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SUR DES COURBES SPECIALES 69

Il est & peine nécessaire de faire remarquer que, pour ne pas
trop allonger l’exposé précédent, nous avons supprimé Iles
énoncés des postulats qui, quoique indispensables au développe-
ment des démonstrations complétes des théorémes de la théorie,
se présentent si naturellement a ’esprit qu’en supprimant ces
énoncés nous ne croyons pas avoir nui & la clarté de I'exposition.
J’ajoute que j’ai appliqué les idées esquissées dans le présent
article avec tous les détails nécessaires dans le Traité de Méca-
nique rationnelle que je publie actuellement en langue polonaise.

SUR DES COURBES SPECIALES DEFINIES
PAR DES EQUATIONS DIFFERENTIELLES
NON INTEGRABLES

PAR

E. Turritre (Montpellier).

Les équations du type
W 1 gy + 3ayy? + 3 =0
T T G0t 3wy 4 Bayy + gy =

ont été étudiées par R. LiouviLrLe et par P. Apprrnl. La
presente note concerne diverses courbes dont la détermination
dépend d’équations de cette forme.

L’isochrone paracentrique.

1. — En premier lieu, considérons 1’isochrone paracentrique 2
qui, historiquement, est la premiére courbe définie par une équa-
tion différentielle dont Dintégration, impossible dans le cas
général, tint en échec les fondateurs de ’analyse.

1 P A_PPELL, Sur les invariants de quelques équations différentielles. Journal de
mathématiques pures et appliquées [4], t. V, 1889, p. 361-423.

25 OGgmes TEIXEIRA, Traité des courbes spéciales remarquables planes ou gauches, t. IT
p. 50-55. ’ ’
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Quelques années plus tard, années dont le nombre comptait
pour les progrés de la géométrie infinitésimale, la courbe de
pression constante donnait elle aussi lieu a des difficultés. La
question posée en 1695, reposée en 1696 par Jean BERNOULLI
dans deux lettres & LEeiBNiz n’était résolue qu’en 1700 par le
marquis DE L’HOrITAL dans un mémoire, plus important que
la question a laquelle il était consacré et dans lequel étaient
énoncés des principes relatifs au mouvement géné du point
pesant. Ici la difficulté tenait uniquement & l'insuffisance de
méthode en dynamique et non a I'imperfection de I’analyse 1.

Au contraire, dans le cas du probléme de I'isochrone para-
centrique proposé par LEIBNIz en 1689, considéré par Huygens
(1694), résolu partiellement en 1694 par Jacques et par Jean
Bernourrl, la difficulté était purement analytique. Jacques
BerNoULLI, entre temps, en 1690, montrait que I’isochrone
ordinaire était identique a la parabole semi-cubique, complétant
ainsi la solution de 1689 de Huygens d’une question posée en
1687 par Leisniz. y

L’équation différentielle de I'isochrone paracentrique (en
coordonnées polaires)

5 ,
<fl_e> = §1_il_6 + % , a = constante .

dr
tg?V =y + a,
ne peut, en effet, étre intégrée que dans le cas ¢ = 0
— ‘' do
24/ r = =
\/ A/sin 6

la courbe dépend alors des fonctions elliptiques du cas harmo-
nique et c’est précisément & I'étude de la représentation de
I’isochrone paracentrique qu’est due la découverte de la lem-
niscate de Jacques BERNOULLI. |

1 Voir mon étude «La courbe de L’Hopital », dans L’Enseignement mathématique,
t. XXXVI, 1937, p. 179-194.
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2. — Considérons d’une maniére générale I’équation
condition '
y = f(tang V)

imposée a une courbe plane inconnue, ou encore
y = rsin 0 = f(o)
en posant
tgV =0.
II en résulte, par dérivation,

dr _r )
- + cotg 6d0 = fdv. ;

1 .
dﬁ[;—[—cotgﬁ] = fdv :

Effectuons le changement d’inconnue

Cotgﬂ—{-%:i'

| fz°
I'équation devient
d L2 1
=2+ P),
avec
_ f=2e7
TP+ 1)

Le changement de variable défini par

W:/z(ﬂ_‘_/lfdf

‘)2

donne & I’équation sa forme canonique:

olz___2
;i““—}-——-Z(Z-l—P).

Pour I'isochrone paracentrique

71
de
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3. — L’équation est intégrable pour P = constante. Le
cas P = 0 donne:
dz 02 + 1
”Z? - f 02 d’: ’
20f = f .
En prenant

f == \/v_,y2=tangV,

la courbe a pour équation polaire

r2 = 2(a — cotg 0) ;
a est une constante.

Lorsque P est constante, f est déterminé par une équation de
Riccati en ¢:
de 2¢

df :7-—1('(()2—]"1) .

En posant
p = F . f2

la nouvelle fonction inconnue F est intégrale de 1’équation de

Riccati

%-Fk(ﬂl”—i—%):().

k est la valeur constante de P. En posant

W=t —=P.X, 0::;(%, F =P Y

f

la forme canonique de I’équation de Riccati est:

Y
dX X4

Un nouveau changement de variables

_1.7% _1
X”—3E ’ Y—"gn’
lui donne la forme
4
d —— —
Dt tE P=0
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Elle est réduite au type classique
+ 7% = k&

_ 4N
M= "T9N +1

SH
=

|

&
A

1). Le changement de variable

2 (m + 2)?
. Asm+2 m+2 _ M T 4)7
E»—At ’ A- - l.l:k ’
1
n = dg’

la transforme en 1’équation de BESSEL:
d?u 2n 4+ 1 du

di? @ Te= 00
on est dans le cas d’intégration des fonctions de BEsseL d’indice
3
no=—g,
1
k=—1, A=g
4. — A signaler aussi, un cas d’intégration

y™ = tg 'V, m = const.

par séparation des variables:

g — sin™™ 9. d6 .

Courbes définies par une relation entre OT et OM.

5. — Soit T la trace sur 'axe Ox de la tangente en M & une

courbe. La condition
A= OT = f(r),

entre la coordonnée axiale A = z — yj—g et le rayon vecteur

r = OM, devient
a6 -
”2@ = f(r) ,

&
x—f z,
r——7f
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En posant
P2 1

x:*—-——-,

f 7

Péquation prend la forme:

2
dz=r<L—1>-z2(z+P),

dr 12
_rf"—3f , __ df
P r2—f2 ’ / dr

Il y a séparation des variables, pour P constant.
Pour P = 0, il suffit de prendre f = r3:

1 1
?:rz—}—;é———Qa,

d’ou la courbe:

r?sin?0 = 2(a — cos 0) ,

y®? = 2(a — cos 0) ,

circulaire, du sixiéme degré.
Le cas de P constant correspond aux intégrales f(r) d’une
équation de Riccati

r% — 3f -+ P(rt—f3) .

En posant alors
1 1

=px: 1=v

el

r

I’6quation de Riccati prend la forme canonique

ay Y?

ax = ltx

Il y a lieu d’observer que le changement de variables
Y = —iY,, X =iX,,

lui donne la forme

Y2
Wy g 4L
dX, X
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obtenue plus haut pour I’équation correspondante de séparation
des variables dans le probléme de I’isochrone paracentrique; la

transformation

donne I’équation

intégrable par les fonctions de BEssiL d’indice — %

- 6. — Un autre cas d’intégration est celui des courbes définies
par la condition:
OT = k- OM .

L’équation correspondante

dr dx

r—kr  x— kr’

est homogéne. Elle devient

dr 1 —kcosO

k—; — sin 0 8
D’ou
1
- 0
Yy = tangh 9
| + 0
rsin 6 = tang 9

Ces courbes sont identiques aux images d’Aoust des courbes
ordinaires de poursuite.
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Applications géométriques de y'2 + 32 = f2 ().

7. — Deux questions de géométrie dépendent de 1’équation
différentielle du premier ordre *:

dy\? L
() + v = rla)
1o La détermination d’une courbe plane satisfaisant a une

condition imposée entre I’abscisse curviligne s et 'azimut 6 du

point courant:
s = F(0)

dr\t  /dF\2
2 R pr— N .
Tt (dO) (d@)

(C’est done le probléme d’isométrie par alignement sur un point
fixe O: les rayons vecteurs issus de O déterminant des arcs égaux
sur les diverses courbes intégrales. Le probleme généralise celui
des isométriques de la droite, qui se raméne aux fonctions
elliptiques 2.

20 La détermination des courbes planes telles que
r = f(«)

r désignant le rayon polaire OM = r, et. « étant I’angle d’in-
clinaison sur Oz de la tangente au point courant M. S1 @ désigne
la distance & cette tangente du pdle O, ’expression connue de r

2
e ()

donne I’équation :
dm\?
o <7¢l_o{> = o)

1 Cette équation a fait 1’objet d’une courte note de M. Dragoslav MITRINOVITCH :
Remarque sur une équation différentielle du premier ordre, Publications mathématiques
de I’ Université de Belgrade, 1934, p. 171-174.

2 Maurice p’OcAGNE, Sur les isométriques d’une droite par rapport i certains systémes
de courbes planes. Bulletin de la Société mathématique de France, t. XIII, 1884-1885,
p. 71-83.

Sur les isométriques d’une droite par rapport & un systéme de droites concourantes.
- Ibid., t. XVII, 1888-1889, p. 171-175.

Le probléme de I’éclaireur (4 propos d’un article de M. E. TURRIERE). L’Enseignement
mathématique, XVIIe année, 1915, p. 336.

E. TurrIERE, Sur le probléme de I’éclaireur. L’Enseignement mathémalique, t. XVII,
1915, p. 12-215.
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Prenons done I'équation

# o+ (f5) = 10

rdo
tang V = o =0

et posons

I'équation devient:

f df

E=w+W—he, h=f. r=1

ao

La réduction a la forme canonique de P. APPELL

dZ.
k. - 3

se fait par le changement de variables:

— UZ + W,
d® = M- do |

avec
1 1§

We=_=2-1,
3h— 87

nguzfgﬁ—fl)de, 3 Log (f - U) ffd(-)

M=—/- -0%;

L’invariant J a l'expression:

1 df, 2
J o o e 1 18 .
270°f) ( Yao T f1+2>
f ”
= 9 942
27U3f3( 1491 + 27
8. — J est nul lorsque

ll + 18 + 2 = 0,

1 2 2
flz—gtangg(e-——@o) ; fzzAcosg(G—-—()o)

k)

77
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sans restriction de la généralité de la question, 0, peut étre pris
égal & zéro et A égal a 1

1 2

fr = —-——?:tang—?’—(%).
2

2 =

f 00539.

ds

Il

2
\/cosgﬂ ae ;

les courbes seront rectifiables au moyen de fonctions elliptiques
du cas lemniscatique g; = 0, I'arc dépendant de P’intégrale:

f\/coscp-dcp.
Les fonctions U, W, M, ©® sont ici:
2
W-::——3cotg§6,
L e 26 cos 2
o = sin 36«30,336,
bk _ A
= 3 sin 50, G)w_-—cotggﬂ.

L’équation se réduit a

d’ou:
20 + — .
4 75 = const = k ,
1
2 527
<o + 3cotg§6)

4 .o 2 2
2<cotg-§6 + k> S1n2§6 cos§6 ==

4 . 4 LA 2 .12
<00§§6 + ksm§6> . 51n§6[v -+ 3 cotggﬁ] == 1 .
L’intégration s’achéve par quadrature en exprimant ¢ en

fonction de la variable tg%ﬁ.
A signaler aussi le cas d’intégration f, = constante par sépa-
ration des variables.
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9. — Comme courbes se rattachant a cette équation, i1l y a
lieu de citer les deux suivantes:

I. Soient N et T’ les traces respectives sur les axes Oz et Oy
de la normale MN et de la tangente MTT’ d’une courbe (C).
La condition NT” = 1 caractérise des courbes (C) telles que

r = cosao ,
25
MN = sin 0 , ON = sin OMN ;

le cercle circonserit au triangle OMN a pour‘diam'étre NT = 1.
L’équation des courbes est:

d®

2
52 e SZ
| w? 4 <_doc> COS* o

@ étant la distance du pdle O a la tangente d’inclinaison o
sur Oz.

II. I’équation de Riccati

est équivalente a

La courbe atuptique.

10. — J. Porro a donné le nom de courbe atuptique a 1'in-
tégrale de I’équation différentielle

dy _ z(a® + 9?) + 2ayV2* + 4 — &
dx y(.’L'2 + yZ) -+ 2@-27’\/.’132 + yz__az

Ce serait la forme théoriquement assignée aux aubes destinées
aux moteurs hydrauliques .

L J. PORRO, Essai sur la théorie des moteurs hydrauliques. Turin, 1844, p. 29.

Théorie générale des moteurs hydrauliques. C. R., 1852, t. XXXIV, p. 172-174.

H. BrocarD, Notes de bibliographie des courbes géométriques, 1897, p. 66.

G. Loria, Curve piane speciali, I, 1930, p. 118.

§ Le nom dérive de timtw = je frappe de prés (par opposition a BdAlw), C’est la
courbe sans choc.
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L’équation différentielle n’a pu étre intégrée. Donnée sans
démonstration par Porro dans sa communication de 1852, elle
a été relevée d’apres cette communication. Mais si I’'on se reporte
a l'opuscule de 1844, on constatera ’existence de deux erreurs
dans les formules trigonométriques (de la page 28) qui faussent
entiérement I’équation indiquée 1.

11. — Etudions I’équation différentielle telle qu’elle a été
considérée jusqu’a présent. En coordonnées polaires elle prend
la forme

d(rtcos20) = 2¢4/r2 — a2d
ou ¢ = 2a.
Pour ¢ = 0, cette équation représente des hyperboles équila-
teres. Pour @ = 0, ¢ # 0, ’équation

d(r?cos20) = 2c¢r-db
est linéaire en r et admet I'intégrale générale

r4/cos26 = ¢ ——ti—gf:-kconst.

4/ cos 26

dépendant d’une intégrale elliptique (du cas lemniscatique

g3 = 0).
Dans le cas général, en posant

1
2 — 2
et e

on met 1’équation sous la forme

c0S 26-%—# a?2sin20 - 23 + ¢z22 + zsin260 = 0 .

Sans restriction de la généralité de la question, la constante a
peut étre prise égale a 'unité. La réduction a la forme type
dz

el £
70 VAR S

1 Voir & ce sujet ma note « Sur diverses courbes planes » des Anais da Faculdade de
Ciencias do Porto, 1937, t. XXII, p. 93-129, 145-150.
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se fait par les formules

ae
LA = UZ+V,
70 M, 2 UZ +
avec
c? 1
— 3 . A
U2 = cos20 - tang® 20 , V = 3 50326’
M = — U?tang260 ,
27U3sin326~—g— — 9(c® + 9) — 27sin226 .
12. — IL’équation ayant une intégrale évidente (z = 0)
peut étre réduite & la forme canonique
dz. ., 5 .
o =L+ P I
il suffit de poser pour le cas ¢ = 2, ¢ = 1 de la courbe de
Porro: '
Z == \/cos 20 -7,
cos20 = 2X ,
2
b= \/X(1 — 4 X9
13. — Les trajectoires orthogonales des courbes atuptiques,

intégrales de la méme équation différentielle pour une valeur
donnée de @, ont pour équation

xy—}—c‘/"\/?z——az-ﬂzo :

r.

elles sont déterminées par les formules paramétriques:

a
cos @ ’

sin26 = 25 cos? ¢ (p — tang @) + A cos?o |,

avec une constante arbitraire A.

I’Enseignement mathém., 38me année, 1939 et 1940. 6
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Le probléme général des lignes de poursuite dans le plan.

14. — Autant les lignes de poursuite de la droite ont donné
lieu & une abondante littérature, autant la méme question pour
d’autres courbes que la droite a été délaissée. La raison en est
que, dés le cas du cercle, I’équation différentielle des lignes de
poursuite cesse d’étre intégrable 1.

La courbe (C) étant définie par sa tangente en M .

xcos + ysineg = @ ,

so1t
Xcos® + Ysin® = II w
® =48, II=amcosd+ &sind,

dw

D = ——

do ’

I’équation d’une droite A quelconque passant par le point
M (x, y) de (C). L’enveloppe (I') de A, pour un choix déterminé
d’une fonction & (¢), est touchée par A au point u de coor-

données
E =2 —rsind , n =19y -+ rcos® ;

dans ces formules,
sin &

P 7 "
149

r =

r représente la distance Mu. Les rayons de courbure p et R
de (C) en M et (I') en w sont:

p = O + @, R =11+ -«

R(1 + ¢&) = pcos,S—l———ciP ;

1 L. DUNOYER, Sur les courbes de poursuite d’un cercle. Nouvelles Annales de Ma-
thématiques [4], t. VI, 1906, p. 193-222.

F. MoRLEY, A curve of pursuit. American Math. Monthly, t. XXVIII, 1921.

F. MoRrRLEY, The curve of ambience, American journal of mathematics, t. XLVI, 1924,
p. 193-200.

Emile TurRIERE, De lintégration des équations des problémes de poursuite et
d’ambiance en géométrie plane. Bulletin de la Société mathématique de France, t. LXYV,

1937, p. 168-174.
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les arcs correspondants ds de (C) et dS de (I') sont liés par la

relation connue:
dS = dr + ds - cosd .

T — sin3 ds
®R MO ESC
Cela étant, la condition
dS = kds , k = const. ,

exprime que (') est une ligne de poursuite de (G). D’ou

dr
k = cos & + o
Léguation générale du probléme des courbes de poursutte est
donc

__d [psind

5 est la fonction inconnue; p est une fonction connue de o,
variable qui n’intervient que par

P,
- = tgV.
o g
Cette équation est du second ordre.

Supposons que

E’—:m, m = const. ;
P

la courbe (C) est alors une spirale logarithmique et, dans le cas
plus particulier m = 0 un cercle; alors ¢ est absente dans
Iéquation différentielle du second ordre

4

i«—_{—_—~8—,s1n8+ 3” (k — 2 cos 3) =‘msm8+0088——-k f

et cette absence permet de mettre I’équation sous la forme d’une
équation du premier ordre:

14+ =1—+, =1+ psind , r=p<sin8+—&>,

N =

sinS-z—g—{— Z(Z—i)[Z(cosS—l—msinS—-—k) +k-——2(:0s8} = 0 ,

d . |
o5 + u*[usind(cosd — k) — k] =0 .
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A la solution z = 1, correspond p. = 0.
A la solution z = 0 correspond

1
w = — m . r==10.
I1 suffit finalement de poser
w= Q- ¢ ’

A = [ (k — cos 8 — msin 8)sin § dd

_ umb [2m sin28 + (1 — m? cos 23 k m]
4

(1 + m2) —"m(stmS—kcosB)_;__

pour réduire cette équation & sa forme canonique

Q. ,
o5 = O + PO,

P — k— 2msin o €m8

(k — cos 3 — msin §) sin §

Il résulte, de cette analyse, que le probléme général des lignes
de poursuite se simplifie dans le cas du cercle et de la spirale
logarithmique et que, dans ces cas, U'équalion non intégrable est
du type Liouville-Appell.

15. — L’équation donnée par M. L. DuNoYER, dans la note
citée plus haut, pour les lignes de poursuite du cercle

dx dy

ya*—1)  (y—a)[22y —az + by — ba] ’

dans le cas a + b £ 0 de non-séparation des variables, se

ramene a
dZ
i, 3 2
-~ = L3+ PZ2,

en posant

xdx
2 —1"
(3a + bz + ab
" ae + b)Uz

dX = — a(a + b)U?

P =
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16. — Le probléme inverse du probléme des lignes de poursuite.
— La fonction R(®), caractéristique de la courbe donnée (I')
est connue. L’élimination de 3 entre les conditions

| - dr
s cosS——k<1~—£—l§>,

donne I’équation différentielle

2 . 2

sind = k-

ol =

R2 ds k2
[dr . & -RA

2 IR _—

T (d(I) R) % |

ou r est I'inconnue. C’est encore une équation non intégrable
du premier ordre.

L’élimination de r donne I’équation en 3§

0 = k — cos§ — Msin 3

d
cos J - L)

ou M est une fonction connue de ¢: M = % .
Avec la nouvelle inconnue ¢:

t:tgg.

L’équation prend la forme:

dt 1+ ¢
= Lk e — a4k —1]

2
(e, dt . : . ‘ .
La dérivée - ©st égale & une fonction rationnelle de ¢ dont

le degré du numérateur surpasse de deux unités celui du déno-
minateur: c’est un type d’équations étudiées par P. AppELL.

En posant
1 —T 1 )
i = «— - —_— e S e
TrT T tg<4 2)’
1l vient:
ar 1 + T2

e [(k+M)T2—-~2T+k——-M].
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Dans le cas de M constant, les variables § et ® sont séparées.
Par suite, dans le cas du cercle et de la spirale logarithmigue, le .
probléme inverse du probléme des lignes de poursuite est réductible
a une intégrale de fonction rationnelle.

En particulier, pour M = £, I’équation

dT

235 = |

14 T2) (1 — kT) ,
est identique & celle rencontrée plus haut (paragraphe 8, cas f,
constante).

Sur une généralisation des podaires.

17. — Soit une courbe donnée (C) du plan, m(x, y) son point
courant; sur la tangente en m est pris un point M (z, y),

X=x+)~g—:=x+7\x’, Y=y+)\§—g—=y+7\y',
a la distance A = mM de M; elle sera considérée comme une
fonction A (s) de 1’abscisse curviligne.

La normale en M a la courbe (I') décrite par ce point, pour un
choix de A(s), rencontre la normale en m de (C) en un point P
de coordonnées

E=a+py, n=y—ez,

1+ A .

y'z' —a'y

p:

R étant le rayon -de courbure en m de la courbe (C):

e =Rl 4+ %) .
La déviation des normales
AN
d = mPM ,
est donnée par la relation
_f _n. 1 4+ A '
cotg & = N = R z

Ces formules connues étant rappelées, cherchons a déterminer
A(s) par la condition suivante: la normale en M & la courbe (I')
décrite par ce point rencontre le rayon polaire Om en son milien.
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La courbe (C) étant définie comme enveloppe de sa tangente
zcosSp + ysing = @

ou @ est une fonction donnée de sa tangente, la condition se
présente sous la forme

»
- = 2
z Z
ou
4 mz
7 = ;
2z 4+ @'
I'imconnue z est définie par
d® dz
)\:Z"}"m,; ZU’:*——-; = .
do de
L’intégrale évidente z = 0, A = @', correspond au cas ou

M est la projection de O sur la tangente de (C). C’est la propriété
des normales aux podaires de passer par le milieu du rayon
vecteur Om.

L’équation différentielle se raméne & la forme
2 _ oz — (@ + o),
do

par le changement d’inconnue

, 1
2z + @ =7

Soit R le rayon de courbure de (C)
R=—(@+ @) .
Le changement de variable
»2 = 20
réduit Iéquation a sa forme canonique

az. . |
do — FZ+P)

avec
R

o~ o~ f

w W

P =
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Autres courbes.

18. — M. D. MrrriNoviTcH s’est spécialement attaché a cette
forme d’équations différentielles et en a étudié diverses appli-
cations 1.

M. AumaDp-Vaziri 2 a donné un exemple de probléme de géo-

métrie réductible a P’équation de Liouville-Appell.

L4 - dz . 1 - Z2 . . P rir
L’équation = T I de la balistique extérieure a été

étudiée par M. J. DracH 3, en application de sa méthode
d’intégration logique.
19. — L’équation
dy _ ¥
g = W+ 2az)

et I’équation de Riccati

dx
B e e
7 ax® 4 bt ,

a et b étant des coeflicients constants sont équivalentes: il suffit
de poser:

ax2+bt=£;
Yy

par un changement de variables

B == A& , ! = pt,

1 D. MitriNOVITCH, Remarque sur une équation différentielle du premier ordre.
Publications mathématiques de 1’ Université de Belgrade, 1934, t. II1, p. 171-174.

Sur I’intégration d’une équation différentielle importante du premier ordre. Bulletin
de I’ Académie royale des sciences serbe (section A), 1936, p. 7-18.

Transformation et intégration d’une équation différentielle du premier ordre. Publ.
math. de I’Université de Belgrade, 1936, t.V, p. 10-22.

Intégration d’une équation différentielle du premier ordre et polyndmes d’Hermite
qui s’y rattachent. Revista de Ciencias, Lima, n° 149, t. XX XVIII, 1937, p. 123-127.

Sur I’équation différentielle des lignes géodésiques des surfaces spirales. C.R., 13 dé-
cembre 1937, t. 205, p. 1194.

Sur une équation différentielle du premier ordre intervenant dans divers problemes
de Géométrie, Bulletin des sciences mathématiques, 2™¢ série, t. LXI, novembre 1937;
C.R., 7 juin 1937, t. 204, p. 1706.

Recherches sur les lignes asymptotiques. Bulletin de I’ Académie royale des sciences
serbe, 1938, n° 4, p. 105-120.

2 ABOLGHASSEM AHMAD-VAZIRI, Sur quelques courbes liées au mouvement d’une
courbe plane dans son plan. Thése. Montpellier, 1938, p. 98.

8 Annales de U’Ecole normale supérieure, (3), t. XXXVII, 1920, p. 1-96.
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(& coefficients constants A, p), ’équation de Riccati précédente
prend la forme canonique ‘

% + 8 =
X. Stourr?! a signalé qu’a cette équation spéciale était
réductible la recherche d’une courbe admettant une parabole
donnée pour lieu du centre d’une conique en contact du quatriérqp
ordre avec la courbe. , o |
Pour terminer, voici encore des courbes dépendant d’équa-

tions non intégrables de Riccati et de fonctions de BESSEL.

20. — La courbe du pendule de longueur vartable. — 1’équa-
tion du pendule simple dont la longueur [ est une fonction
donnée du temps est 2

0  dldo _

En posant 6/ = o, elle prend la forme

do _U—g

di? l

dans le cas du mouvement uniforme, elle se réduit par change-
ment de variables a la forme |

d2
C’est une équation de BesseL particuliére.
Soit OT' = y — x%, le segment de Oy limité en O et & la

trace T de la tangente & la courbe (z, y); cette équation exprime
la condition

d .
J‘%(OT} =y .

1 Nouvelles Annales de Mathématiques [4], t. II, 1902, p. 480.
2 BossuT, Sur le mouvement d’un pendule dont la longueur est variable. Mémoires
de ancienne Académie des Sciences de Paris, 1778. ' ‘
LecorNu, Mémoire sur le pendule de longueur variable. Acta Mathematica, t. XIX,
1895, p. 201-249,
Cours de Mécanique, t. II, 1915, p. 39. )
Sur le pendule & tige variable. C. R., t. CXVIII, 1894, p. 132-134.
1 Haton DE LA GOUPILLIERE, Oscillations des bennes non guidées. Annales des mines,
909. S e e
; Kyrille PopoFF, Sur le pendule de longueur variable. C. R., t. ‘CLXVI, 1923, p. 655-
58.
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21. — Dans un mémoire sur la résolution numérique des
équations différentielles !, RuNGE prend pour exemple la méri-
dienne de la surface d’une goutte liquide ou d’une bulle gazeuse.

La surface est définie par la condition

1 1
2z = @ — 4+ — ) :
P= ()
a est une longueur constante. Dans le cas de la surface de révo-
lution, la méridienne est définie par 1’équation

dans le plan Oxz. Cette équation n’est pas intégrable. En intro-
duisant le rayon R de courbure, elle prend la forme

2Rz = a2<1 +%sina> :

par suite pour tout arc éloigné de ’axe de révolution Oz et &
pente faible sur Oz, la courbe est approximativement assimi-
lable & une courbe élastique :

2Rz = a2 .

D’autre part, si dans I’équation

4 "7

z z

27 B e

+ P
21+ 22 A1+ 22

les termes en z'2 sont négligés (faibles pentes), on obtient I’équa-
tion linéaire

zl
2z = — + 2 ;
x

par changements de variables

z’:

Z , x == 1“ex
2

\/

z
x

1 C. RungE, Ueber die numerische Auflésung von Differentialgleichungen. Math.

Ann., 1895, t. XLVI, p. 167-178.

TR L w
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elle devient I’équation de Riccati:

dZ | oy _ oax
X TE=e

intégrable par les fonctions de Bessen d’indice zéro: il suffit
de poser ¢ = ie* pour effectuer la réduction de I’équation équi-
valente.

22. — C’est de cette méme équation de Riccati que dépend
la détermination des courbes du complexe linéaire

xdy —ydxr = kdz ,

sur les surfaces cerclées représentées paramétriquement par les:
équations:
x = Vcosu cosy ,

y = Vcosusing ,

z = Vsinu ,

ou V = e®. Les cercles ont l'origine O pour centre et 'axe Oz
pour diametre. Les courbes du complexe linéaire, lorsque V est
une fonction quelconque de ¢ ont pour équation

dz
had .2 — 2
kdo_'_" V2 .

Pour £ =1, a =1, c’est I'équation du paragraphe précé-
dent.
Les lignes de courbure des surfaces considérées, dans 1’hypo-

thése V = e, se déterminent par quadrature elliptique. Elles
ont pour équation
u’ 4+ ¢ = const.

dans la représentation conforme:

dst = €*@ (a® 4 cos® u) (du'? + dp?)

’, f du
U = ———
\/ a® + cos?u
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