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SUR LES TI-SECTRICES D'UN TRIANGLE

[En mémoire de Frank (1860-1937)]

PAR

M. Henri Lebesgue, Membre de l'Institut (Paris).

1. — Il y a une quarantaine d'années le géomètre américain
Frank Morley obtenait incidemment le théorème suivant: Les

trisectrices intérieures des angles d'un triangle, adjacentes à un
même côté, se coupent deux à deux aux trois sommets d'un triangle
équilatéral. La méthode de Morley ressortissant à une géométrie
analytique du plan de la variable complexe, on s'empressa de

rechercher des justifications plus élémentaires de cet énoncé.
Ces justifications furent souvent critiquées par leurs auteurs
eux-mêmes qui auraient désiré une démonstration aussi courte
et aussi élégante que l'énoncé, ou qui regrettaient d'être si

facilement conduits à faire jouer des rôles dissymétriques à

des éléments intervenant symétriquement dans l'énoncé1. A mon
avis, de tels désirs ne sauraient être satisfaits. Morley trouve
que le lieu des centres des cardioïdes inscrites dans un triangle
est formé de neuf droites, trois à trois parallèles aux trois côtés
d'un triangle équilatéral. Il examine comment le centre peut
passer d'une des droites constituant le lieu à une autre et trouve
ainsi que les 27 points en lesquels se rencontrent les 9 droites
du lieu sont les points où se coupent deux trisectrices du triangle,

i Voici, prises un peu au hasard, quelques références: Morley, Tr. of the Am. Math.
Soc., vol. 1, 1900; vol. 8, 1907; vol. 51, 1929; Math. Assoc. of Japan for second. Math.,
vol. 6, 1924; — Bricard, Nouv. Ann. de Math., 1922,; — J. Marchand, L'Ens. math.,
XXIXe année, 1930; — Le journal X, information, avril 1931; mai 1931; mai 1937; —
Gambier, L'Ens. scient., 4me ann., juin 1931; 5me ann., janv. 1932; 10me ann., juill.
1937; — J. Roboroh, Euclides, janv. 1938.
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adjacentes à un même côté de celui-ci. Pour bien faire apparaître
la simplicité de ce qu'il avait obtenu, Morley a extrait de son
résultat complet l'énoncé partiel que j'ai cité, en isolant
grammaticalement — par l'emploi du mot intérieur — l'un des triangles
obtenus des autres. Mais il serait aussi vain de rechercher un
raisonnement applicable à ce seul triangle qu'il serait vain, dans
la question des bissectrices ou des cercles inscrits, de prétendre
isoler mathématiquement le cas des bissectrices intérieures. Il
faut donc que le raisonnement permette d'étudier une figure
comprenant 27 triangles équilatéraux ne jouant pas tous le même

rôle; on ne saurait s'étonner qu'il faille prendre des précautions
un peu minutieuses et longues.

D'autre part, on raisonne dissymétriquement quand on montre
que, par le point de rencontre de deux bissectrices, il en passe une
troisième et, plus généralement, quand il s'agit de prouver que
plusieurs droites concourent; or, c'est bien de cela qu'il s'agit
dans le théorème de Morley. Je suis donc parfaitement satisfait
par les démonstrations qui ont été publiées; si je reviens sur la
question, c'est pour donner une démonstration qui, ne visant ni
à l'élégance, ni à la brièveté, pourra mieux faire état de ce qui
n'est pas indispensable à la preuve, mais servira à faire
comprendre.

Faire comprendre un résultat, c'est essentiellement l'intégrer
dans un tout cohérent dont certaines parties sont déjà bien
familières. Au point de vue où s'était placé Morley, son exposé
fait parfaitement comprendre; du point de vue élémentaire
auquel je me place ici, il faut confronter les cas des bissectrices
et des trisectrices, mettre en lumière les raisons des différences
et réussir à ne voir dans ces différences, choquantes au premier
abord, que des aspects très voisins et tout naturellement variés
d'une même vérité.

2. — Par angle d'une première droite AB, avec une seconde

droite BC, nous entendons l'un quelconque des angles dont il faut
faire tourner AB pour l'amener sur BC; nous représenterons cet

angle, et sa mesure en degrés, par la notation ABC ou (AB, BC).
La mesure n'étant définie dans le plan orienté qu'à un multiple
entier de 180 près, nous n'écrirons pas d'égalités entre les angles,
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mais seulement des congruences, module 180. Ces congruences ne

résulteront pas de l'examen de la figure mais de l'application des

relations suivantes qui sont contenues dans nos définitions:

ABC (AB, BC) (BA, BG) (AB, GB) (AB DE) +
+ (DE BG) — (BG, AB)

Un triangle ABC étant donné dans un plan orienté, on

désignera par A, B, C trois des mesures des angles BAC, CBA, ACB

et par (Xh, d3-, (5 les droites issues respectivement de A, B, C,

données par la congruence

/AT) /CVfe. j A _ 180
AB CX k h h

v 'h' n n

et celles qui s'en déduisent par permutations circulaires sur les

lettres A, B, C; (X, (B, C. Les lettres n, k et A, l et Z, m et /
représentent des entiers. Il est clair que les indices inférieurs h1

i, / n'interviennent et ne doivent être considérés comme déterminés

que module n. Quant aux indices supérieurs, nous ne leur
donnerons pour le moment que les deux valeurs 1 et n — 1 et

nous emploierons les notations simplifiées (X, <®, C au lieu de (X1,
Ö31, C1 et (X', 6b', C au lieu de (Xn_1, <Bn_1, (3n_1. Les droites (X^,

Cj sont dites les premières n-sectrices du triangle et les droites

6ih, 6b\, Cj les dernières n-sectrices.

Désignons par ah il ^ c^ h les points communs respectivement

à 6bh et (3•, à Ci et (X3-, à (X3- et c'est la figure formée

par les 3 n2 points a, 6, c qu'il s'agit d'étudier.
On a:

AcMB CMAB + ABG + CBch}i -(AB,ah)—B + (BC,c^i)

__(A + ,2!)_b + f +

A + B ,180-h)
n ' n

donc, Ze5 n points chi i, pour lesquels la différence h — i a une valeur
constante, module n, Zcs points de rencontre dlune circonférence
(Ph-ù açec les premières n-sectrices de A. Et comme ces sectrices

180se succèdent en faisant des angles de + — lorsque Von parcourt
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(Pfc-i) dans le sens positif on rencontre dans Vordre des indices
croissants, module n, les points ch}i qui sont par suite les sommets

consécutifs dVun polygone régulier convexe P^.
Nous avons ainsi n polygones P et n circonférences (P); la

tangente ATh-i à (P^) en A fait avec AB un angle égal à

Ach ^B, donc
1 80

tHathh + -r ;

donc, les circonférences (P) se coupent deux à deux sous des angles
180

de — et quand on tourne autour de A dans le sens positif on les

rencontre dans Vordre croissant de leur indice.
Le côté ch)ich+lfi+i de Ph-i est, en direction, symétrique de

AT^ par rapport aux bissectrices de ch iAch+i i+1, de même

ch,i-1 ch+i,i es^ symétrique de AT^^ par rapport aux mêmes
bissectrices, donc

(ch,i ch + l,i+i ' ch,i-1 ch + l tè " Th-i AT/i + l-i '

Ainsi on passe de Pu à Pw+1 par une similitude directe dont

la rotation est de — et comme les axes de P„ font entre eux
n u

180
des angles de — les n polygones réguliers P ont leurs axes

parallèles.

Si n est impair, chaque axe est perpendiculaire à un côté, et
un seul; donc, quand n est impair, les polygones P ont leurs côtés

parallèles. Si n est pair, il y a deux espèces d'axes, une rotation
de ^ échange ces deux espèces d'axes dont une seule est

perpendiculaire aux côtés, donc, quand n est pair le parallélisme des côtés

ne subsiste que pour les Pu dont les indices sont de même parité.

3. — Arrêtons-nous un instant sur les cas n — 2 et 3. Pour
n 2, nous avons deux points cQ 0, c1{ diamétralement opposés
sur une circonférence (P0) passant par A et B, deux points c01,

ci o diamétralement opposés sur une circonférence (Px)
orthogonale à la première. Les deux diamètres P0 et Px étant
rectangulaires. Pour avoir le résultat classique, il reste à déterminer
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la direction des droites P0 et Pi et la position de leur point de

rencontre.
Pour n 3, nous trouvons trois triangles équilatéraux à côtés

parallèles :

P0 de sommets c0,o ci,i c2y2 ;

Px de sommets c0yl ci,2 c2,0 ;

P2 de sommets c0,2 cif0 c2>1

Les 9 droites, portant les côtés de ces triangles, sont celles

que Morley obtient comme lieu de centres de cardioïdes, ce qui
incitait, comme je l'ai dit, à rechercher quels sont les points de

rencontre de ces droites; nous allons aussi procéder à cette étude,

X.

et.
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mais c'est seulement la connaissance du résultat de Morley qui
nous incite à le faire; il y a là une infériorité de notre mode

d'exposition.

Pour éviter des redites, nous allons faire cette étude par
l'intermédiaire d'une proposition accessoire. La correspondance
ponctuelle entre deux circonférences (P), réalisée par alignement avec
A, est, nous l'avons en somme démontré, une similitude directe;
et comme B se correspond à lui-même, le point double ou pôle
est le point B. Ce sont, en particulier, les points de rencontre
des côtés homologues dans une telle similitude qu'il nous faut
étudier; nous le ferons pour les polygones que j'appelerai réguliers

par rapport à B. Ce sont ceux dont tous les angles (angle
d'un côté avec le suivant) ont une même valeur V et dont tous
côtés sont vus de B sous un même angle orienté 0.

4. — Soit donc II0 un polygone régulier par rapport à O;
il est donné par les angles V, 0, la position d'un sommet oc0 et

l'angle oc de Qoc0 avec le premier côté oc0 ß0. Une similitude
directe de pôle £1 transforme no en Iï^ cette similitude est

donnée par les angles

ocoüoCi Po Qa^o OCjOCoCi Po + a0 + T0 —. 0

oq étant l'homologue de a0. On désigne par oc*, ß*, les points
de rencontre des côtés successifs oco ßo, ß0 y0, de rio avec leurs

homologues et par II* le polygone oc* ß* Les côtés homologues
faisant entre eux l'angle po,
les points O, ßo, ßx, oc*, ß* sont
sur une même circonférence
et l'on a:

a*nß* a* ß ß* — a ß yn * n n * n ' n n * n ' n
Y

Fig. 2

tous les côtés de II* sont donc
0

vus de Q sous l'angle 0* V.
fL Désignons par a* et ß les

angles Qoc* ß* et Oßoyo qui



LES n-SECTRICES D'UN TRIANGLE 45

•sont analogues à a; la circonférence déjà utilisée montre

que a1 ß, or

ßa<A + aoßoTo + Y<Aß + ßonao 0 '

nu
a + V — ß — 0 0.

Donc:
a1 D a1 ß1 — a + V — 0

o ro

•de même

n ß1 y1 ß + v — e ai + v — e,r0 1

0 r
•et

a1 ß1 y1 ß1 a1 D + a1 H ß1 + D ß* y*
0 ro 1

o ro 0 0 r0 1

0 0

— — al + 01 + (al + V — 0) 2 V — 0 V1 ;

II] est donc régulier par rapport à £1. Il sera déterminé par les

angles calculés 01, V1 et a1 et par la position de od. Or, O, oc0, oq, od

étant sur une même circonférence, on a:

tana1=aaa1=aaD + Daa1=aaD + Daa1 — — ct + a00 010 01 10 01 00 0

De plus, on a

£1 a1
o

O a
o

égalité qui, entre longueurs, n'a lieu qu'au signe près puisque oc

et Oq ne sont déterminés qu'à 180° près. Mais supposons qu'on ait
choisi les déterminations de a et a0, alors le quotient précédent
représente, en grandeur et signe, le rapport des mesures
algébriques de £îod et Oa0 faites respectivement sur deux axes,
portés par Qoc* et Oa0, et dont l'angle oc0£îod est, à 360° près,égal à

oc — C70.

Supposons maintenant qu'à partir de II1 nous formions un
polygone II2 par une similitude p3, g±, t1 puis un polygone ns par
p2, o-2, t2, et que nous considérions les polygones ID (ou
"ai ^2 (ou a2' ïî' •••) ••• ^ont ^es sommets sont
respectivement les points de rencontre des côtés homologues de Il1 et
n2, de n2 et n3, Ces polygones II1 sont tous réguliers par

sin Q aQ aQ sjn a sin a

sin H a1 a
~~ sin ü ai ao sin ct0
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rapport à Q. et donnés par les mêmes angles 01, V1, a1, ils se

déduisent donc les uns des autres par des similitudes directes
p*, a*, t\ ; calculons p*, a*, t* relatifs au passage de II* à II*.

a1 étant sur la droite oc1 oc 8 t1 est oc oc*Q donc ol, ocftCL
1 0 1 rl ' 0 10 1U|

D'autre part,

p1 aOa1 ot^a + a Q a -f a Q a1
r0 01 00 0111

(ct0 — a) + Po — (tu — a) ct0 — + p0

et, puisque
p1-fcr1 + T1 p + CT + T 0,ro 0 0 r0 0 0 '

1 1.1a— CT, p + CT p + CT
n -i 7 » n a k n n

5. — Appliquons ces résultats à la suite des Pw rangés dans,

l'ordre croissant, module n, de leur indice en prenant pour
no, et à la suite des sommets de Ph_i5 rangés dans l'ordre croissant,

module n, de leurs indices, chfi étant pris pour a0. Alors

O est en B et (fig. 1 et 2) 0 ^, V — 2 • ^,
Al 180

a Bch,ich+i,i+lBAcfi+l,t+l + + 1'T" '

B%i-i %i ch,i-1BC + GBA + BAch,i

— ((il — 1)- + — 1)—) + B + (-+ A —\v 'n n j \n n

__
A + B • 4x180

— -f- (h •— i -f- 1) •

n n

De proche en proche on en déduit, puisque l'on passe de <t0j

à g1 en diminuant i d'une unité,

e._2.«°, v.-3.!2S, «._*+ (» + 2,15».
n n n n

i __
A + B 180

a — ~h — 1 "f- 2) —
o n n
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puis

ff s.iS», V 4.!5Î, «. ^ + (»+3)
n n n n

2 A + B „V t80
#g := A* {h — i H- 3j —- \ ©te.

La position des II, II1, II2 dépend de celles des oc0, od,

laquelle est donnée par les angles ABoc0, AB od, et par les

mesures de Ba0, Bd, Or,

ABa0 ABcft _B + (n — 1)- + i — - i—°
u n>1 ' n n n n

ABa1 ABa + a üa — - + ï— + - + (h + 1)— —
o o'oo n nn n

[A + B '

— +(h—i+
1)

4 QA\
AB a 3 + i

1 o / B 180\
2( + 1

J V n n J

l B -180\
h i etc.

\ n n J

Si nous mesurons les vecteurs Ba0, Bod, Bod, sur des axes
faisant à 360° près avec Y axe BA les angles ABoc0, AB od, qui
viennent d'être calculés, on a, BA étant la longueur du côté AB,

Ba0 BA

/A *A80\sin h h —\n n J

[A + B .1801 '

sm|__+{Ä

i sm a
a — Ba — BA

0 o sm a0

a «* BA

sin |^+h^)\n n /
sin |£+i»+'>) 180

n

sin |

fA + B
L n

il n180 j. sin [A + B ..180]
[ « +(h + l a

J

sin |

\n n J
sin

sin
rA+ti
L n

/, ••
BO

+ (*-*)-_H ï] •H

Si, enfin, on désigne par cpa, <pb, <pc les angles d'un axe Ox avec
BC, CA, AB, les angles de Ox avec les côtés des polygones II0,
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IÇ, IT, dérivent des inclinaisons suivantes:

9(aoßo) (Ox, AB) + (AB, Ba0) + (Ba„, a0ß0)

B
_L_ 180\+ i -f ot

n /

9c~9a .180 \9b— 9, 180|hi + + (h + 1
n n J L n n J

9a + 9b + (n — 2)çc 180
h A + t + 1

n n

9(aX) 9c + 2(-
®

+ *'") + a1

9c + + + p^+(Ä + 2)^
n mi I n n

2cp + çh + (n — 3) 9 ion1° : XX + (h + 2 i + 2) — •

n ' n

2 02,
3 9a + 9b + {» —4)9 180

9(a„ß„) + (A + 3ï+ 3) —

Dans ces formules cpa, <pb, cpc doivent être choisis d'après les

déterminations prises pour A et B et de façon que

A ?b ~ 9c » B 9c — 9« •

Si l'on suppose que l'on a pris pour A, B, G les déterminations
élémentaires ordinaires des angles du triangle ABC (ce qui le

suppose d'orientation positive) les valeurs de <pa, <pb, <pc qui en

résultent, donnent
G — 180 + cpa — 9b

Et l'orientation de la droite Cf est alors :

(a>m\
180 + (Pa~9ö .180

9(ef) n + m—~— + j-~n

m(?a + {n~m)cpb 180
— + [m + / •

n n

6. — Supposant choisies les déterminations élémentaires
de A, B, G, interprétons nos résultats, d'abord pour n 2 et 3,
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nous verrons ainsi la parenté et la raison des différences entre les

deux cas. Nous verrons en même temps ce que nos formules, qui
semblent prévoir une suite indéfinie de polygones II, II1, II2,
ont d'illusoire. Bien entendu, pour n — 2 et n 3, on se passerait
facilement des formules précédentes, mais j'ai dit que je sacrifiais
la brièveté au souci de faire comprendre.

Pour n 2,

9a + <?b 180
9 (co,o ci,v 2 2 '

9(co,icJ
?a t 9b

+ 180 '

nous retrouvons la perpendicularité de nos deux droites c00c117

colc1Q (ou P0 et Px), mais en même temps on voit que leurs
directions sont celles des bissectrices de C. Le point de rencontre
od de ces deux droites est tel que

ABa1„ 2(-|+il|-0)

Bot' BA

.Asin — • sin

I — B

A(f+9°)
A + B

sin —^— sin

(mod. 180)

i~v
sin ABA.sin G

donc od est en C; le théorème classique sur les bissectrices est
prouvé.

On voit que pour n 2, il n'y a en réalité qu'un point a1,

parce que les polygones P0 et P1? qui sont à deux sommets, n'ont
chacun qu'un côté. La considération des polygones H1, II2, etc.,
est illusoire.

Pour n 3,

on retrouve ainsi que les différents côtés ch>ich+l >i+1 sont trois à
trois parallèles aux trois côtés d'un triangle équilatéral, mais en

L'Enseignement mathém., 38me année, 1939 et 1940. 4
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même temps on voit que leurs directions sont les trois moyennes
arithmétiques des directions des côtés du triangle. Le point

commun à cKich+i i+y et à ch i_y est tel que

Ao i al B 180\ r,T. i B ..180AB a —2 —— + i— CB a =--+2i-o \ 3 3 / ' 03 3

donc Bao est la trisectrice <®2i.
180

L'angle V1 des polygones II1 est 3 -y 180, c'est-à-dire que
les trois points a1, ß*, y1 sont alignés; ce qui était bien évident
car ce sont les points de rencontre des côtés homologues de deux
triangles qui sont homologiques puisque leurs sommets sont
alignés avec A. Les II1 n'ont donc chacun qu'un côté; il n'y
aura pas de polygones II2.

La direction de II1 ou a1 ß1 est
0 01 0

iQix 29a +
t ^ *, ml80

9 (a0 ß0)
3

h (Ä + 2 1 + 2) -y

cette direction (qui ne change pas quand h et i augmentent tous
deux d'une unité, ce qui prouve à nouveau l'alignement de
a* ß* yo) est donc celle de e*h+u, ou

a* ß* et a* ß* se coupent en oc2 tel que

AB a2^3(-?+ i—) — B (mod. 180)
0 y o 71 J

sin ~sin+ 6o) sin G + 12o)

BA il L il L ^BA8"^
sinA + Bcin fA + B

' sinC(*±.? + 60)!in(^ + 120)

donc a2 est en C. La droite oc1 ß1 est la droite C'h * elle-même.
0 0 * 0 » *

Le théorème de Morley est démontré.

Nous venons, en effet, de voir que le point de rencontre de

Ch,icn+i,i+i et de est le Point a2 ou a_i)h_t; en

donnant à h et à i toutes les valeurs possibles on a ainsi tous les

points a. En intervertissant les rôles de A et B on voit que le

point de rencontre de ch_i i_ich i et de chii_{ch+iii est le point
bi~h 2h ou bi-h -h d'où ^0US ^es b- On peut résumer les résultats
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dans un tableau ou, ce qui est équivalent, dans une figure que
l'on aura le droit de lire comme un tableau (voir figure 1):

Il existe neuf droites, trois à trois parallèles, qui limitent
27 triangles équilatéraux ;

trois d1 entre eux ont pour sommets des points a, trois ont pour
sommets des points b, trois ont pour sommets des points c;

les 18 autres triangles équilatéraux ont chacun pour sommets un
point a, un point b, un point c; les neuf triangles de sommets

ch, i. a-i, h-i > Vu, -h (°uax,-M. • V -v, cv, -X avec + (X + V 0)
même orientation que ABC, les neuf triangles de sommets ch i,
ä-iJi-i-l i -^i-h+1,-11 (OM

—fx 5 -v -À ttVeC A + (i, -f C 1)

sont d?orientation opposée.

Les orientations indiquées résultent de ce que nous connaissons

l'orientation des Po? Plî £*2 et les angles orientés que font
entre eux les côtés de ces triangles, considérés comme droites,
d'où aussi les angles de ces côtés en tant que segments dirigés.

7. — Tandis qu'avec les bissectrices il n'y avait qu'à considérer

les polygones IT, pour les trisectrices il y a eu à considérer
les II et les II1, d'où deux stades. Pour n > 4 il en faudra davantage,

on va le voir plus nettement. En même temps on comprendra

que l'élégance du théorème classique et du théorème de

Morley vient, en partie, de ce qu'ils ne font intervenir qu'une
espèce de points: les points de rencontre des bissectrices pour
n 2, car alors od est C; les points de rencontre des trisectrices
pour n 3, car alors od est un point a et od est C. Cela ne se

représentera plus pour n > 3.

Nous avons vu qu'en prenant toujours chjCh+lA+i pour oc0 ß0,
on a

Y 2.1^-\ V> 3^,
donc les sommets des IIn 2 sont alignés, on ne peut pas considérer
de polygones IP'1. Les IP'2 ont un seul côté dont l'inclinaison
est donnée par

CD f„n-20n-2\ _
<re— l)fa + <P6

r7
' „180

\ o ßo — ~ + + — 1} 1 + » — 1]
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et les formules analogues. La droite portant EC
2

est donc parallèle

à la ft-sectrice (S^+1(n_1)i ou Ch_{.
^ n I 12 2

Le point ocq où Iï0 coupe est tel que

ABan-1
n (— 5 + I _ B ABC

\ n n /
Ba-1 BA x

sin jfA + »î®9\
\n n j

sin j;â+(s+„!î»] sin 1(i+(J+„-„1»)\n ' n
1

sin|(A + B 18°

\ n n
jsin[A:B^+<°]—Hr:B^+» "?]

BA

/A 180\
sin n \ h h

\n n J

A + B 180
sin n {- h —

n n

BA
sin A
sïn~C '

donc oco

1

est en C; 2B^
2

est la ft-sectrice Ch.^. Or, on avait:

»-p n—2 f f B 180
ABa (n — 1 h i0 \ n n

n-2 B 180
CBan — h (n — 1 i0 n n

2 # ^ 2
Ba0 est donc le rc-sectrice d3(n_i)jet le point a0 est le point
^(n-l) z, h-i d-i,h-i '

Ainsi: le point ch-j commun aux 2-sectrices (9Lh, 6h[ est en même

temps un point a;
cela n'est plus exact pour les 3-sectrices, mais les points a*, ß* 7...

communs à c^ c^^et c^ ^i à 0^+1^+1 Cj1_j_2,i+2 ^
ch+i,ich+2,i+i? soni des P°ints a7 d'où tous les a;

cela n'est plus exact pour les 4-sectrices7 mais les points a2, ß2,

communs à a* ß* et a* ß*7 à ß* y* et ß* y*7 sont des points a, d'où
tous les a;

m: 4 # # 2
et, pour les n-sectrices, il faudra aller jusqu'aux points oc0

ßo~2, od1-2, ß~2, pour obtenir les points a.
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8. — On peut simplifier la forme de cet énoncé. On a:

/A i80\
9 (A% i) 9 (Aot°> 9c + BAa0 <pc + + ft—J

96+ (» — !)9c
_

— „
' n 7

D'autre part, on a calculé

i 9a + 96 + (" — 2) 9C 180
<? (ao a0) 9 (ao ßo) r (Ä + i + 1)

n
>

/ i .x irt\ 29a+ 9b+ <re~3) 9c
9 (ao ao) » (ao ßo)

1 80
+ (ft + ïi-+-2) — etc.

D'où il résulte que le polygone A a0 od od aon~2 C est régulier

par rapport à B ; car on a trouvé que tous ses côtés étaient vus

de B sous l'angle —
® +i^et tous ses angles sont égaux à

<p — m 180 B 180
(i + 1) — --+ (i + î) —

Donc, si, à partir de Ach i pour premier côté, on construit une

ligne polygonale de n côtés dont tous les angles sont égaux à

180
ABcji j H—— et dont tous les côtés sont eus de B sous Vangle ABch f

le dernier sommet de cette ligne est C, Vavant-dernier sommet est le

point a_ijh_i, le second côté contient le point ch+lji+1, Vavant-
dernier côté contient le point a_i_1

Le dernier fait résulte de ce que la ligne pourrait aussi bien
être construite à partir de son dernier côté, c'est-à-dire à l'aide
de polygones II déduits des a.

Cet énoncé, vérifiable en quelques lignes, résume tous les

résultats précédemment obtenus, si n — 2 ou 3; pour n> 3

il n'en retient qu'une partie. Si, au contraire, on désire
augmenter le nombre de ces résultats, on pourra remarquer que
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si les points Ch>i se répartissent d'eux-mêmes sur les circonférences

(P^ j), rien n'obligeait à les ranger dans l'ordre croissant
de leurs indices et rien n'obligeait non plus à ranger les (PM)
dans l'ordre croissant de leur indice. On aurait donc pu, considérant

les sommets de Pu et ceux de Pv, prendre les points où les
droites joignant deux sommets de Pu sont rencontrées par les
droites joignant les deux sommets de Pv qui se déduisent des

premiers par alignements avec A. En d'autres termes, on aurait
pu prendre pour les 31 les polygones (ou systèmes de polygones)
obtenus en joignant de k en k les sommets des Pu et ranger ces Pu

par exemple dans l'ordre de leurs indices pris de l en l.
Si n est premier, quels que soient k et l inférieurs à n, les

résultats seront fort analogues aux précédents, mais l'étude
complète du cas où n n'est pas premier exigerait sans doute
quelques développements.

Je me contenterai de signaler que les nouveaux points à considérer

vont aussi se grouper en familles de sommets de

polygones réguliers. Si, en effet, aß y a'ß'y' sont les sommets
homologues de Pwet Pv les points où les n droites aß, ay coupent
leurs homologues sont n — 1 sommets d'un polygone régulier,
car ils sont sur la circonférence a a' B, qui nous a déjà servi,

et les droites aß, ay, font entre elles des angles de ^ Le

dernier sommet du polygone régulier ainsi trouvé serait le point
de rencontre des tangentes en a et a' aux circonférences aßy
a'ß'y' ...; tangentes que l'on peut considérer comme les droites
joignant a à a et a' à a'.

9. — Tous les points dont il vient d'être question jouent des

rôles analogues, le cas envisagé par Morley a ceci de particulier
qu'il est, avec celui des bissectrices, le seul où tous les points sont

non seulement de la même espèce, mais aussi relativement peu
nombreux. Aussi l'examen des cas n 4, 5, 6, qui donneraient
des exemples de l'influence de la nature arithmétique de n, n'est
certainement pas immédiat. Il paraît donc bien inutile de généraliser

encore; j'indiquerai seulement d'un mot que, k et l étant
fixés, on peut répéter ce qui a été dit au n° 2 pour les n2 points
c\'\, en lesquels se coupent les couples et <$\ ; il suffît d'ailleurs
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de remarquer que ces points sont les points pour le triangle

ABCm, où

BACM k.BACCMBA — CBA

Alors, pour le cas des trisectrices, nous aurions à considérer

quatre familles de points c, les c1-2 déjà examinés, les c1'1, les c2-2,

les c2'1 qui, chacune, donneront trois triangles équilatéraux,
si nous nous bornons aux valeurs 1 et 2 pour et c'est-à-dire

aux droites etft, dïl déjà tracées.

La formule déjà écrite:

12 1" / B • 180\ L i>180\
Ki ch+u+1> 9c + (- F + 1+ (j + + T)

donne,

k,l h, l \
k A (3 /) B

t ; 4 \ aa^KiCh+l,i+i] + 3 + (h +i+l). 60

(3 - 1) Ta + * 9t + (*-*)9e
(fc

•

1)60
3

1,1 1,1 x _
2 9a +

(ch ch-Li - iJ —~~v—~~ d- (h + i + 1) 60 ;
h,i h+1,2+1 3

+ 2

9 K'7«CM -4.1

'

+ (à + i + 1) 60 ;r • 7i,t h+1,2+1' 3

/ 2,1 2,1 \
^ 9a ~t~ ^ 95 9c i il < • A \ /?nKi Ch+l,i#l> ~ Ö + ^ + *

Les côtés des triangles équilatéraux formés par les c1'1 sont parallèles

aux dernières trisectrices de G ; ceux des triangles de sommets
c2'2 sont parallèles aux premières trisectrices de C ; ceux des triangles
formés par les c2'1 sont symétriques des côtés des triangles de sommets

c1'2 par rapport aux bissectrices de C.

Malgré l'existence de tels faits simples il est peu vraisemblable

que la figure formée par les 108 points ak,\ bh>1 ck,l se prête à

des énoncés aussi élégants que celui de Morley. Celui-ci, si l'on
remarque que les c^2 et c^\ sont des points inverses par rapport
au triangle, se traduit immédiatement en l'énoncé suivant:
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Les 27 points Sl2,\ b2,1, c2,1 sont situés 6 à 6 sur neuf coniques
circonscrites à ABC; par chaque point a, b, c il passe deux de

ces coniques; elles passent de plus chacune par Vun des sommets
d'un triangle équilatéral inscrit dans le cercle circonscrit à ABC;
par chaque sommet de ce triangle équilatéral passent trois des

coniques.

10. — Le résultat complet de Morley, celui qui vient d'être
traduit, affirme que les points de rencontre des couples de trisec-
trices d'un triangle, adjacentes à un même côté, sont 6 à 6

alignés. Nous avons généralisé ce fait en donnant une construction
des premières et dernières n-sectrices des angles du triangle, à

partir des premières n-sectrices de A et dernières n-sectrices de B

supposées connues, laquelle n'utilise que la règle. La possibilité
d'une telle construction, c'est-à-dire le fait que les 7z-sectrices

inconnues sont données par des équations du premier degré à

partir de celles que nous supposons connues, était évidente.
A mon avis, c'est ce fait analytique qui est la raison profonde
du théorème sur les bissectrices, de celui de Morley et des

théorèmes généralisés donnés ici1. Pour cette raison, il y aurait peut-
être lieu de rechercher des démonstrations utilisant davantage
les alignements; en tout cas le théorème de Morley se démontre
facilement en utilisant les homologies de pôle A que nous avons
rencontrées et les homologies analogues de pôle B 2. En terminant,

je veux signaler des homologies entre certains des triangles
que nous avons rencontrés et le triangle ABC lui-même que
mettent d'ailleurs bien en évidence certaines des démonstrations
connues du théorème de Morley.

Prenons pour chaque angle du triangle une première et une
dernière trisectrices symétriques par rapport aux bissectrices
de l'angle; elles nous donnent un triangle b^2_v c^2x que

1 On pourra se reporter à une communication publiée dans les Comptes Rendus du
Congrès des Sciences mathématiques de Liège, 1939; (G. Thone. Editeur).

2 Dans le cas des trisectrices, les trois triangles P0, Pi, P2 sont deux à deuxhomolo-
giques de trois manières, l'une des homologies se réduisant à une homothétie. J'ai
posé autrefois (cette Revue, XXIIIe ann., 1923) le problème: trouver les systèmes de
triangles tels que deux quelconques d'entre eux soient homologiques; on voit qu'on
pourrait tout d'abord exiger que les triangles soient homologiques de trois manières.
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j'appellerai seulement a b c1, et un triangle b2^v c^x que

j'appellerai aßy.
Soit co le point de rencontre de Aa et B ß. A et B, oc et ß, c et co

sont les trois couples de sommets d'un quadrilatère complet; les

deux premiers sont vus de C sous des angles ayant les mêmes

bissectrices, donc il en est de même du troisième couple. Et

comme c et y sont inverses par rapport au triangle, Geo,

symétrique de Ce par rapport aux bissectrices de BGA, passe par y.

Les deux triangles ABC, aßy sont donc hornologiques, le pôle de

l'homologie étant co. Les droites Aa, B&, Ce concourent donc au

point o inverse de co, ABC et abc sont aussi hornologiques.

c et y, o et co, C et le point de rencontre i de cco et de o y
sont les trois couples de sommets d'un quadrilatère complet ; les

deux premières sont vus de A sous des angles ayant les mêmes

bissectrices, donc il en est de même du troisième et i est sur AB.
Mais, dans le quadrilatère de sommets opposés A et B, a et ß,

le point i apparaît comme le conjugué harmonique par rapport
à A et B du point où aß coupe AB, tandis que, dans le quadrilatère

de sommets opposés A et B, a et &, il apparaît comme le

Fig 3.

i II n'est pas nécessairement équilatéral, car on peut avoir X+p- + v=2.
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conjugué harmonique par rapport à A et B du point où ab

coupe AB ; donc les trois triangles ABC, abc, ocßy sont homologiques
et ont même axe d'homologie.

Ainsi aa, b ß, cy concourent ; ce fait obtenu, si l'on choisit X, (x, v

de façon que a, è, e soient respectivement des centres de
circonférences inscrites ou ex-inscrites dans BaC, CßA, AyB, en remarquant

que les bissectrices aa, ßi, yc de ces triangles font entre
elles des angles de 60 degrés, on en conclut que abc est équilatéral.
C'est l'une des démonstrations élémentaires connues les plus
simples du théorème de Morley 1.

Il est possible que des raisonnements analogues à ceux de ce

paragraphe, donc assez différents de ceux que j'ai surtout utilisés,
permettent d'étudier le cas des ^-sectrices. En tout cas, il serait

prématuré de prétendre que l'étude de ces ft-sectrices est terminée,
que la figure formée par les tt-sectrices, ou seulement par les

trisectrices, nous est entièrement connue.

i Voir les articles cités et, en particulier, celui de M. J. Marchand.
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