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Il est à peine nécessaire de faire remarquer que, pour ne pas
trop allonger l'exposé précédent, nous avons supprimé les

énoncés des postulats qui, quoique indispensables au développement

des démonstrations complètes des théorèmes de la théorie,
se présentent si naturellement à l'esprit qu'en supprimant ces

énoncés nous ne croyons pas avoir nui à la clarté de l'exposition.
J'ajoute que j'ai appliqué les idées esquissées dans le présent
article avec tous les détails nécessaires dans le Traité de Mécanique

rationnelle que je publie actuellement en langue polonaise.

SUR DES COURBES SPÉCIALES DÉFINIES
PAR DES ÉQUATIONS DIFFÉRENTIELLES

NON INTÉGRABLES

PAR

E. Turrière (Montpellier).

Les équations du type

2I + «o2/3 + 3(hy2 + + a3 0

ont été étudiées par R. Liouville et par P. Appell 1. La
présente note concerne diverses courbes dont la détermination
dépend d'équations de cette forme.

L'isochrone paracentrique.

1. — En premier lieu, considérons l'isochrone paracentrique 2

qui, historiquement, est la première courbe définie par une équation

différentielle dont l'intégration, impossible dans le cas
général, tint en échec les fondateurs de l'analyse.

1 P. Appell, Sur les invariants de quelques équations différentielles. Journal de
mathématiques pures et appliquées [4], t. V, 1889, p. 3,61-423.

2 Gomes Teixeira, Traité des courbes spéciales remarquables planes ou gauches t. IIp. 50-55. ' ' '
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Quelques années plus tard, années dont le nombre comptait
pour les progrès de la géométrie infinitésimale, la courbe de

pression constante donnait elle aussi lieu à des difficultés. La
question posée en 1695, reposée en 1696 par Jean Bernoulli
dans deux lettres à Leibniz n'était résolue qu'en 1700 par le

marquis de L'Hôpital dans un mémoire, plus important que
la question à laquelle il était consacré et dans lequel étaient
énoncés des principes relatifs au mouvement gêné du point
pesant. Ici la difficulté tenait uniquement à l'insuffisance de

méthode en dynamique et non à l'imperfection de l'analyse 1.

Au contraire, dans le cas du problème de l'isochrone para-
centrique proposé par Leibniz en 1689, considéré par Huygens
(1694), résolu partiellement en 1694 par Jacques et par Jean

Bernoulli, la difficulté était purement analytique. Jacques

Bernoulli, entre temps, en 1690, montrait que l'isochrone
ordinaire était identique à la parabole semi-cubique, complétant
ainsi la solution de 1689 de Huygens d'une question posée en
1687 par Leibniz.

L'équation différentielle de l'isochrone paracentrique (en
coordonnées polaires)

la courbe dépend alors des fonctions elliptiques du cas harmonique

et c'est précisément à l'étude de la représentation de

l'isochrone paracentrique qu'est due la découverte de la lem-
niscate de Jacques Bernoulli.

a constante

tg2V y + a

ne peut, en effet, être intégrée que dans le cas a 0

i Voir mon étude « La courbe de L'Hôpital », dans L'Enseignement mathématique,
t. XXXVI, 1937, p. 179-194.
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2. — Considérons d'une manière générale l'équation de

condition
y /(tangV)

imposée à une courbe plane inconnue, ou encore

y ;• sin 0 — f(v)

en posant
tgV — c

Il en résulte, par dérivation,

dr
h cotg 0 dQ '-ydv ;

r

d% ^ + cotg ej jdv

Effectuons le changement d'inconnue

1 1
cotg 0 + - T ;

ç fz

l'équation devient

ê //'-^-2(2 + p).
avec

p f — 2vf
//V + 1)

'

Le changement de variable défini par
/-» i |

donne à l'équation sa forme canonique:

dz _

Pour l'isochrone paracentrique

y tang2 V — a

f — v2 — a
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3. — L'équation est intégrable pour P constante. Le
cas P 0 donne:

2 vf
En prenant

f VV y2 tang V,

la courbe a pour équation polaire

r2 2 (a — cotg 0) ;

a est une constante.
Lorsque P est constante, / est déterminé par une équation de

Riccati en v:

t-^2 + i) •

En posant
F • /2

la nouvelle fonction inconnue F est intégrale de l'équation de

Riccati

f + »(/'F. + JL) 0

k est la valeur constante de P. En posant

M j P • X e J F P2 Y

la forme canonique de l'équation de Riccati est:

dY „ Y2

dX + X1

Un nouveau changement de variables

l —r 1

X=3Ç ' Y=9^'
lui donne la forme

4

jjj + tf + s '-»•
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Elle est réduite au type classique

^ + 7]2 klmdl
4N

"* ~ 2N + 1

N étant entier (N 1). Le changement de variable

2

£ __ Aim+2 Am+2 —
{jYl +

' kk '

_
1 du

^ u d^ '

la transforme en l'équation de Bessel:

d2u 2 n + 1 du n_| _{_ u o ;

ar £ a£

on est dans le cas d'intégration des fonctions de Bessel d'indice
3

W ~2 '

a -I, A L.

4. — A signaler aussi, un cas d'intégration

ym tg V m const,

par séparation des variables:

rm_1 dr sin~m 6 • d 0

Courbes définies par une relation entre OT et OM.

5. — Soit T la trace sur l'axe Ox de la tangente en M à une
courbe. La condition

X OT f(r)

entre la coordonnée axiale X x — y ~ et le rayon vecteur

r ~ OM, devient
2^9 f[r) '

dx dr
x — f x
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En posant
r2 1

x=7~7'
l'équation prend la forme:

î r(j -i)^2(^ + p)'

P rr-^Sf
r2 — f2' 1 dr

'

Il y a séparation des variables, pour P constant.
Pour P 0, il suffit de prendre / r3:

1 l
1 ^+1-2azi ri

d'où la courbe:
r2 sin2 0 — 2 (a — cos 0)

î/2 — 2 (a — cos 0)

circulaire, du sixième degré.
Le cas de P constant correspond aux intégrales f(r) d'une

équation de Riccati

En posant alors

r J 3 / + P (r2 /2)

_ 1 _ _1_ Y
r~PX ' P Xs '

l'équation de Riccati prend la forme canonique

dY Y2

dX ~ + X4

Il y a lieu d'observer que le changement de variables

Y — iYx X iXx

lui donne la forme
-*7-2^ » i + L,

dXx + xî
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obtenue plus haut pour l'équation correspondante de séparation
des variables dans le problème de l'isochrone paracentrique ; la
transformation

i
1 T 1

donne l'équation

^ 4. 7)2 f 3

dl ^ 71 V

3
intégrable par les fonctions de Bessel d'indice

2 *

6. — Un autre cas d'intégration est celui des courbes définies

par la condition:
OT k • OM

L'équation correspondante

dr dx

r — kx x — kr

est homogène. Elle devient

dr 1 — k cos 0 _ _k— TT dd
r sm 0

D'où:

~ 0
y tang* y

ilr sin 0 tang'1

2x y(y— yk)

Ces courbes sont identiques aux images des courbes
ordinaires de poursuite.
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Applications géométriques de y'2 + y2 f(x).

7. — Deux questions de géométrie dépendent de l'équation
différentielle du premier ordre 1 :

(ï),+» - w
1° La détermination d'une courbe plane satisfaisant à une

condition imposée entre l'abscisse curviligne s et l'azimut 0 du

point courant:
* F(0)

r2 + dr_\2_ /dF\2
d 6/ ~~ [ddj

C'est donc le problème dHsométrie par alignement sur un point
fixe 0: les rayons vecteurs issus de 0 déterminant des arcs égaux
sur les diverses courbes intégrales. Le problème généralise celui
des isométriques de la droite, qui se ramène aux fonctions
elliptiques 2.

2° La détermination des courbes planes telles que

r /(oc)

r désignant le rayon polaire OM r, et. a étant l'angle
d'inclinaison sur Ox de la tangente au point courant M. Si 20 désigne
la distance à cette tangente du pôle 0, l'expression connue de r

r*®2 + (S)2
donne l'équation

+ (S)' - •

1 Cette équation a fait l'objet d'une courte note de M. Dragoslav Mitrinovitch:
Remarque sur une équation différentielle du premier ordre, Publications mathématiques
de l'Université de Belgrade, 1934, p. 171-174.

2 Maurice d'Ocagne, Sur les isométriques d'une droite par rapport à certains systèmes
de courbes planes. Bulletin de la Société mathématique de France, t. XIII, 1884-1885,
,p. 71-83.

Sur les isométriques d'une droite par rapport à un système de droites concourantes.
Ibid., t. XVII, 1888-1889, p. 171-175.

Le problème de l'éclaireur (à propos d'un article de M. E. Turrière). L'Enseignement
mathématique, XVIIe année, 1915, p. 336.

E. Turrière, Sur le problème de l'éclaireur. L'Enseignement mathématique, t. XVII,
1915, p. 212-215.
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Prenons donc l'équation

et posons

l'équation devient:

/ /7r> \ 2

-2 + u ^
rd 6

tangV — —j— c
dr

fj -(! + ,•1(1-/,»! /, £. f ^
La réduction à la forme canonique de P. Appell

î§ -z' +J •

se fait par le changement de variables:

p UZ + W

d© M • dO

avec
1 l f

W — — • -3/x 3 /' '

Log U f{jh~h)d6' 3 L°g (/ ' U) ;

M — h • U2 ;

L'invariant J a l'expression:

(9fe + 18/: + 2)-
2 7 U /; 1

/
27 U3 /3

(9//" + 9f2 + 2f)

8. — J est nul lorsque

p dh
d 6 + 18/' + 2 — 0,

ii — tang | (0 — 6„) ; À cos -| (0 — 0„)
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sans restriction de la généralité de la question, 0O peut être pris
égal à zéro et A égal à 1

A -i tangue.

/2 — COS ~ 0

ds — \ / cos 0 d 0 ;

les courbes seront rectifiables au moyen de fonctions elliptiques
du cas lemniscatique g3 0, l'arc dépendant de l'intégrale:

f \/cos 9-^9

Les fonctions U, W, M, 0 sont ici:

W — 3 cotg ^ 0

1 2 2
— atr sin3 - 0 cos - 0

~ 3 sin2 j 0 © — cotg 0

L'équation se réduit à

^ Z3
d e '

d'où:
l2© + ~ const /c

2 ("cotg 0 + /A sin2 ^ 0 cos ^ 0
3 3 3

(e + 3c.tg|e)4
'

^cos 0 + A sin ~ 6^ • sin ^ 6 |p + 3 cotgôj =1

L'intégration s'achève par quadrature en exprimant v en
2

fonction de la variable tgjö-
A signaler aussi le cas d'intégration fx constante par

séparation des variables.
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9. — Comme courbes se rattachant à cette équation, il y a

lieu de citer les deux suivantes:

I. Soient N et T les traces respectives sur les axes Ox et 0y
de la normale MN et de la tangente MTT d'une courbe (C).

La condition NT/ — 1 caractérise des courbes (C) telles que

r — cos a

MN sin 0 ON sin OMN ;

le cercle circonscrit au triangle OMN a pour diamètre NT' 1.

L'équation des courbes est:

w2 -f ~ cos2 a

ffi étant la distance du pôle 0 à la tangente d'inclinaison a
sur Ox.

II. L'équation de Riccati

dy 2.2Tx x + y '

est équivalente à
r2 tg oc

La courbe atuptique.

10. — J. Porro a donné le nom de courbe atuptique à
l'intégrale de l'équation différentielle

dy x [x2 + y2) -f- 2 ay \/x2 + y2 — a2

dx y (x2 + y2) + 2 ax \/x2 + y2 — a2

Ce serait la forme théoriquement assignée aux aubes destinées
aux moteurs hydrauliques 1.

1 J. Porro, Essai sur la théorie des moteurs hydrauliques. Turin, 1844, p. 29.
Théorie générale des moteurs hydrauliques. C. R., 1852, t. XXXIV, p. 172-174.
H. Brocard, Notes de bibliographie des courbes géométriques, 1897, p. 66.
G-. Loria, Curve piane speciali, I, 1930, p. 118.
Le nom dérive de tutttw je frappe de près (par opposition à ßaXXw). C'est la

courbe sans choc.
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L'équation différentielle n'a pu être intégrée. Donnée sans
démonstration par Porro dans sa communication de 1852, elle

a été relevée d'après cette communication. Mais si l'on se reporte
à l'opuscule de 1844, on constatera l'existence de deux erreurs
dans les formules trigonométriques (de la page 28) qui faussent
entièrement l'équation indiquée 1.

11. — Etudions l'équation différentielle telle qu'elle a été
considérée jusqu'à présent. En coordonnées polaires elle prend
la forme

d [r2 cos 2 0) 2c\/r2 — a2 d 6

où c 2a.

Pour c mm 0, cette équation représente des hyperboles équila-
tères. Pour a ~ 0, c ^ 0, l'équation

d (r2 cos 2 0) 2 er • d 0

est linéaire en r et admet l'intégrale générale

/d 0
—- + const.
V cos 2 0

dépendant d'une intégrale elliptique (du cas lemniscatique
gs 0)-

Dans le cas général, en posant

l7*2 gps rjfi _|_ _+ S2 '

on met l'équation sous la forme

d%
cos 2 0 • — + a2 sin 2 0 • z* + cz2 + z sin 2 0 ~ 0

Sans restriction de la généralité de la question, la constante a

peut être prise égale à l'unité. La réduction à la forme type

i Voir à ce sujet ma note « Sur diverses courbes planes » des Anais da Faculdade de
Ciencias do Porto, 1937, t. XXII, p. 93-129, 145-150.
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se fait par les formules

*§ _ M UZ + V

avec
£2

U3 cos 2 6 • tang3 2 0 Y - J ^
M — U2 tang 2 6

27 U3 sin3 2 9 • - 2 (c2 + 9) — 27 sin2 2 6
c

12. — L'équation ayant une intégrale évidente (z 0)

peut être réduite à la forme canonique

~ Z3 + P • Z2 ;
cLj\.

il suffit de poser pour le cas c ~ 2, a 1 de la courbe de

Porro:
z y/ cos 2 0 • Z

cos 2 0 — 2 X

p J 2

V X(1 — 4X2)

13. — Les trajectoires orthogonales des courbes atuptiques,
intégrales de la même équation différentielle pour une valeur
donnée de a, ont pour équation

xy + C f \/r2, — «2.-^ 0 ;

| elles sont déterminées par les formules paramétriques:

a
cos cp

'

C
sin 2 0 2— cos2 9 (9 — tang 9) + A cos2 9

avec une constante arbitraire A.

L'Enseignement mathém., 38me année, 1939 et 1940. 6
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Le problème général des lignes de poursuite dans le plan.

14. — Autant les lignes de poursuite de la droite ont donné
lieu à une abondante littérature, autant la même question pour
d'autres courbes que la droite a été délaissée. La raison en est

que, dès le cas du cercle, l'équation différentielle des lignes de

poursuite cesse d'être intégrable 1.

La courbe (C) étant définie par sa tangente en M

x cos 9 +- y sin 9 W

soit
X cos <D + Y sin d> II

<D 9 + 8 II W cos 8 +- ©' sin 8

»--f.
l'équation d'une droite À quelconque passant par le point
M (x, y) de (C). L'enveloppe (T) de A, pour un choix déterminé
d'une fonction S (9), est touchée par A au point p, de

coordonnées

£ — x — r sin <D tj y +- r cos <D ;

dans ces formules,
sin S

r 971 + 8'

r représente la distance M p. Les rayons de courbure p et R
de (G) en M et (T) en p sont:

d2Tl
p © +- m" R - n + ;

dv
R(1 +- 8') p cos 8 + -7— ;

7 d 9

1 L. Dunoyer, Sur les courbes de poursuite d'un cercle. Nouvelles Annales de

Mathématiques [41, t. VI, 1906, p. 193-222.
F. Morley, A curve of pursuit. American Math. Monthly, t. XXVIII, 1921.
F. Morley, The curve of ambience, American journal of mathematics, t. XLVI, 1924,

p. 193-200.
Emile Turrière, De l'intégration des équations des problèmes de poursuite et

d'ambiance en géométrie plane. Bulletin de la Société mathématique de France, t. LXV,
1937, p. 168-174.
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les arcs correspondants ds de (C) et dS de (T) sont liés par la

relation connue:
dB dr + ds • cos 3

r ds

îî sm 8 •

Ts
•

Cela étant, la condition

d$ kds k const.

exprime que (T) est une ligne de poursuite de (C). D'où

k — cos 8 -f ^ •

ds

Uéquation générale du problème des courbes de poursuite est

donc
d (p sin 8\

(ft — cos S) P •

S est la fonction inconnue; p est une fonction connue de 9,
variable qui n'intervient que par

f tgv

Cette équation est du second ordre.
Supposons que

~ — m m const. ;

P

la courbe (C) est alors une spirale logarithmique et, dans le cas

plus particulier m 0 un cercle; alors 9 est absente dans

l'équation différentielle du second ordre

3"

I ^
sin 3 + 3^ (/c — 2 cos 3) m sin 3 + cos 8 — k ;

et cette absence permet de mettre l'équation sous la forme d'une
équation du premier ordre:

1 + 8' 1 —~ Z 1 + p, sin 8 r p sin 8 + —
Z '

rI7
sin 8 • ~ + Z (Z — 1) [Z (cos 8 + m sin S — k) + k — 2 cos 8] 0

+ [a2 [(x sin S (cos 8 0
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A la solution z 1, correspond [i 0.

A la solution z — 0 correspond

—
1

— 0^ ~ sin 8 ' r ~~

Il suffit finalement de poser

y. a. e~m\

A f e~2mS (k — cos S — m sin 8) sin 8 d8

-2m8 2 m, sin 2 8 + (1 — m%) cos 2 8

4(1 + m2) 1 + 4 rrù

pour réduire cette équation à sa forme canonique

g û. + PO.,

p
k — 2 m, sin 8 ^

(2m sin 8 + cos 8) +

(k — cos 8 — m sin 8) sin 8

Il résulte, de cette analyse, que le problème général des lignes
de poursuite se simplifie dans le cas du cercle et de la spirale
logarithmique et que, dans ces cas, Véquation non intégrable est

du type Liouville-Appell.

15. — L'équation donnée par M. L. Dunoyer, dans la note
citée plus haut, pour les lignes de poursuite du cercle

dx dy

y (x2 — 1) (y — a) [2 xy — ax + by — bx] '

dans le cas a + b ^ 0 de non-séparation des variables, se

ramène à
dZ
dx-Z3 + PZ2 '

en posant
b_

1 fx + 1\2
y \x — 1/ x2 — 1

dX a (a + b) U2
Xdx

UZ

- 1 J

(Sa + b)x + ab

a (a + b) XJx
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16. — Le problème inverse du problème des lignes de poursuite.

— La fonction RI®), caractéristique de la courbe donnée (T)
est connue. L'élimination de S entre les conditions

sin 8 k • g cos 8 k ^1 —

donne l'équation différentielle

L2
« (fo _ A2= ±_

R2 ^ Us k2 '

k2

où r est l'inconnue. C'est encore une équation non intégrable
du premier ordre.

L'élimination de r donne l'équation en S

cos 8 * if- — k — cos 8 — M sin 8
d<3>

R'où M est une fonction connue de <p : M -g-.
Avec la nouvelle inconnue t :

8

L'équation prend la forme:

2 Â 0* + V1] •

dtLa dérivée ^ est égale à une fonction rationnelle de t dont
le degré du numérateur surpasse de deux unités celui du
dénominateur: c'est un type d'équations étudiées par P. Appell.

En posant

-iïî- t
il vient:

/7T \ _l_ T2 _

V-[<*+ M)T2-2T + *-M]
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Dans le cas de M constant, les variables S et O sont séparées.

Par suite, dans le cas du cercle et de la spirale logarithmique, le

problème inverse du problème des lignes de poursuite est réductible
à une intégrale de fonction rationnelle.

En particulier, pour M &, l'équation

/7T

2^= (1 + T«)(1-*T)

est identique à celle rencontrée plus haut (paragraphe 8, cas fx

constante).

Sur une généralisation des podaires.

17. — Soit une courbe donnée (G) du plan, m(x, y) son point
courant; sur la tangente en m est pris un point M (a;, y),

X x + X^ x + \x' Y y + y + \y'

à la distance X mM de M; elle sera considérée comme une
fonction X (5) de l'abscisse curviligne.

La normale en M à la courbe (T) décrite par ce point, pour un
choix de X(s), rencontre la normale en m de (C) en un point P

de coordonnées
E, x + p y' ri y — ç>x'

1 + X'
P t ff f ffy x — x y

R étant le rayon de courbure en m de la courbe (C) :

P R (1 + x')

La déviation des normales
/\8 m P M

est donnée par la relation

cotg S R •

Ces formules connues étant rappelées, cherchons à déterminer
X(s) par la condition suivante: la normale en M à la courbe (T)
décrite par ce point rencontre le rayon polaire Om en son milieu.
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La courbe (G) étant définie comme enveloppe de sa tangente

x cos 9 -f- y sin 9 W

où © est une fonction donnée de sa tangente, la condition se

présente sous la forme

ou
Wz

z ~~ 2z +'

l'inconnue 2 est définie par
dW dz

X z + ü) ; W — —— ; jz — -

a 9 a 9

L'intégrale évidente z 0, X a*', correspond au cas où
M est la projection de 0 sur la tangente de (C). C'est la propriété
des normales aux podaires de passer par le milieu du rayon
vecteur 0m.

L'équation différentielle se ramène à la forme

d7x
— way z3 — (w + w,/) z2
d cp

v '

par le changement d'inconnue

Soit R le rayon de courbure de (C)

R _ (W + W")

Le changement de variable

w2 2®

réduit l'équation à sa forme canonique

m z'<z + pi

avec
RP

w w
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Autres courbes.

18. — M. D. Mitrinovitch s'est spécialement attaché à cette
forme d'équations différentielles et en a étudié diverses
applications 1.

M. Ahmad-Vaziri 2 a donné un exemple de problème de
géométrie réductible à l'équation de Liouville-Appell.

L'équation ~ ^ de la balistique extérieure a été

étudiée par M. J. Drach 3, en application de sa méthode
d'intégration logique.

19. — L'équation

dx

et l'équation de Riccati
dX

2 1 h*— — ax2 -f ht

a et b étant des coefficients constants sont équivalentes: il suffit
de poser:

ax2 + ht =3 — ;
y

par un changement de variables

X XE, t — [LT

1 D. Mitrinovitch, Remarque sur une équation différentielle du premier ordre.
Publications mathématiques de l'Université de Belgrade, 1934, t. Ill, p. 171-174.

Sur l'intégration d'une équation différentielle importante du premier ordre. Bulletin
de l'Académie royale des sciences serbe (section A), 1936, p. 7-18.

Transformation et intégration d'une équation différentielle du premier ordre. Puhl,
math, de V Université de Belgrade, 1936, t. V, p. 10-22.

Intégration d'une équation différentielle du premier ordre et polynômes d'Hermite
qui s'y rattachent. Revista de Ciencias, Lima, n° 149, t. XXXVIII, 1937, p. 123-127.

Sur l'équation différentielle des lignes géodésiques des surfaces spirales. C.R., 13
décembre 1937, t. 205, p. 1194.

Sur une équation différentielle du premier ordre intervenant dans divers problèmes
de G-éométrie. Bulletin des sciences mathématiques, 2me série, t. LXI, novembre 1937;
C.R., 7 juin 1937, t. 204, p. 1706.

Recherches sur les lignes asymptotiques. Bulletin de l'Académie royale des sciences
serbe, 1938, n° 4, p. 105-120.

2 Abolghassem Ahmad-Vaziri, Sur quelques courbes liées au mouvement d'une
courbe plane dans son plan. Thèse. Montpellier, 1938, p. 98.

3 Annales de l'Ecole normale supérieure, (3), t. XXXVII, 1920, p. 1-96.



SUR DES COURBES SPÉCIALES 89

(à coefficients constants X, ja), l'équation de Riccati précédente
prend la forme canonique

p +
a t

X. Stouff 1 a signalé qu'à cette équation spéciale était
réductible la recherche d'une courbe admettant une parabole
donnée pour lieu du centre d'une conique en contact du quatrième
ordre avec la courbe.

Pour terminer, voici encore des courbes dépendant d'équations

non intégrables de Riccati et de fonctions de Bessel.

20. — La courbe du pendule de longueur variable. — L'équation

du pendule simple dont la longueur l est une fonction
donnée du temps est 2

7d26 ndldQ- + 2 - — + g6 0.dt2 dt dt

En posant 0Z — <o, elle prend la forme

d* co l" — g
dt* ~ l '

dans le cas du mouvement uniforme, elle se réduit par changement

de variables à la forme

d2y
xdx*+ y -0 •

C'est une équation de Bessel particulière.
Soit OT y — xj-x, le segment de Oy limité en 0 et à la

trace T de la tangente à la courbe (x, y) ; cette équation exprime
la condition

tJOT) y.dx

1 Nouvelles Annales de Mathématiques [4], t. II, 1902, p. 480.
2 Bossut, Sur le mouvement d'un pendule dont la longueur'est variable. Mémoires

de l ancienne Académie des Sciences de Paris, 1778.
Lecörnü, Mémoire sur le pendule de longueur variable. Acta Mathematica, t. XIX1895, p. 201-249.
Cours de Mécanique, t. II, 1915, p. 39.
Sur le pendule à tige variable. C. R., t. CXVIII, 1894, p. 132-134.

1909atOn DE LA Godpilliêee> Oscillations des bennes non guidées. Annales des mines,

658^yr'"e 'J°P0IT' ®ur le Pen'Jll'e de longueur variable. C. t. CLXVI, 1923, p. 655-
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21. — Dans un mémoire sur la résolution numérique des

équations différentielles 1, Runge prend pour exemple la
méridienne de la surface d'une goutte liquide ou d'une bulle gazeuse.

La surface est définie par la condition

2z a2(^ + ^
a est une longueur constante. Dans le cas de la surface de

révolution, la méridienne est définie par l'équation

doc\
;os c

dz

dx '

9 /sin a dot\
az h cos a -r-\ x dx J

tga

dans le plan Oxz. Cette équation n'est pas intégrable. En
introduisant le rayon R de courbure, elle prend la forme

2Rs a2 ^1 + ^ sin a

par suite pour tout arc éloigné de l'axe de révolution 0z et à

pente faible sur Orr, la courbe est approximativement assimilable

à une courbe élastique:

2Rs a2

D'autre part, si dans l'équation

2s ~ +\A + *'2 V(i + *'a)8
'

les termes en z'2 sont négligés (faibles pentes), on obtient l'équation

linéaire

2z — + z" ;
X

par changements de variables

z' — - Z Ur- eX
x -y 2

1 C. Runge, Ueber die numerische Auflösung von Differentialgleichungen. Math.
Ann., 1895, t. XLVI, p. 167-178.
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elle devient l'équation de Riccati:

91

dZ
dX

Z2

intégrable par les fonctions de Bessel d'indice zéro: il suffit
de poser t iex pour effectuer la réduction de l'équation
équivalente.

22. — C'est de cette même équation de Riccati que dépend
la détermination des courbes du complexe linéaire

x dy — y dx — kdz

sur les surfaces cerclées représentées paramétriquement par les

équations:
x Y cos u cos v

y — V cos u sin ç

2 — Y sin u

où V — eav. Les cercles ont l'origine 0 pour centre et l'axe 0z

pour diamètre. Les courbes du complexe linéaire, lorsque Y est
une fonction quelconque de v ont pour équation

k^- +32 V2
dç

Pour k — 1, a 1, c'est l'équation du paragraphe précédent.

Les lignes de courbure des surfaces considérées, dans l'hypothèse

V — eav, se déterminent par quadrature elliptique. Elles
ont pour équation

u' ± ç const,

dans la représentation conforme :

ds* — e2av (a2 + cos2 u) (du'2 + dç2)

U'=I^ du

a2 + cos2 u
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