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76 E. TURRIÈRE

Applications géométriques de y'2 + y2 f(x).

7. — Deux questions de géométrie dépendent de l'équation
différentielle du premier ordre 1 :

(ï),+» - w
1° La détermination d'une courbe plane satisfaisant à une

condition imposée entre l'abscisse curviligne s et l'azimut 0 du

point courant:
* F(0)

r2 + dr_\2_ /dF\2
d 6/ ~~ [ddj

C'est donc le problème dHsométrie par alignement sur un point
fixe 0: les rayons vecteurs issus de 0 déterminant des arcs égaux
sur les diverses courbes intégrales. Le problème généralise celui
des isométriques de la droite, qui se ramène aux fonctions
elliptiques 2.

2° La détermination des courbes planes telles que

r /(oc)

r désignant le rayon polaire OM r, et. a étant l'angle
d'inclinaison sur Ox de la tangente au point courant M. Si 20 désigne
la distance à cette tangente du pôle 0, l'expression connue de r

r*®2 + (S)2
donne l'équation

+ (S)' - •

1 Cette équation a fait l'objet d'une courte note de M. Dragoslav Mitrinovitch:
Remarque sur une équation différentielle du premier ordre, Publications mathématiques
de l'Université de Belgrade, 1934, p. 171-174.

2 Maurice d'Ocagne, Sur les isométriques d'une droite par rapport à certains systèmes
de courbes planes. Bulletin de la Société mathématique de France, t. XIII, 1884-1885,
,p. 71-83.

Sur les isométriques d'une droite par rapport à un système de droites concourantes.
Ibid., t. XVII, 1888-1889, p. 171-175.

Le problème de l'éclaireur (à propos d'un article de M. E. Turrière). L'Enseignement
mathématique, XVIIe année, 1915, p. 336.

E. Turrière, Sur le problème de l'éclaireur. L'Enseignement mathématique, t. XVII,
1915, p. 212-215.
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Prenons donc l'équation

et posons

l'équation devient:

/ /7r> \ 2

-2 + u ^
rd 6

tangV — —j— c
dr

fj -(! + ,•1(1-/,»! /, £. f ^
La réduction à la forme canonique de P. Appell

î§ -z' +J •

se fait par le changement de variables:

p UZ + W

d© M • dO

avec
1 l f

W — — • -3/x 3 /' '

Log U f{jh~h)d6' 3 L°g (/ ' U) ;

M — h • U2 ;

L'invariant J a l'expression:

(9fe + 18/: + 2)-
2 7 U /; 1

/
27 U3 /3

(9//" + 9f2 + 2f)

8. — J est nul lorsque

p dh
d 6 + 18/' + 2 — 0,

ii — tang | (0 — 6„) ; À cos -| (0 — 0„)
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sans restriction de la généralité de la question, 0O peut être pris
égal à zéro et A égal à 1

A -i tangue.

/2 — COS ~ 0

ds — \ / cos 0 d 0 ;

les courbes seront rectifiables au moyen de fonctions elliptiques
du cas lemniscatique g3 0, l'arc dépendant de l'intégrale:

f \/cos 9-^9

Les fonctions U, W, M, 0 sont ici:

W — 3 cotg ^ 0

1 2 2
— atr sin3 - 0 cos - 0

~ 3 sin2 j 0 © — cotg 0

L'équation se réduit à

^ Z3
d e '

d'où:
l2© + ~ const /c

2 ("cotg 0 + /A sin2 ^ 0 cos ^ 0
3 3 3

(e + 3c.tg|e)4
'

^cos 0 + A sin ~ 6^ • sin ^ 6 |p + 3 cotgôj =1

L'intégration s'achève par quadrature en exprimant v en
2

fonction de la variable tgjö-
A signaler aussi le cas d'intégration fx constante par

séparation des variables.
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9. — Comme courbes se rattachant à cette équation, il y a

lieu de citer les deux suivantes:

I. Soient N et T les traces respectives sur les axes Ox et 0y
de la normale MN et de la tangente MTT d'une courbe (C).

La condition NT/ — 1 caractérise des courbes (C) telles que

r — cos a

MN sin 0 ON sin OMN ;

le cercle circonscrit au triangle OMN a pour diamètre NT' 1.

L'équation des courbes est:

w2 -f ~ cos2 a

ffi étant la distance du pôle 0 à la tangente d'inclinaison a
sur Ox.

II. L'équation de Riccati

dy 2.2Tx x + y '

est équivalente à
r2 tg oc

La courbe atuptique.

10. — J. Porro a donné le nom de courbe atuptique à
l'intégrale de l'équation différentielle

dy x [x2 + y2) -f- 2 ay \/x2 + y2 — a2

dx y (x2 + y2) + 2 ax \/x2 + y2 — a2

Ce serait la forme théoriquement assignée aux aubes destinées
aux moteurs hydrauliques 1.

1 J. Porro, Essai sur la théorie des moteurs hydrauliques. Turin, 1844, p. 29.
Théorie générale des moteurs hydrauliques. C. R., 1852, t. XXXIV, p. 172-174.
H. Brocard, Notes de bibliographie des courbes géométriques, 1897, p. 66.
G-. Loria, Curve piane speciali, I, 1930, p. 118.
Le nom dérive de tutttw je frappe de près (par opposition à ßaXXw). C'est la

courbe sans choc.
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