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88 E. TURRIERE

Autres courbes.

18. — M. D. MrrriNoviTcH s’est spécialement attaché a cette
forme d’équations différentielles et en a étudié diverses appli-
cations 1.

M. AumaDp-Vaziri 2 a donné un exemple de probléme de géo-

métrie réductible a P’équation de Liouville-Appell.

L4 - dz . 1 - Z2 . . P rir
L’équation = T I de la balistique extérieure a été

étudiée par M. J. DracH 3, en application de sa méthode
d’intégration logique.
19. — L’équation
dy _ ¥
g = W+ 2az)

et I’équation de Riccati

dx
B e e
7 ax® 4 bt ,

a et b étant des coeflicients constants sont équivalentes: il suffit
de poser:

ax2+bt=£;
Yy

par un changement de variables

B == A& , ! = pt,

1 D. MitriNOVITCH, Remarque sur une équation différentielle du premier ordre.
Publications mathématiques de 1’ Université de Belgrade, 1934, t. II1, p. 171-174.

Sur I’intégration d’une équation différentielle importante du premier ordre. Bulletin
de I’ Académie royale des sciences serbe (section A), 1936, p. 7-18.

Transformation et intégration d’une équation différentielle du premier ordre. Publ.
math. de I’Université de Belgrade, 1936, t.V, p. 10-22.

Intégration d’une équation différentielle du premier ordre et polyndmes d’Hermite
qui s’y rattachent. Revista de Ciencias, Lima, n° 149, t. XX XVIII, 1937, p. 123-127.

Sur I’équation différentielle des lignes géodésiques des surfaces spirales. C.R., 13 dé-
cembre 1937, t. 205, p. 1194.

Sur une équation différentielle du premier ordre intervenant dans divers problemes
de Géométrie, Bulletin des sciences mathématiques, 2™¢ série, t. LXI, novembre 1937;
C.R., 7 juin 1937, t. 204, p. 1706.

Recherches sur les lignes asymptotiques. Bulletin de I’ Académie royale des sciences
serbe, 1938, n° 4, p. 105-120.

2 ABOLGHASSEM AHMAD-VAZIRI, Sur quelques courbes liées au mouvement d’une
courbe plane dans son plan. Thése. Montpellier, 1938, p. 98.

8 Annales de U’Ecole normale supérieure, (3), t. XXXVII, 1920, p. 1-96.
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(& coefficients constants A, p), ’équation de Riccati précédente
prend la forme canonique ‘

% + 8 =
X. Stourr?! a signalé qu’a cette équation spéciale était
réductible la recherche d’une courbe admettant une parabole
donnée pour lieu du centre d’une conique en contact du quatriérqp
ordre avec la courbe. , o |
Pour terminer, voici encore des courbes dépendant d’équa-

tions non intégrables de Riccati et de fonctions de BESSEL.

20. — La courbe du pendule de longueur vartable. — 1’équa-
tion du pendule simple dont la longueur [ est une fonction
donnée du temps est 2

0  dldo _

En posant 6/ = o, elle prend la forme

do _U—g

di? l

dans le cas du mouvement uniforme, elle se réduit par change-
ment de variables a la forme |

d2
C’est une équation de BesseL particuliére.
Soit OT' = y — x%, le segment de Oy limité en O et & la

trace T de la tangente & la courbe (z, y); cette équation exprime
la condition

d .
J‘%(OT} =y .

1 Nouvelles Annales de Mathématiques [4], t. II, 1902, p. 480.
2 BossuT, Sur le mouvement d’un pendule dont la longueur est variable. Mémoires
de ancienne Académie des Sciences de Paris, 1778. ' ‘
LecorNu, Mémoire sur le pendule de longueur variable. Acta Mathematica, t. XIX,
1895, p. 201-249,
Cours de Mécanique, t. II, 1915, p. 39. )
Sur le pendule & tige variable. C. R., t. CXVIII, 1894, p. 132-134.
1 Haton DE LA GOUPILLIERE, Oscillations des bennes non guidées. Annales des mines,
909. S e e
; Kyrille PopoFF, Sur le pendule de longueur variable. C. R., t. ‘CLXVI, 1923, p. 655-
58.
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21. — Dans un mémoire sur la résolution numérique des
équations différentielles !, RuNGE prend pour exemple la méri-
dienne de la surface d’une goutte liquide ou d’une bulle gazeuse.

La surface est définie par la condition

1 1
2z = @ — 4+ — ) :
P= ()
a est une longueur constante. Dans le cas de la surface de révo-
lution, la méridienne est définie par 1’équation

dans le plan Oxz. Cette équation n’est pas intégrable. En intro-
duisant le rayon R de courbure, elle prend la forme

2Rz = a2<1 +%sina> :

par suite pour tout arc éloigné de ’axe de révolution Oz et &
pente faible sur Oz, la courbe est approximativement assimi-
lable & une courbe élastique :

2Rz = a2 .

D’autre part, si dans I’équation

4 "7

z z

27 B e

+ P
21+ 22 A1+ 22

les termes en z'2 sont négligés (faibles pentes), on obtient I’équa-
tion linéaire

zl
2z = — + 2 ;
x

par changements de variables

z’:

Z , x == 1“ex
2

\/

z
x

1 C. RungE, Ueber die numerische Auflésung von Differentialgleichungen. Math.

Ann., 1895, t. XLVI, p. 167-178.

TR L w
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elle devient I’équation de Riccati:

dZ | oy _ oax
X TE=e

intégrable par les fonctions de Bessen d’indice zéro: il suffit
de poser ¢ = ie* pour effectuer la réduction de I’équation équi-
valente.

22. — C’est de cette méme équation de Riccati que dépend
la détermination des courbes du complexe linéaire

xdy —ydxr = kdz ,

sur les surfaces cerclées représentées paramétriquement par les:
équations:
x = Vcosu cosy ,

y = Vcosusing ,

z = Vsinu ,

ou V = e®. Les cercles ont l'origine O pour centre et 'axe Oz
pour diametre. Les courbes du complexe linéaire, lorsque V est
une fonction quelconque de ¢ ont pour équation

dz
had .2 — 2
kdo_'_" V2 .

Pour £ =1, a =1, c’est I'équation du paragraphe précé-
dent.
Les lignes de courbure des surfaces considérées, dans 1’hypo-

thése V = e, se déterminent par quadrature elliptique. Elles
ont pour équation
u’ 4+ ¢ = const.

dans la représentation conforme:

dst = €*@ (a® 4 cos® u) (du'? + dp?)

’, f du
U = ———
\/ a® + cos?u
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