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POINTS SIMPLES ET POINTS SINGULIERS
DES COURBES PLANES

PAR

Iv. Tzénoff (Sofia).

1. — Courbes d'équation <p (x, y) 0; points simples et points
singuliers. — Soit

9 (s, y) 0 (1)

l'équation d'une courbe plane C et M (x, y) un point de cette
courbe. Nous supposons que les dérivées partielles de 9 d'ordre
< 6 par exemple sont continues au point M. Alors M1 (x + Ax,

y + Ay) étant un point variable de C, infiniment voisin de M, on
aura 9 (x + Ax, y + Ay) 0, d'où l'on déduit

<î4'+ > + MB'" +

* MB'"*+ + >«•
+ ±t^A,A+...)++4 \ô x^ "j 5 \ô x5

+'(**** + m6\\àxQ

En introduisant les vecteurs

grad 9 i + / MMX *= A xi + Ayj

où i et / désignent les vecteurs-unitaires des axes ox et oy, l'équation

(2) s'écrit:

MMX grad 9 + grad (MM^ grad 9)

4- ^ MMi grad [MM^ grad (MMX grad 9)] + 0 (2/)
o
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Nous nous proposons de déterminer la position du point Mx

{c'est-à-dire de la courbe C) par rapport à la tangente (T) à la

courbe G au point M. Pour cela nous devons déterminer

l'inconnue MM1 de l'équation (2').
Nous désignerons par Ut le vecteur-unitaire de la tangente (T):

Ût cos a i + sin a/ (3)

a étant l'angle (compris entre 0 et tu) que fait la tangente avec

l'axe des x. Nous désignerons par Un le vecteur-unitaire porté par

la normale (N) et faisant avec ox l'angle a + ~ :

Un cos ^ i + sin ^ / — sin a i + cos a /' (4)

— ^
Gela posé, supposons que MM^ soit de la forme

MMj MQi + QiMi XUt + XpiUn (5)

1 et X[i étant deux quantités scalaires infiniment petites, dont la
seconde \\l est infiniment petite par rapport à la première X.

Pour connaître le vecteur MMX, il suffit de connaître a, X, (jl ou
bien — a et p, car l'infiniment petit X peut être choisi arbitrairement

(le point Mx infiniment voisin de M pouvant être choisi
arbitrairement). En portant la valeur de (5) dans l'équation (2')
nous obtiendrons une équation dont nous tirerons les inconnues a
et [jl. Pour simplifier nous écrirons

Jff U( graS 9 Ufgrâd (Utgrâdcp) Jf- Û„ grâd 9
aut d[Jt aun

Ut grad (Ûn grâd 9) Un grad (U£ grad 9)

Avec ces notations l'équation (2') s'écrira

/Ut
+ ^Un + 2 +

dU(

d.XJn
+ ^ dW

"X2 /r/3m (p(Ù ^ w o^4
<

2 + 3 [X2 + [A -,

dU\d\Jn dXJtd\J2n *

dXJstd\JndtfdXJldU(dU* dU*)

X (d2 9
2

1

[dû]
X2 /d* 9
3! 1w
X3 (d* 9
4!

1

w
d5cp

5!
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Le point M sera un point simple, si grad 9 ^ 0; si non M est
un point singulier.

2. — Point simple : grad 9 i + 7^ 0. — L'équation
(6) donne à la limite (fx — 0 et X — 0):

d(D => > Ö Cp ÔCp

Ui grad 9 0 ou cos a ~~ + sin a-^-1 0 (7)
wUj O X O ^

La condition Ut grad 9 0 exprime que le vecteur grad 9 est-

perpendiculaire au vecteur Ut, c'est-à-dire à la tangente (T).
L'angle a (0 < a < tu) que fait Ut avec ox est déterminé par

tg. (7')
ox oy

a étant connu, on déterminera ensuite [x en fonction de X à partir
de l'équation

d(û X /d29 d29 -d2(p\
^Tr„+2T (^+2^+^) w

3!VrfUÎ '")4 "7 5 \dU!

Nous aurons plusieurs cas particuliers à distinguer:

1. Point simple à courbure non nulle: 7^ 0. — Dans ce

cas, en négligeant les infîniments petits d'ordres supérieurs, on
obtient

d 9 X d2 9 X d2q> càp^ + 2 ^ ^ - 1X1 - ~ Y ^ :

a et [x étant connus, l'équation (5) donne pour MMX l'expression

X2 / d2 9 <^9
MMj M01 + OxMx AU, - T[

I^ Un ;

en y remplaçant X par — X nous obtenons

MM2 M02 + 02M2 - XU( — \U;
X2 / <i2 9 _

d 9
N

du;
•

<wr
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d'où l'on déduit

MO, — M02 XUt

ce qui montre qu'au voisinage d'un point simple à courbure
non nulle la courbe est située d'un seul côté de la tangente

TMT. Le signe de — —détermine si la courbe est située& dV\ dUn

du côté de Un ou du côté opposé.

Nous montrerons que la condition ^ 0 exprime que la
1

1

courbure — est non nulle. En effet, nous avons
P '

—dMdM. — —r— ds
ds

—> /72 îyr _>
dsUt dm ^ ds2 + d2sUt

En multipliant par grad cp, on obtient

d2 M grad 9 ±
P dyJn

Mais on tire de (1) les relations

(9)

dcp — dx -f ^ dy dM grad 9 — 0

d29 ^2Mgrad9 + dM grad (<29) 0

dont la seconde peut être écrite sous la forme

d2 9 d2Mgrad9 + d M grad (d M grad 9) 0

OU

d2 M grad 9 — ds2
dU

(10)

(100

En tenant compte de (10') l'équation (9) devient

d29 1^9 1

cL\j\ P rfUn '
p

d2 9 d 9
(11)
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On tire de (7)

par conséquent

1

P

dU

dU„

dy
d

d x

d2M grad 9
dM2 I grad 9 |

ô x2 (H)'-

± 1

^ I grad 9I

2
d2 9 Ö9Ö9 à29^09^

dx dy d x dy dy'-
p/Ôç\
a\dxj

-'Od 9
ô x

(12)

2. Point d'inflexion simple: —^ 0, —% ^ 0. — Dans ce
dirt dU'l

cas la courbure au point M est nulle. Les points d'inflexion
simples sont déterminés par l'équation

9IX y)0 Èlf2
02 y -2 ^ (Èl)' 0 (13)' dx2\dy/ dxd'

à condition toutefois que ^ 0.
ôUt

L'équation (8) donne pour [x la valeur approchée suivante:

do X2 dz<x> X2 /d3q> dcp

!X5Un+3T^~ 1 " ~ 1/1 - ~~3!

L'équation (5) donne dans ce cas

X3 /# 9MOl - MOa XU< 01M1 - - 02M2 - - - Un
Sl\dl}t d\]n)

On en conclut qu'au voisinage d'un point d'inflexion M(^, y)

la courbe (C) traverse la tangente TMT. Lorsque
d"9 dç

'dû\'dûn

est > 0, l'arc est du côté de ; lorsque —
MM2 |_Un dVt

est < 0, c'est l'inverse qui a lieu.
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3. Point ordinaire simple à courbure nulle: 0, 0,
d U

^ j

—^ 0. — Dans ce cas le signe de — : — montre de
d\ft

8
dU? ^Un

quel côté de la tangente TMT est située la courbe.

4. On généralise facilement.

3. — Point singulier : grad 9 0. — Les coordonnées x, y
d'un point singulier satisfont aux équations

> d cp d CD

cd 0 grad o 0 ou ~ 0 —i 0 9 0.àx ày ' t

Dans ce cas 0 — ~~ et l'équation (6) — après suppression

du facteur ~ et passage à la limite X — 0, [jl —> 0 — donne

d2 9 „ ô29 Ô29 ô29—X — 0 ou cos2 oc -f- 2 -—cos a sin oc + % sin2 a — 0 14)
y\]2 àx2 dxdy à y2

> \ 1

d'où l'on déduit pour oc deux valeurs: %, a2 comprises entre 0
et 7t.

Pour ces valeurs de y et a l'équation (6) prend la forme

ou.
d2(?

1 t;2
d2(?

1

x fd3(?
: o

rf3<?
o1 ^ 77 H- ^ ^ —3 + o [i —2——h 3

dUt d\Jn
+* dUl

+3 + 3iXrfU^ dUn
+ S[l*dU. + ^dU;

+ + 4,^--+ »„_A_ +12 V< <*Ut n
dU* dU^ dUt dU° T * düj

K„ ** _l. «n-t <*"9 \ /^6(P.

(15)

+ 60 ^u; + 5fXdU^dU„ + 10|ildut'du; +
"7

+ 360 + - t 0 '

d'où l'on déduira p, en fonction de X.

Remarque. Nous montrerons que, lorsque l'équation ^ 0

a des racines simples, dü^ün'estPas nul Pour ces racines,

tandis que dans le cas d'une racine double ,Tf2^TT 0 mais
d^_ t

7T T2 ~T~
rfUn

L'Enseignement m at, ltém., 38 me année, 1939 et 1940. 7
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En effet, on tire de (3) et (4) l'équation

dUj ~> d\Jrt
u» • " u' • <16>

Alors

À(S[) ^[Utgrad^gradcp)] 2 Un grad (Ut grad 9} 2^ <*Un

par conséquent
d2 9 1 d

dUtdUn ~ 2 da \ djj

1 d_
~2 d o.

+ cœ.„(s5!l_ + *îte«)\ôicôî/ à y2 j cos2 a

On en conclut que — 0 dans le cas d'une racine double
dUfdU^inde l'équation 0, car cette racine satisfait aussi à l'équation

d2© Ô2©

A
- * + t-A tg a 0

ô x d y à y2

Pour cette valeur de tg a — : on vérifie sans° o x o y o y*
d2 9 d d2 9 \ d2 9 npeme que —; ^ (j^) - —, est * 0.

On démontre de même que: si l'équation 0 n'a que des

• d^ ÇÛ

racines simples, la fonction —~~— n'est pas nulle pour ces
dXJtd\Jn

• d^ cp
racines ; si l'équation —^ 0 a une racine double, la fonction

d\Jt
dz 9 1 d /d3 9 \ A ds 9 A •— ' —| j 0, mais ———y 0 ; si 1 equation

dUat

dU2td\Jn % dcc ydU*t) '

0a une racine triple, on a

é/39 fi3 9 A
C?39
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On généralise facilement.

Ier cas. Racines imaginaires ; point isolé. — Lorsque «t a2
——

ne sont pas réels, les vecteurs Ut, Un ne le sont pas non plus;

par conséquent la courbe ne possède pas des points réels Mv M2,

M*, M* au voisinage du point M. C'est un point isolé.

IIe cas. Racines réelles distinctes. — Plusieurs cas sont à

distinguer :

m
1. Point ordinaire double à tangentes distinctes : ^0. —

Dans ce cas on obtient de l'équation (15) la valeur approchée
de p. suivante:

0 d2cp • X # cp X /d3q> cp \
"m\' |A ^ •

le dénominateur ,Tf ÎT (~étant 7^ 0, car oq 7^ a2.
a\Jtaun z ace \d\JtJ

En faisant le même raisonnement que plus haut (§2, 1) nous
concluons que le point M est un point ordinaire double à

tangentes différentes. La situation de la courbe par rapport à

chacune des tangentes dépend du signe de la quantité

d3 9 d2 9 d3<p d d2q>

^ •

d\Jtd,XJn
0U ~ rfüj

' Sä '

2. Point d'inflexion double à tangentes distinctes: 0,

7^ 0. — Dans ce cas on obtient de l'équation (15)

o.. i
X2 #9 n __ __

x2 fd*<p d2? \
d\Jtd\Jn + 12 dU*'V-- - -4, ^ •

dU(dUnJ
'

Nous concluons comme plus haut (§ 2, 2) que le point M est
un point d'inflexion double à tangentes distinctes. La situation
de la courbe par rapport à chacune des tangentes dépend du
signe de

d4 «p d2 9~ dût ' '
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Il pourrait arriver que, par exemple, pour a on ait un
point d'inflexion et pour oc — oc2 un point ordinaire.

3. On généralise facilement.

IIIe cas. Racines égales. — Lorsque l'équation — 0

admet une racine double: oc <x, annulera aussi 4-^K ou
d<xdU2t

?tt (voir remarque), sans annuler —Alors l'équation (15)
avtayjn dUn

ne contient pas le terme en p,. On a plusieurs cas particuliers à

distinguer :

1. Point de rebroussement de première espèce: 7^ 0. —•
dUt

L'équation (15) donne pour (jl l'équation approchée

"U + ïS-». I* ± y7- ï : 4?< 3 m: "" s ISS'55!
Alors on tire de (5)

=>-1 • v / "X i rl% m ^2 fn \
U-MM; MO, + 0^;

MM; M02 + ôX

MM; M01 + Ô7M;

v>2 > >2

/ A (#9
1

V 3 vut rfu-

xu(-xy/+ |(...} U„

:-Xy/-|(...)Ûn>

MM; MOt + oX - XÜ( + X y/+ | Ûn

On voit donc que dans tous les cas il n'y aura que deux

branches réelles, tangentes à la demi-droite j lorsque

_*£:*£e8ti>0.
d\Jl dVl (<

2. Point isolé; point double ordinaire à tangentes confondues ;

point de rebroussement de deuxième espèce : 0, 7^ 0. —
d\Jt

Dans ce cas l'équation (15) donne
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Nous avons trois cas à distinguer:

a) Racines imaginaires. Dans ce cas nous avons un point isolé.

b) Racines réelles distinctes. Dans ce cas nous avons

i MM* MO, + CT®* XÛ( + + b) X2U„

I MM* M02 + ëÇM* — XUt + (a + b) X2Ûn

i MM* MO, + CTÊIXU( + X2Un

MM2 M02 + öß, — XU( + — i)X2Un

ce qui montre § 2, 1) que le point M est un point double ordinaire,
les deux branches de la courbe étant tangentes à une même

droite T'MT. Les deux branches sont situées du même côté de

cette droite ou des deux côtés de cotte droite, suivant que
-a + b et a — b sont du même signe ou de signes différents.

c) Racines égales. — Dans ce cas

X d3cp d? 9
t* ^1,2 a X —

2 dV\dX3n d

Alors l'équation (5) ne donne que deux points voisins de M,
tandis qu'il faut qu'ils soient quatre. Dans ce cas il faut pousser
l'approximation plus loin et retenir dans l'équation (15) des

termes d'ordre supérieur. Nous avons

du:
(fi.-m)2 + x^

dz cp X2 d4 cp \3 d5 9

dlh dK "3" dUl dÜn
+ 60 ^

En posant fx s — a\ + s, on obtient pour s les
valeurs suivantes:

i X

dutdu
+

a #cp
3 dUj dUn

+ JL
60 dU\ dut

Par conséquent fx1)2 \(a ± \/Xc), où

2 rfUj dUn
'

d

et

+ ~
d*ip

rfUt rfU,2, 3 dU2 60
cPtp
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Alors l'équation (5) donne

MMt — M01 + OiMi XU; + X2
3

9 <^29

dU; dUn rfu;
+ V^c u„

MMj M02 + CqM, — XUt + X2[ + V— Xc]Ûn

\ MM' MOj + 07M" — XUf + x2[ — A/^]Û„
^ MM* MO, + C>7M" — XU( + Xs[ — V'ZTuJÛn

On voit donc que, dans tous les cas, il n'y aura que deux
MT 7>branches réelles, tangentes à la demi-droite j MT, lorsque c

< 0,

et situés du même côté de cette demi-droite. On a par conséquent
un point de rehaussement de deuxième espèce.

On généralise facilement, lorsque c — 0.

4. — Points singuliers: grad cp 0, grad (Üt grad cp) 0.

— Dans ce cas x et y annulent les dérivées partielles du Ier et du
IIe ordres. Alors l'équation (15) ne contient pas les deux premiers
termes et on obtient une équation, d'où l'on déduit l'équation
suivante pour a:

dU\
OU

ö3cp ö3cp « • d3(P 0 ô3<p
cos3 a 4- 3 cos2 a sm a + 3 -—A-r cos oc sin2 a + r—7 sin3 a 0

or o xz à y o x à y1 à y6
(18)

On aura ensuite l'équation suivante pour q.:

3p-p- + 3n2———-5 + y.'** +
dU'tdUn dUtdV-n dU3n

+ + +, \ ...\ 0.4W du\dUn)20

Lorsque les trois racines de (18) sont réelles et distinctes, on

peut avoir un point ordinaire triple ou bien un point d'inflexion
triple, etc. de tangentes distinctes. Lorsque l'équation (18)

a une racine double, on peut avoir des points de rebrousse-

ment, etc.
La méthode à suivre est tout à fait analogue à celle suivie au

§ 3.
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5. — Remarque. — Il est bien entendu que les résultats
précédents ne sont valables que lorsque la fonction 9 remplit les

conditions nécessaires pour l'application de la formule de Taylor.
Il peut arriver que la courbe (C) ait des points singuliers dus aux
discontinuités de 9 et de ses dérivées. La méthode précédente ne

s'applique pas évidemment à ces points singuliers.

6. — Applications. — Nous ferons quelques applications de
la théorie précédente pour étudier la portion d'une courbe par
rapport à la tangente en un point singulier. Pour faire cela il
faut avoir l'équation (6). On peut y arriver en exprimant que le

point M, de coordonnées x '-f- A x, y + Ay est situé sur la
courbe (C); comme

MM1 Axî + Ly~j XÛ{ + X^xÛn

——>X (cos a — (jl sin a) £ + X (sin a + 4 cos a) /

on est ramené à l'équation

9 [# + X (cos a — [x sin a) y + X (sin a + (x cos a)] 0 (19)

Exemples : 1° 9 x3 + y3 — 3xy 0. Point singulier
x 0, y 0. L'équation (19) est

cos a sin a + ^ (cos2 a — sin2 a) — pi2 sin a cos a — X [cos3 a + sin3 oc

+ 3 jx cos a sin a (sin a — cos oc) + 3 jx2 cos oc sin a (sin oc 4- cos oc).

-f [x3 (sin3 oc + cos3 oc)] 0

L'angle a est déterminé par l'équation cos a • sin a 0;
par conséquent ax 0, oc2 J ; U(l 7; Üta / ; Ü

Un2 — i. Nous avons un point double à tangentes distinctes.
Pour déterminer la portion de la courbe par rapport à ces
tangentes, on doit déterminer p; on obtient

cos3 a + sin3 a
(X -f- A • r :

cos2 oc — sin2 oc
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Pour 0Lr 0, (jlx a; pour oc2 fx2 — X. Alors

MM* X? + X27
|

MM* xî — X27

MM* — XÎ + X27 I MM22 — XÎ — X27 •

Nous avons donc un point ordinaire double à deux tangentes
distinctes.

2° 9 y2 — 2 yx2 -j- x4 — x5 0. Point singulier x 0,

y 0. Equation (19) est

sin2 a + tfx sin a cos a + tx2 cos2 a — 2 X (sin a •+ (x cos a) (cos a — (x sin a)2

+ X2 (cos a — fjL sin a)4 — X3 (cos a — jxsin a)5 0

d'où sin2 a 0, a 0 (racine double) Ut i, Un /.
Pour a — 0, on a [x2 — 2Xjx + X2 — X3 0 ou (fx — X)2 —

— X3 0, d'où (JLi)2 X ± Xi/X.
On obtient

MM; XUt + X2 (1 + VMÛn
MM2 XUf — X2 (1 — Vx Ûn •

Par conséquent l'origine est un point de rebroussement de

deuxième espèce.

3° 9 yb + ax4 — b2xy2 ~ 0. Point singulier x 0, y ~ 0.

Equation (19):

X5 (sin a + (ji cos a)5 + aX4{cos a— (xsina)4—
- — 62X3(cosa— [x sin a) (sin a + (xcosa)2 — 0

d'où

— b2 cos a sin2 a + ;x b2 (sin3 a — sin a cos2 a) —

— (x2 &2 (cos3 a — 2 sin2 a cos a) + (x3 62 cos2 a sin a

+ Xa (cos a — (x sin a)4 + X2 (sin a + fx cos a)5 0 (20)

d'où l'on a cos oc sin2 a 0, d'où ol± ^ oc2^ 0 (point triple).

Pour a ^ oit a Ut w Un — i. On a \ib2 + Xfx4 a +
-f- X2 0, d'où u ;

MMÎ ~Ü„X? + Ml - À / -
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Par conséquent nous avons une branche tangente à oy et

traversant cette droite à l'origine (point d'inflexion).

Pour a 0, on a Ût î, Ûn 7 L'équation (20) donne

— ti2b2 + \a + XV 0

d'où

— ^«6« + X« 0 ^ 2 ± (X > 0) ;

mm*'2 xî ± T •

Par conséquent nous avons un point de rebroussement de

première espèce, les deux branches de la courbe étant tangentes
à l'axe des x.

7. — Courbes d'équation x x (t), y y(t); points

simples et points singuliers. — Considérons une courbe plane (C)

donnée par les équations paramétriques

x x(t) y — y (t) (21)

ou par l'équation vectorielle

ÔM M(«) ^ x(t)~î + y(t)J (210

et soit M un point de cette courbe correspondant à la valeur t

du paramètre. En supposant que pour cette valeur de t les
—> —> ->(v) •

dérivées M '(t), M "(t)7 M (t) de M(ê) sont continues, on peut
appliquer la formule de Taylor pour la valeur t + At du
paramètre à laquelle correspond un point de la courbe Ml7 infiniment
voisin de M, et l'on obtient

ÔM, M(t + At) ÔM +^W+ ^tM" + + (m(p) + t)1 1 1 2 P-

z étant infiniment petit avec At. On en déduit

MM, ^M' + + + (M(p) + «) (22)

Considérons la tangente (T) à la courbe (C) au point M; nous
choisissons comme sens positif sur (T) celui du vecteur M'. En

—y

désignant par Ut le vecteur-unitaire de la tangente, nous avons

M' j M' |Ût ; (23)
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soit a l'angle que fait Ut avec ox. Nous choisirons comme sens

positif de la normale (N) celui qui fait avec ox l'angle a + ~ ;

désignons par Un le vecteur-unitaire de la normale.
Nous avons (§1)

MM, MO, + =* XUt + XuÛri (24)

On tire de (22) et (24) l'équation

XUt + X,xÜ„ ^M' + ^M" + + —-P (M(p) + 7)

d'où l'on tirera X et (jl de la manière suivante: Faisons le produit
scalaire des deux membres de cette équation par M' (M') Ut;
comme Uj 1, UtUn 0 nous obtenons

1 /A t A /2 -> A #3 \
X tt^-T UpM'2 + =4-M7 M" + =4-M'Mw + (25)

M'

Faisons maintenant le produit vectoriel par M'; comme
U* A Ut 0, M' A M' 0, nous obtenons

X;xÜ tA Un -ri-7 (A^M' A M" + 4r M' A M'" + (26)
I M71 \ z '

Désignons par k un vecteur-unitaire normal au plan oxy et tel

que le trièdre Ut Un k soit orienté comme le trièdre i j k. Nous

aurons

* u, A Ûn î A 7 ; 7 (Û, A U„) 7 (T a 7) 1 (27)

En faisant le produit scalaire des deux membres de (26) par /c,

on obtient

X|* [4j7(M' a M") + A î") + • • •] • (27')

Alors (24) prend la forme

—> —» > 1 r A t-> A /2 - > -> A /3 -* -> 1 ->
MM, MO, + 01M1 j M/2 + M'M" + + ...J U,

+ [Af 7(M' a M") + * (M' A M'") + ...] Un { (28)
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Le point M est appelé point simple, lorsque M' (t) est ^ 0;
—^

lorsque, au contraire, M' (t) est nul, nous montrerons que M est

j un point singulier, à condition toutefois que l'ordre de la première
3 dérivée qui ne s'annule pas pour t t soit pair.

8. — Point simple: JVT ^ 0. —• Lorsque le vecteur M' est
différent de zéro, il détermine la direction de la tangente au
point M.

1. Point ordinaire à courbure non nulle: k(W A M") ^ 0. —
Nous montrerons que, lorsque /c (M' A M") ^ 0, nous avons un
point ordinaire à courbure non nulle (§2, 1). En effet, comme At
est infiniment petit, l'équation (28) et l'équation obtenue en

remplaçant At par — A£, donnent

MMi MÔ1 + -A- J [At - M'2] U( + fA * (M' A M")Ûj J

| M' | L1 M

MM2 M02 + O.M, -i_ j[_ Aï • M'2]Ui + fè? A(M' A M")Ûn]
| M' / L1 1 \

d'où l'on déduit

M01 — MÔ2 A* IM7|Ûj

^ AS
i t 2 2 91 un

M

Ceci montre que, lorsque k (M' y\ M") ^0 on a un point
ordinaire. Le signe de % (M' A M") x'y" ~ y'x" détermine
la position de la courbe par rapport à la tangente (T).

Nous montrerons que dans ce cas la courbure — n'est pas nulle.
En effet, l'équation (23) donne

(29)

dMMais Ut -77, ds étant la différentielle de l'arc 5. On peut



108 I. TZÉNOFF

toujours supposer que s croît avec t; dans ce cas on aura
| M' I ~ > 0 et de même
1 1 at

—> —>*

dXJt d2Mds 1 s v^r iTvî/i
-rfr -^-57 7u»iMi 7u«|M|'

En portant dans (29) nous obtenons

M" — | M'l2 Un + -j | M'| U[
p at

En faisant le produit vectoriel avec M' | M'j Ut on obtient
[' A Tk

par
k:

M' A M" d'où l'on déduit après multiplication

- s
*1 M^A M ^

M' ^ 0 (30)
P |M'|3

Comme — est > 0, s doit avoir le signe de k (M' A M"). Par

conséquent
1 _

\ k(W A M")) _ )x'y» -y"x"\
p | M713 | £'/2 + y'21 /2

2. Point d'inflexion : k (M' A M") 0, k (M' A M'") ^ 0.

— Supposons que, pour cette valeur de % on ait

k(W A M") 0 m'y" — y'x" — 0 (31)

c'est-à-dire que la courbure est nulle. Dans ce cas l'équation (28)

nous donne

M01 —M02 AîlM'IUf
-> rW.

O M — O M ^ ^

• ÜUl 1 2 2 3! i jj/i

On a par conséquent (§ 2, 2) un point d'inflexion.

——> —y —>-

Remarque. — Comme M' ^ 0 pour que k (M' A M") soit nul,
—^ ^

il faut que M" soit nul ou bien parallèle à MA
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3. Point ordinaire à courbure nulle : k (M' A M") 0,

k (M' A M'") 0, k (M/ A MIV) # 0. — Les raisonnements
sont analogues à ceux du § 2, 2.

4. On généralise facilement.

9. — Courbe d'équation y y (x) {ou x x (y)). — On

peut considérer ce ca& comme un cas particulier de la théorie
exposée aux § 7 et 8 (x t ou bien y — t).

10. — Courbe d'équation r r(t), 0 0 (t) (r et 0 désignent
les coordonnées polaires du point M). — Alors l'équation vectorielle

de la courbe (C) est

ÔM M (t) rUr (32)

OÙ

Ur cos 0 i + sin 0/ (33)

représente le vecteur-unitaire de la droite OM. En désignant

par Up le vecteur-unitaire suivant

Up — cos ^0 + 1 + sin ^0 + ^jj — sin 0t + cos 0/ (34)

on aura
Ur 0'Up Up — 0'Ûr (35)

——>•
Les valeurs de M', M", qu'on doit porter dans (28), se

calculent aisément à partir de (32), (33), (34):

M' ma r'Ur + rÖ'Up T

M" (C— r0'2)Ur + (r0" + 2r'0') tjp
M"'

Dans ce cas

.1 A M) _ rr'W + 2U20/ — rr"Q' + r20'3
P

| M' |3 (r'2 + r20/2)3/2

Lorsque 0 t on a 0' 1, 0" 0, et on obtient la
|formule bien connue pour —.
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—

11. — Point singulier : M' 0, M" ^0. — La valeur
correspondante de t est donnée par l'équation

M' 0 ou x' (t) — 0 y'(t) 0 (36)

Dans ce cas, pour déterminer la direction de la tangente,—^,l'équation (22) donne le vecteur M" | M" | Ut. L'équation
(28) est remplacée par l'équation

—> > 1 rAf2 ^ A ^ 1 —>

MMj MO, + OM — Rf-M"2 + + R-M" A MIV + U,
[ M" |

f L J

+ |jr* (M" A M'") + — k (M" A MIV) + ...] J Un • (37)

Cas particulier :

1. Point de rebroussement de Ire espèce : k (M" A M"') ^ 0. —
L'équation (37) et l'équation obtenue en remplaçant At par
— At donnent

MO, MÔ2 ~|M" f î(

Ai3 k(M" A M'"

|M"|
°iMi - 02M2 -gy

' R ' UB

d'où l'on déduit que lorsque

Je (M" A M") §?yw ~ y" F" ^ 0

on a un point de rebroussement de Ire espèce (§3, III, 1).

„ r, • 7 7 7 r r * (M" A M'") 0
2. Point de rebroussement de 11e espece : ^ ^

Dans ce cas on obtient facilement * ^ M ^ 0

MO, - MO, - " j M" | 0,

— _ 4'' r-«- ".A 4.,
1 1 4! M"

*(M" A Miv) + =^Î(M" A Mv)jun

O m" 4-t f* (M" a mR - ^ A Mv)l Ûn
1 2

A I M" L 0 J
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ce qui montre que nous avons un point de rebroussement de

IIe espèce (§ 3, III, 2).

3. On généralise aisément.

12. — Cas général:

M' 0 M" 0 M(p+1) 0Ik(m(p) A M(p+1)) 0

A M(p+2)) 0

* (M(p) A M(P+Î>) 0

M(p) ^ 0

ordinaire
d'inflexion 1Lorsque p est impair nous avons un point simple

lorsque p + q est ||^pair- Lorsque p est pair nous avons un

point de rebroussement de j espèce, lorsque p + q est | •

13. — Autres espèces de points singuliers: points multiples
(ordinaires et d'inflexion). Courbe d'équation OM M(t). —
Lorsqu'il existe deux valeurs différentes de t: C et t2

auxquelles correspond un seul point M, c'est-à-dire si l'on a

OM M(^) M (£2), le point M est un point double. Pour
étudier la courbe au voisinage de ce point, on considérera les

vecteurs M' (tf) et M' (t2). Lorsque M'(iq) et M'(£2) sont 7^ 0 et
—^ ^ ^

de directions différentes et si, en outre, A (M' A M") ne s'annule

pas pour L et t2, le point M est un point ordinaire double à tan-
——y —>

gentes distinctes. Au contraire, lorsque A (M' A M") 0 et

k(M' A M'") ^ 0 on a un point d'inflexion double à tangentes
^ ^

distinctes. Lorsque M' (tf) — M' (t2) on a un point (ordinaire ou
d'inflexion) double, à une tangente commune. On généralise
aisément pour les points triples, etc.

14. — Courbe d'équation r f(0). — Nous nous arrêterons
un peu plus sur le cas particulier d'une courbe d'équation
r /(0) ou OM M(0) rUr. Nous avons vu au § 12



112 I. TZÉNOFF

que l'équation M'(0) *= 0 donne les amplitudes des points de

rebroussement. Nous supposerons maintenant que M'(0) 7^ 0.

On voit facilement que, pour qu'il existe un point double
Mi (ri i ei) ^ M2 (r2 7

62) (ri ^ 0, r2 7^ 0) il faut avoir : 02 0X + tt
ce qui donne

Fi /(Ö1) r2 / (0i + tu) ; (38)

par conséquent, il faut avoir r± — r2, ou bien

/ (6l) + / (6i "f 7U) =0
Par conséquent, on obtiendra un seul point M de la courbe

pour des valeurs 0 et 0 + tt du paramètre, si 0 satisfait à

l'équation
/(0) + /(0 + tt) 0 (39)

Si pour cette valeur de 0 on a M'(0) 7^ 0 et M'(0 + rc) 7^ 0,
on a un point double (ordinaire ou d'inflexion). Si l'équation
(39) est une identité en 0, alors on obtient pour 0 et 0 + 71 le
même point, mais on voit facilement que ce point est simple.

Si /(0 + 7r) / (0), l'équation (39) devient

/ (0) - 0 ; (40)

dans ce cas l'origine est un point multiple. A chaque racine 0^

de l'équation (40) correspond une branche de courbe tangente
au vecteur M'(0j) 7^ 0.

Remarques. — Nous allons calculer les dérivées M', M", M'",
—> —y

de M(0) lorsque r — 0. Nous supposons d'abord que M'(0) 7^ 0.

On aura:

M' (0) r'îjr + rÛp PUr

M" (Ô) [r" — r)Ur + 2PÛp « r" Ûr + 2r'Ûp

M7" (6) (/" — 3 F) Ûr + (3r" — r) Ûp (rm — 3 r')Ûr + 3P'Up (41)

MIV(0) (rIV — 6/" + r)Ur + (4/-'" — 4 r')Ûp

t/V —6r")Ur + (4 — 4 Ûp

alors

k(w A M") 2r'2 k{M> A M'") 3

k(M'A MIV) 4 (r' r"— (42)
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Nous supposerons ensuite que M'(0) 0, alors r 0, r' 0.

Dans ce cas l'origine est un point de rebroussement, dont la
tangente est donnée par le vecteur

M* (6) r"îjT (43)

Nous avons

k(M" A M") » 3 r"2 (44)

Si l'on prend comme paramètre le rayon-vecteur r, on a pour
r 0

M(r) — Ur + r 6' (r) Up Ur

M"(rf 2 6' Up M (r) (,..)Ûr + 36"(r)Üp (45)

k(W /\ M") 2 0'(r) k (W f\ M'") 3 0^ (r)

Ces formules sont utiles pour les applications.

15. — Applications. — 1. Conchoide de Vellipse:

r TTho^ + h> [« < i. P «(I-*2)],
{h pouvant être positif ou négatif).

I. Point singulier r0. Alors

0 sera réel, si (a+ h)<ae, c'est-à-dire si (1 — < — <
a(1 -f- e), h<c0.

Cas particuliers: a)Lorsque— 1 — e) ou — A>a(l+e),
0 n est pas réel et l'origine est un point isolé. Les extrema de r
sont : rmln a(l — e)+ h>0, rmax (1 + e) + <0,
pour 0 0 et 0 -k.

L'Enseignement mathém., 38°" année, 1939 et 1940. 8



114 I. TZÉNOFF

b) Lorsque a (I — é) < — h < a{ 1 + e) l'équation admet
deux racines 0X et 02 — 0X. Nous avons

a -> e (sin 0 cos 0 i + sin2 0 /r'Ur (i + e cos 6)2

Gomme k(W A M") 2r'2 > 0, on conclut que l'origine est

un point double ordinaire à courbure non nulle; les deux
—> —>

branches étant tangentes aux vecteurs M'^) et M'(02), Les
extrema de r sont : rmin < 0, rmax > 0.

c) — h a( 1 — e) ou — h a{l + é) l'équation (46)
admet la racine 0 0 ou n respectivement. Dans ce cas M' est
nul. La direction de la tangente est donnée par le vecteur

ep i g* ep i
M"(°) tAAÛ M"(*)

(1 + e)2 ' ' (1 — e)2
'

> > ^

Comme A (M" A M"') — 3r2 7^ 0, on a un point de rehaussement

de Ire espèce. Les extrema de r sont : pour

— h a( 1 — e) r 0 r 2cte
\ ' ' mm max

•— h a( 1 + e) r — — 2 ae c =0.\ ' / 7 mm 7 max

<i) Lorsque — h p l'équation (46) admet les racines
TU 3"7U

0X y et 02 -y. Alors M' — /. L'origine est un point

double ordinaire à une tangente commune. Les extrema de r sont:
rmin ae(e — 1) < 0, rmax ae(l + e) > 0.

II. Points singuliers r ^0. — L'équation (39) est

P P 2h 0
1 + e cos 0 1 — e cos 0 *

d'où

cos26 AAr cos6 ± \/i(l+ 4);

0 sera réel si — a < h < 0.
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Cas particuliers: a) — h<a.Laracine de l'équation

cos6= + v/^(| + l)

est 0X. Alors pour 0X et 0j + tu on a le point singulier M1(r1, 0X).

Les tangentes sont données par le vecteur M' pour 0 0X et
0 0! + ^. Comme M(0X) ^ M'(0 + tu) on conclut que
Mi (ri, 0J est un point double à tangentes distinctes.

On raisonnera de la même manière sur la racine 02 7r — 0X

de l'équation

ose- — v/?(! + i) •

—^b) — h a. Dans ce cas 0X 0, 02 7r; M'(0) — aej,
M'(7u) aej. On voit que le point M (r3, iz) est un point double
ordinaire à tangente commune.

III. Lorsque h > 0 l'origine est un point isolé et on n'a pas
d'autres points singuliers.

2. Lemniscate: r2 a2 cos 2 0. — On voit facilement que

l'origine est le seul point singulier. On a 0X t= ^ et 02 —•.

r\ i ///xv -Tt a2 sin 2 0 IL ^Comme le vecteur M (0) rUr est infini
r

pour 0 0! et 02, la théorie précédente n'est applicable.
Pour tourner la difficulté, nous prendrons comme paramètre t
le rayon-vecteur r. Nous avons

ÔM M (r) rVr

Ur cos 0 (r)~î + sin 0 (r)~J

d'où, pour r 0,

M'(r) Ur -f- Ur cos 0 i + sin 0 j •
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Alors pour 0X ~nousavons

M'WJ —=:(ï + 7) ; pour e2

ivr {o2) -
1

Dans ce cas

M" — r

M'(62) ^(-î + 7) •

fi ^ (<>d% _i_ _ „äOftUr + \2dT + ~ 2rf7UP

et
dQ 2rÄ(M'AÖ') 0

v ' dr a2 sin2 0

En calculant

M'"= (,..)Ur+ 2^36Up

et
d2 0

*(M'A M"') 2-Jdr2 a2 sin 2 0 '

on voit que pour

0i J t(M' A M") — <0

k (M' A M") -1 > 0
3 7T

T~ 1

Par conséquent l'origine est un point double d'inflexion
tangentes distinctes..
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