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82 E. TURRIÈRE

Le problème général des lignes de poursuite dans le plan.

14. — Autant les lignes de poursuite de la droite ont donné
lieu à une abondante littérature, autant la même question pour
d'autres courbes que la droite a été délaissée. La raison en est

que, dès le cas du cercle, l'équation différentielle des lignes de

poursuite cesse d'être intégrable 1.

La courbe (C) étant définie par sa tangente en M

x cos 9 +- y sin 9 W

soit
X cos <D + Y sin d> II

<D 9 + 8 II W cos 8 +- ©' sin 8

»--f.
l'équation d'une droite À quelconque passant par le point
M (x, y) de (C). L'enveloppe (T) de A, pour un choix déterminé
d'une fonction S (9), est touchée par A au point p, de

coordonnées

£ — x — r sin <D tj y +- r cos <D ;

dans ces formules,
sin S

r 971 + 8'

r représente la distance M p. Les rayons de courbure p et R
de (G) en M et (T) en p sont:

d2Tl
p © +- m" R - n + ;

dv
R(1 +- 8') p cos 8 + -7— ;

7 d 9

1 L. Dunoyer, Sur les courbes de poursuite d'un cercle. Nouvelles Annales de

Mathématiques [41, t. VI, 1906, p. 193-222.
F. Morley, A curve of pursuit. American Math. Monthly, t. XXVIII, 1921.
F. Morley, The curve of ambience, American journal of mathematics, t. XLVI, 1924,

p. 193-200.
Emile Turrière, De l'intégration des équations des problèmes de poursuite et

d'ambiance en géométrie plane. Bulletin de la Société mathématique de France, t. LXV,
1937, p. 168-174.
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les arcs correspondants ds de (C) et dS de (T) sont liés par la

relation connue:
dB dr + ds • cos 3

r ds

îî sm 8 •

Ts
•

Cela étant, la condition

d$ kds k const.

exprime que (T) est une ligne de poursuite de (C). D'où

k — cos 8 -f ^ •

ds

Uéquation générale du problème des courbes de poursuite est

donc
d (p sin 8\

(ft — cos S) P •

S est la fonction inconnue; p est une fonction connue de 9,
variable qui n'intervient que par

f tgv

Cette équation est du second ordre.
Supposons que

~ — m m const. ;

P

la courbe (C) est alors une spirale logarithmique et, dans le cas

plus particulier m 0 un cercle; alors 9 est absente dans

l'équation différentielle du second ordre

3"

I ^
sin 3 + 3^ (/c — 2 cos 3) m sin 3 + cos 8 — k ;

et cette absence permet de mettre l'équation sous la forme d'une
équation du premier ordre:

1 + 8' 1 —~ Z 1 + p, sin 8 r p sin 8 + —
Z '

rI7
sin 8 • ~ + Z (Z — 1) [Z (cos 8 + m sin S — k) + k — 2 cos 8] 0

+ [a2 [(x sin S (cos 8 0
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A la solution z 1, correspond [i 0.

A la solution z — 0 correspond

—
1

— 0^ ~ sin 8 ' r ~~

Il suffit finalement de poser

y. a. e~m\

A f e~2mS (k — cos S — m sin 8) sin 8 d8

-2m8 2 m, sin 2 8 + (1 — m%) cos 2 8

4(1 + m2) 1 + 4 rrù

pour réduire cette équation à sa forme canonique

g û. + PO.,

p
k — 2 m, sin 8 ^

(2m sin 8 + cos 8) +

(k — cos 8 — m sin 8) sin 8

Il résulte, de cette analyse, que le problème général des lignes
de poursuite se simplifie dans le cas du cercle et de la spirale
logarithmique et que, dans ces cas, Véquation non intégrable est

du type Liouville-Appell.

15. — L'équation donnée par M. L. Dunoyer, dans la note
citée plus haut, pour les lignes de poursuite du cercle

dx dy

y (x2 — 1) (y — a) [2 xy — ax + by — bx] '

dans le cas a + b ^ 0 de non-séparation des variables, se

ramène à
dZ
dx-Z3 + PZ2 '

en posant
b_

1 fx + 1\2
y \x — 1/ x2 — 1

dX a (a + b) U2
Xdx

UZ

- 1 J

(Sa + b)x + ab

a (a + b) XJx
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16. — Le problème inverse du problème des lignes de poursuite.

— La fonction RI®), caractéristique de la courbe donnée (T)
est connue. L'élimination de S entre les conditions

sin 8 k • g cos 8 k ^1 —

donne l'équation différentielle

L2
« (fo _ A2= ±_

R2 ^ Us k2 '

k2

où r est l'inconnue. C'est encore une équation non intégrable
du premier ordre.

L'élimination de r donne l'équation en S

cos 8 * if- — k — cos 8 — M sin 8
d<3>

R'où M est une fonction connue de <p : M -g-.
Avec la nouvelle inconnue t :

8

L'équation prend la forme:

2 Â 0* + V1] •

dtLa dérivée ^ est égale à une fonction rationnelle de t dont
le degré du numérateur surpasse de deux unités celui du
dénominateur: c'est un type d'équations étudiées par P. Appell.

En posant

-iïî- t
il vient:

/7T \ _l_ T2 _

V-[<*+ M)T2-2T + *-M]
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Dans le cas de M constant, les variables S et O sont séparées.

Par suite, dans le cas du cercle et de la spirale logarithmique, le

problème inverse du problème des lignes de poursuite est réductible
à une intégrale de fonction rationnelle.

En particulier, pour M &, l'équation

/7T

2^= (1 + T«)(1-*T)

est identique à celle rencontrée plus haut (paragraphe 8, cas fx

constante).

Sur une généralisation des podaires.

17. — Soit une courbe donnée (G) du plan, m(x, y) son point
courant; sur la tangente en m est pris un point M (a;, y),

X x + X^ x + \x' Y y + y + \y'

à la distance X mM de M; elle sera considérée comme une
fonction X (5) de l'abscisse curviligne.

La normale en M à la courbe (T) décrite par ce point, pour un
choix de X(s), rencontre la normale en m de (C) en un point P

de coordonnées
E, x + p y' ri y — ç>x'

1 + X'
P t ff f ffy x — x y

R étant le rayon de courbure en m de la courbe (C) :

P R (1 + x')

La déviation des normales
/\8 m P M

est donnée par la relation

cotg S R •

Ces formules connues étant rappelées, cherchons à déterminer
X(s) par la condition suivante: la normale en M à la courbe (T)
décrite par ce point rencontre le rayon polaire Om en son milieu.
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