin®a — sina cos?a) —
— p2b%(cos® o — 2sin? o cosa) + pdb2 cos? o sino
-+ Aa (coso — psina)t + A2(sino + pwcosa)® = 0 (20)

\ . A} TC . .
d’ou 'on a cos . sin? o« = 0, d’ou o; = T Uap = 0 (point triple).

Pour a:%,onaUt:]’, U,=—1 On a pb? 4 rpta +
\ 22
+ 22 =0, dou b=
s = 3, - %8 = — > 33 =
MMi:kUt——%Ln:X]%—bA—z—:, MMz:—K]———-I—)EL
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Par conséquent nous avons une branche* tangente - & oy et
traversant cette dr01te a l’orlgme (pomt d’inflexion).
Pour « = 0, on a U; = Z, Un — j. L’équation (20) donne

— p2b® + ra + Nys =0,
d’ou

ra
— u2b? 4+ ha = 0, “1,2:i\/bz (A > 0) ;

ra
R

Traarl2 =
MMI' = A1t + A
Par conséquent nous avons un point de rebroussement de
premiére espéce, les deux branches de la courbe étant tangentes

a 'axe des z.

7. — Courbes d’équation x = x(t), y = y(t); points
simples et points singuliers. — Considérons une courbe plane (C)
donnée par les équations paramétriques

z=uz(t), y=y, (21)

ou par I’équation vectorielle

—

OM = M(j = =)t + y@)7 , (21)

et soit M un point de cette courbe correspondant a la valeur ¢
du parametre En supposant que pour cette valeur de ¢ les

dérivées M/ (1), M”(t), M(p)( t) de K&( t) sont continues, on peut
appliquer la formule de Taylor pour la valeur ¢t + At du para-
metre a laquelle correspond un point de la courbe M, infiniment
voisin de M, et ’on obtient

N = Atz Az-— Atp(

OM, = M(t + A¢) = OM+—M’+ oM+ e+ o M® 472,

¢ étant infiniment petit avec Af. On en déduit

. 2, o, -
MMl _A_’fM'+éiM”+ +%(M(p)+e) . (22)
Considérons la tangente (T) a la courbe (C) au point M; nous
choisissons comme sens positif sur (T) celui du vecteur M'. En
désignant par U; le vecteur-unitaire de la tangente, nous avons

— W Ty 5 (23)
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soit « ’angle que fait U; avec oxz. Nous choisirons comme sens

positif de la normale (N) celui qui fait avec ox P'angle o + 7;-,

désignons par U, le vecteur-unitaire de la normale.
Nous avons (§ 1)

On tire de (22) et (24) ’équation

- = At A~ AP
AUy + apU, :TM’+--NI’ oty (M

(p)
21 M+ )’

d’out 'on tirera A et p de la maniére suivante: Faisons le produit
scalaire des deux membres de cette équation par M’ = (M') U;;
comme U? = 1, Ut U, = 0 nous obtenons

2 5 3 > |
1 (A[M At At ) '

’ /2+_M M”—f-———M \/I,’I+ (25>
M/

Faisons maintenant le produit vectoriel par M’; comme
U AU =0 M AM = 0, nous obtenons
i —> 2 5 3 5
2w Up A U, = »3’(9—’-1\4' A M+ A‘ STM AN ) . (26)

Désignons par k ¢ un vecteur- unitaire normal au plan oxy et tel
que le triedre U; U, k soit orienté comme le triedre ] j k. Nous
aurons

F=UAUa=7AT: FOAT) =FG@ A7) =1. @)

En faisant le produit scalaire des deux membres de (26) par l?,
on obtient

1Ay At *
A= T [J, FOU A M) + 55 k(00 A M7) + } .27
Alors (24) prend la forme
N 2 %
MM, = MO, + O, M; = -+ ; ﬁthz + A—ZM M +A—M'M”' ] Ui
2 > —> A3 — —> =
+ [AQZ EO A W) 4+ ST (A M) 4+ } Unz . (28)
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Le point M est appelé point simple, lorsque M’ (1) est # O;
lorsque, au contraire, M’ () est nul, nous montrerons que M est
un point singulier, a condition toutefois que I'ordre de la premiere
dérivée qui ne s’annule pas pour ¢{ = ¢ soit pair.

8. — Point simple: M’ 2 0. — Lorsque le vecteur M’ est
différent de zéro, il détermine la direction de la tangente au
point M.

1. Pownt ordinaire & courbure non nulle: 2(1\7[’ A ﬁ”) # 0. —

Nous montrerons que, lorsque l?(ﬁ' A 1\71”) # 0, nous avons un

point ordinaire & courbure non nulle (§ 2, 1). En effet, comme A
~est infiniment petit, ’équation (28) et I’équation obtenue en
© remplacant At par — At, donnent

l\ml = 1\—1—61 -+ OlM1 = _1 S [At . ﬁ'zﬁ( U + [%Ii‘ Z(r, A ﬁ”) —th /
a2y 2! |
—— — - 1 \ — — 25 -
MM2 == M()2 + 02M2 = ——~—I — , 3[—1325 . Mlz:)Ut - [At k(M A M) Un} ﬁ ,
1’ ’ »

d’otu 'on déduit

MO, = — MO, = A¢|M’|U, ,

e > 2‘_) —>/ “)//\ =

01M1: OgMngt k(M /\M;U

Ceci montre que, lorsque k(M’ A M") ;é 0 on a un point
ordinaire. Le signe de k(M’ M") = 2’y — y'x"" détermine
la position de la courbe par rapport & la tangente (T).

Nous montrerons que dans ce cas la courbure 1 prest pasnulle.
En effet, ’équation (23) donne i

M :|Mtd—Ut+ g 129)
L= dM , . . :
Mais U; = =, ds étant la différentielle de I’arc s. On peut
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toujours supposer que s croit avec.f; dans ce cas on aura
—> ds R
| M| = E§>Oet de méme

dUr _ dMds _

1 = = g > »«>, o
En portant dans (29) nous obtenons
W= S W pT, + LM T
- 0 | n dt [

En faisant le prodult vectoriel avec M’ = ]M’ U, on obtient
M AM = E | M’ |3k, d’ou I'on déduit aprés multiplication
par k:

T FIWAMYT g (30)
J | M2

Comme % est > 0, ¢ doit avoir le signe de Z(ﬁ[’ A K/I”). Par

conséquent,

1 !—i(ﬁ/ ﬁl/) J _ !x/y// - // /Il
“‘\*/I/ls lez + yf2]3/z

2. Point d’inflexion : i (K/I’ A IT/I”) == (), k (1\7[’ A IT/I’”) #+ 0.
— Supposons que, pour cette valeur de ¢, on ait
Z(ﬁ/ /\ ﬁ”) = 0 , x/y//_y/x// = , (31)

c¢’est-a-dire que la courbure est nulle. Dans ce cas I’équation (28)
nous donne

MO, = —MO, = A:|M'|U; ,
s —_— 3‘> NK ~—>f// -
OM, — — oM, — AP AN &

On a par conséquent (§ 2, 2) un point d’inflexion.

Bemarque — Comme M’ = 0 pour que k (M’ A M ") soit nul,
il faut que M’ soit nul ou bien parallele a M’
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3. Point ordinaire ¢ courbure nulle : 1?(1\7[’ A ﬁ”) = 0,
ié(ﬁ' A IT/I'”) = 0, 7c>(M’ A I_V?I“’) # (0. — Les raisonnements

sont analogues a ceux du § 2, 2.

4. On généralise facilement.

9. — Courbe d’équation y = y(x) (ou x = x(y)). — On

",

peut considérer ce cas comme un cas particulier de la théorie

| exposée aux § 7 et 8 (x = tou bien y = i).
10. — Courbe d’équation r = r(t), 6 = 0(t) (r et 6 désignent
les coordonnées polaires du point M). — Alors I’équation vecto-

rielle de la courbe (C) est

OM = M() = rU, , (32)
? ou
U, = cos 07 + sin 6 (33)

' représente le vecteur-unitaire de la droite OM. En désignant
~ par U, le vecteur-unitaire suivant

U, = cos (e T 125>’Z+ sin <e 1 1;->7 — — sin 07 4+ cos 0],  (34)

4

on aura
UT' == e,ﬁp 9 Up _= — Olﬁr N (35)

Les valeurs de 1\7[', IVI”, ... quon doit porter dans (28), se
calculent aisément a partir de (32), (33), (34):

ﬁ' == r’ﬁr —I— re,ﬁp ]
M = (" — r0 U, + (00" + 27097, ,
F/II/I —_ ...

Dans ce cas

1 KM A M) PO b 20— 0 2078

_——= — ==

@ lﬁ/l% (r2 + e 6/2)3/2

Lorsque 6 = ¢t on a 6’ = 1, 6 = 0, ... et on obtient la
formule bien connue pour %
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11. — Point singulier: M = 0, M” # 0. — La valeur cor-
respondante de ¢ est donnée par 1’équation

M =0 ou () =0, y () =0. (36)
Dans ce cas, pour déterminer la direction de la tangente,

Péquation (22) donne le vecteur M = | M| U, L’équation
(28) est remplacée par 1’équation

— S e 2 5 3 > 4 _ —> -
MMI _ MOl + OlMl __ j ; [A2t M//2 + At M//MI// + At M///\ MIV + “':I Ul
| N
M|
3 - —> .
— [%t,—k(M” A M") + i, E(M” A M) 4 ] éUn- (37)

Cas particulier :

1. Point de rebroussement de 17 espéce : k (K/I” A IT/I”’) #+ 0. —
L’équation (37) et 1’équation obtenue en remplagant At par
— At donnent

— —_— A2 =
NIO1 :MozlelM !Ut
—_— — % 3 PULY 1 s
O, = o, = Ae KA N &
L
d’ou I’on déduit que lorsque
?(L ” A ﬁfll /fym — 2" £ 0

on a un point de rebroussement de I'® espece (§ 3, III, 1).

) . Z (1\7)[// N)[m —_ 0 .
2. Point de rebroussement de 11¢ espéce: _ _ A M%) .

. . 7 ” _>IV O )
Dans ce cas on obtient facilement k(M7 A MY)
=Y 2 > 1=
M() N[(:)2 === ___2___ IM// Ut ,
—_—— 4 NN e s N N
O M = é{: [k WA M) 4+ SEE (M A MV)]Un ,
171 Al ‘M” 5
P At4 e At‘* s —
01 NIz = = [(‘ (M” A MIV) - k (M” A MV)] Un )
il | M7
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ce qui montre que nous avons un point de rebroussement de
I1e espece (§ 3, 111, 2).

3. On généralise aisément.

12. — Cas général :

........

. . . . ( ordinaire
Lorsque p est impair nous avons un point simple | dnflexion*

lorsque p + ¢ est 2 Lorsque p est pair nous avons un

impair*

point de rebroussement de 3 il espece, lorsque p + ¢ est ;r;lgau‘
13. — Autres espéces de points singuliers: pomts multiples

(ordinaires et d’inflexion). Courbe d’équation OM = M(t). —
Lorsqu’il existe deux valeurs différentes de ¢: ¢, et ¢,
auxquelles correspond un seul point M, c’est-a-dire si I'on a
OM = ﬁ(tl) = 1\71(1:2), le point M est un point double. Pour
étudier la courbe au voisinage de ce point, on considérera les
vecteurs K/I’(tl) et 1\7[’(t2). Lorsque 1\7[’(111) et M’ (t,) sont % 0 et
de directions différentes et si, en outre, l?(ﬁ’ A 1\71”) ne s’annule
pas pour #; et t,, le point M est un point ordinaire double a tan-
gentes distinctes. Au contraire, lorsque 76(1?1’ IVI”) =0 et
k(\/I’ M”’) #+ 0 on a un pomt d’inflexion double & tangentes
distinctes. Lorsque M () = M (¢,) on a un point (ordinaire ou
d’inflexion) double, a une tangente commune. On généralise
alsément pour les points triples, ete.

14. — Courbe d’équation r = f(0). — Nous nous arréterons
un peu plus sur le cas partlcuher d’une courbe d’équation
r=f(0) ou OM = (6)—rU Nous avons vu au § 12
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que I’6quation M’(0) = 0 donne les amplitudes des points de
rebroussement. Nous supposerons maintenant que M’ (8) % 0.

On voit facilement que, pour qu’il existe un point double
M, (74, 0;) = My(ry, 6,) (r; %0, ry £ 0) il faut avoir: 6, =0, + =
ce qui donne

=100, =704+ ; (38)
par conséquent, il faut avoir r; = — r,, ou bien
F0) + f(6; + 7)) =0 .

Par conséquent, on obtiendra un seul point M de la courbe
pour des valeurs 6 et 6 4+ = du paramétre, si 0 satisfait a
I’équation |
f0) + (0 + =) =0 . (39)

Si pour cette valeur de 6 on a M’ (0) £ 0 et M’ (0 + =) # 0,
on a un point double (ordinaire ou d’inflexion). Si I’équation
(39) est une identité en 0, alors on obtient pour 0 et 0 + = le
méme point, mais on voit facilement que ce point est simple.

Si f(0 + =) = f(0), I’équation (39) devient
f(8) =0 ; (40)

dans ce cas l’o‘rigine est un point multiple. A chaque racine 9;
de ’équation (40) correspond une branche de courbe tangente

au vecteur K/I’(Qi) + 0.

Remargues. — Nous allons calculer les dérivées ﬁ[', 17[”, 1—\7[”’,
de M () lorsque r = 0. Nous supposons d’abord que M’ (6) % 0.
On aura: ~ |

—>

_1\71’(6) = r’ﬁr + rﬁp = U ,

K/I”(GJ = (r” —r)fjr -+ 21”ﬁp = r”ﬁr + 27"—6];, ,

M”(0) = (" — 3\ U, + 37" — Ty = (" — 38U, + 3070, , (1)
=1V v

MY () = (7 — 62" + ) Up + (42" — &)Uy =

_ (\rlv—6r”)ﬁr + ([t’,,ll/____[k’,/)ﬁp e

4 /\ MI/) — 2,,/2 , Z(N[/ /\ ﬁ/’/) — 3’,1 r’/ ,
' A ﬁlV)

=4

(
(

>

=~
=y

= &(rr” — ), . (42
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Nous supposerons ensuite que M’ (0) =0, alorsr =0, r" = 0.
Dans ce cas 'origine est un point de rebroussement, dont la

tangente est donnée par le vecteur
ﬁll (6) — r// ﬁr . ([‘:3)
Nous avons

k(M7 A M") = 3r7 | (44)

Si I'on prend comme paramétre le rayon-vecteur r, on a pour

17[27-) — ﬁr + Pe'(r)—ﬁp — T)jr )
M () = 20'Up, WM7() = (...)Up + 307()Tp , ... (45)
K

(M A MM = 200(r) , & (M A M) = 367(r) .

Ces formules sont utiles pour les applications.

15. — Applications. — 1. Conchoide de Uellipse :

__ P — L
_1+ecos0+h’ [e<1,p‘a,(’1 e,:l,

. (h pouvant étre positif ou négatif).

I. Point singulier r = 0. Alors

h +p
eh °

e —(p + h)2 T, /4% — (a + h)?
sinf = + \/ e2 2 = \/1 — & e2 h2 ’

cos 0 = —

0 sera réel, si (a+ h) <ae, c’est-a-dire si a(l —e)<—h <K
a(l +e), h <O.
Cas particuliers : a) Lorsque — b < a(1 — e) ou—~h>a(l+te),
U n’est pas réel et I'origine est un point isolé. Les extrema de r
sont @ 1y = a(l—e) +h>0, r,. = a (14e + 2 <0,
pour 6 =0 et 6 = .

L’Enseignement mathém., 38me année, 1939 et 1940. 8
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b) Lorsque a(l —e) <—h < a(l + e) I'équation admet
deux racines 0, et 0, = 2m — 0,. Nous avons

> = e (sin 0 cos 07 + sin207)
M= iy = (1 + ecos )2 '

Comme ?(ﬁ[' A 1_V>I”) = 2r'2 > (0, on conclut que 1l’origine est
un point double ordinaire & courbure non nulle; les deux
branches étant tangentes aux vecteurs ﬁ’(@l) et ﬁ’(@z), Les
extrema de r sont: r,, <0, r... > 0.

c) —h=a(l—e) ou —h=ua(l 4 e) Péquation (46)
admet la racine 6§ = 0 ou = respectivement. Dans ce cas M’ est
nul. La direction de la tangente est donnée par le vecteur

=2 ep ) g, €p7
W(0) = g, Wim) =

Comme —;C(K/I” A 1\71”’) = 3r2 £ 0, on a un point de rebrousse-
ment de I espéce. Les extrema de r sont: pour

—h=a(l—e¢ , r, =0. r = 2ae
—h=all4+e¢, r = —2a, r =20.

max

d) Lorsque — h = p I’équation (46) admet les racines
0, :% et 62:%75. Alors ﬁ’zf L’origine est un point

double ordinaire @ une tangente commune. Les extrema de r sont:
Fom = ae(e —1) <0, rp, = ae(l + ¢e) > 0.

I1. Points singuliers r # 0. — L’équation (39) est

P p 2k = 0
1—}—ecose—l_l——ecosf)+ ’

d’ou
1
eosze:ﬁggﬁ, cose——:i\/g(%—{-l);

O sera réel si —a < h <O.
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Cas particuliers: a) — h < a. La racine de 1’équation

cos O = 12(5—1-1)

(4
est 0,. Alors pour 0, et 6, + = on a le point smguher M, 1(ry, 09).

Les tangentes sont donnees par ]e vecteur M’ pour 6 = 6; et

0 =0, + n. Comme M( ) F M’(G + m) on conclut que
M, (r4, 0,) est un point double & tangentes distinctes.
On raisonnera de la méme maniére sur la racine 0, = © — 6,

de I’équation
— 1(p
cos 0 = —¢E§<k -+ 1) .

b) — h = a. Dans ce cas 0, = 0, 0, = m; ﬁ’(O) = — ae}i
M’ () = aej. On voit que le point M(ry, =) est un point double
ordinaire & langente commune.

T i A R
Y SRR

2
ki

IT1. Lorsque &> 0 P’origine est un point isolé et on n’a pas
d’autres points singuliers.

2. Lemniscate: r* = a* cos 20. — On voit facilement que
Porigine est le seul point singulier. On a 0, = % et 0, = 3—475 :
= o a2 sin 20U . .

Comme le vecteur M'(0) = r'U, = — ———— est infini

pour 0 = 6, et 0,, la théorie précédente n’est applicable.
Pour tourner la difficulté, nous prendrons comme paramétre ¢
le rayon-vecteur r. Nous avons

—— ~>

OM = M(r) = rU, ,

ﬁ, = cos 0(r)

b \
d’olt, pour r = 0,

@——>




116 I. TZENOFF

Alors pour 0, -—-:—leE nous avons
1 ,= - 3t
M (0) = —— (1 + 7) ; our 0, = >~
1) ,\/2( ]) P 2 A
W0y = ——(—7 +7)
22
Dans ce cas
o d0\2= do | &6\  _db
M ———'—"r(a—;“) Ur+<2—Jr—+ r~‘—i—’§>Up——2d—rUp
et
e =N .dO 2r7__
k(M/\M)»zﬂm el R
En calculant
ﬁm___ ﬁ d20..>
== (..-) r+ 2d_rz‘Up
et
S d2 0 2
’ m - - -
k(MAM)HerZ a?sin20”’
on voit que pour
TC _+-—>/ —+// 1 '
6 = 7, k(M A M) =— 5 <0
3w SR, L ) 1
6 =—, k(M A M) =35>0

Par conséquent l'origine est un point double d’inflexion a
tangentes distinctes.
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