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LA GEOMETRIE SENSIBLE

(1er article)
PAR

Johannes HiermsLev (Copenhague)

INTRODUCTION

1. — Des recherches importantes sur les bases de la Géométrie
ont eu lieu autour du commencement de notre siécle et pendant
les années suivantes — essentiellement grdce aux travaux de
HiLBERT — et ont apporté des progrés scientifiques remarquables
qui engendrent des problémes plus profonds que ceux d’EucLIDE.
Mais elles ont surtout jeté de la clarté sur le systéme d’Euclide.

‘Elles ont apporté la solution définitive du probléme que les

Grecs ont I'honneur d’avoir posé et I’honneur, au cours de
quelques siecles, d’avoir résolu d’une facon déja si compléte
que deux milliers d’années et plus ont été nécessaires pour en
combler les lacunes. !

Mais les recherches modernes ont donné d’autres résultats.
On est arrivé a plus que 'achevement du systéme d’Euclide.
La forme de cet achévement, le systéme purement déductif,
a jeté une lumiére nouvelle sur l’effet total de ce systéme.
[’admirable ceuvre scientifique des Grecs est, d’un certain point
de vue, davantage mise en relief. Elle excite plus intensément
notre admiration et servira sans doute, dans les siécles & venir,
d’inspiration & d’importants travaux scientifiques.

2. — En méme temps s’est posée d’une maniére aigué la
question concernant le rapport du systéme au monde sensible
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et a ’enseignement. L’effet immédiat a cet égard a plutdt été
une frayeur générale, car on était habitué & voir une sorte de
description de 1’espace réel dans le systéme géométrique, malgré
toutes ses idéalisations. A mesure qu’on se rend mieux compte
des effets, ils finissent par cristalliser le point de vue inéluctable
que ni le systéme grec, ni aucune de ses formes modifiées ne
peuvent ou ne doivent servir de base a une description de ’espace
réel ou & un enseignement en Géométrie.

3. — La base du systéme était le groupe d’axiomes sous la
forme établie dans les Eléments d’Euclide. A celui-ci se sont
ajoutés les compléments des époques suivantes ainsi que les
réductions et la précision raffinées des temps modernes, comme
nous pouvons le trouver dans le traité de HirLBERT intitulé
« Grundlagen der Geometrie», chap. 1. Voila la base historique
du systeme.

Et quel est alors le résultat actuel de ce systéme bimillénaire ?
Quelle base de travail concise a été fournie par I’achévement
du systéme ?

Un seul terme peut exprimer la réponse: la description par
coordonnées ; quant a la Géométrie plane spécialement, la déter-
mination du point au moyen des coordonnées, la description
de la droite par une équation de premier degré, la détermination
de la distance entre deux points au moyen de la formule pytha-
gorique.

La description par coordonnées est le résultat définitif que
nous avons atteint et que nous ne pouvions pas ne pas atteindre.
Elle seule nous donne une vue d’ensemble et la maitrise sur les
moyens auxiliaires, la clarté sur le contenu total du systéme
axiomatique. Elle nous fournit I’équivalent complet de ce dernier.

4. — On ne peut pas cependant s’empeécher de regarder en
arriéere et de se demander si on ne pourrait pas de nos jours
atteindre ce résultat par un chemin plus naturel et direct que
celui qu’on a parcouru historiquement a travers ce grand espace
de temps.

La réponse est tout a fait nette. Personne ne doute aujourd’hui
qu’il existe des moyens beaucoup plus courts et naturels qui
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aboutissent au méme résultat. Ceci est bien évident d’un point
de vue purement axiomatique ou l'on ne s’occupe que de la
déduction pure, tout en reconnaissant que le systéme axioma-
- tique historique restera une source d’inspiration précieuse pour
des recherches ultérieures.

Mais d’un point de vue pédagogique et empirique s’impose
indiscutablement un seul jugement: le systéme d’Euclide doit
appartenir & I’histoire, pendant que P’enseignement de la Géomé-
trie adoptera — peut-étre lentement, mais en tout cas siirement—
d’autres formes.

5. — Une Géométrie qui doit avoir avec le monde sensible
un rapport tel que chacun de ses énoncés contienne toujours et
sans exception une vérité sur des objets sensibles, ne peut pas
étre fondée sur le systéme axiomatique hérité des Grecs; en effet,
beaucoup de postulats de ce systéme ou bien dépassent le monde
sensible en ce qu’ils n’ont aucun rapport avec lui, ou ne s’occupent
méme pas d’objets sensibles (tel que le cinquiéme postulat
d’Euclide ou les autres axiomes de parallélisme par lesquels
il a été successivement remplacé), ou bien établissent des faits
en contradiction avec le monde sensible (tel que le postulat
sur la détermination uniforme de la droite par deux points ou
celui sur le prolongement uniforme a l'infini du segment).

La premiére espece de postulats n’est en tout cas acceptable
que sous forme d’hypothéses dont 'acceptation se justifie en
ce qu'on peut en déduire des résultats « corrects», c’est-a-dire
des résultats qui par une interprétation convenable se révélent
corrects pour les objets sensibles.

On ne peut pas, bien entendu, accepter I'autre espéce sans
réserve directe. On peut prétendre avec raison que deux points
déterminent un segment uniforme, mais non qu’un tel segment
posséde dans tous les cas un prolongement uniforme. Deux
segments d’une longueur de cinquante centimétres peuvent
s’entrecouper de facon & avoir un segment commun de plusieurs
centimetres. Voila un fait qui ne se laisse pas escamoter. Quand
la Géométrie traditionnelle prétend qu’un cercle et sa tangente
n’ont qu’un point commun, ’on a un exemple d’une proposition
qui est fausse dans la Géométrie empirique. Aucun cercle sensible
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ne possede cette propriété. De méme c’est un fait que deux
cercles peuvent se toucher de telle sorte que le contact se révéle
par un arc commun de plus de soixante degrés, tandis que la
Géométrie traditionnelle prétend que deux cercles n’ont jamais
plus de deux points communs.

6. — Certes; mais la Géoméirie a école dott-elle traiter de
cercles sensibles, de droites senstbles, d’objets senstbles ?

Je ne saurais croire que personne réponde négativement &
cette question. La Géoméirie a Uécole doit traiter du monde
senstble. Le théoréme de Pythagore, par exemple, doit énoncer
quelque chose des dimensions d’un objet sensible. Tous les
énoncés de la Géométrie, soit qu’on les appelle des axiomes, qui
sont établis directement, soit qu’on les appelle des théorémes,
qui sont déduits par raisonnement d’autres propositions, doivent
tous contenir des renseignements sur le monde sensible. Partout
il faut maintenir celui-ci.

C’est pourquoi aucun systéme abstrait construit comme celui
d’Euclide ne peut nous fournir les bases qu’il nous faut.

Méme si I'on accepte d’employer le systeme axiomatique
d’Euclide (ou une modification de celui-ci) comme un systéme
d’hypothéses qui se justifient en ce qu’elles aboutissent a des
résultats, par exemple le théoréme de Pythagore, applicables
au monde sensible par une interprétation appropriée, cette appli-
cabilité ne saurait éire déduite du systeme géométrique quand
celui-ci est fondé sur des axiomes qui ne sont pas valables dans le
monde visible. Sans quoi, il faudrait, dans chaque cas, vérifier
directement ensuite si les propositions déduites se réveleraient
exactes tout en étant déduites d’hypotheses fausses ou en tout
cas non controlées.

En d’autres termes il n’y aurait aucune relation entre le
systéme construit par hypothéses et ce monde sensible dont
Pexploration est cependant la tache principale.

Mais & ceci s’ajoute encore ce qui est, du point de vue péda-
gogique, le plus important: Par un procédé pareil, on négligerait
par principe de se servir d’intuition précise et de lobservation
concréte qui, en derniére instance, restent notre seul guide.
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7. — Dans la littérature pédagogique et mathématique on a,
comme on le sait, énoncé, de nombreuses fois, des éléments
essentiels de la critique ci-dessus.

Je rappelle Rousseau qui dans I’ « Emile », Livre 11, raconte

ses impressions de P’enseignement habituel de la Géométrie en

réclamant des réformes pédagogiques, par exemple dans les
termes suivants:

« Jai dit que la Géométrie n’était pas & la portée des enfants;
mais ¢’est notre faute. Nous ne sentons pas que leur méthode
n’est point la notre et que ce qui devient pour nous I'art de
raisonner ne doit étre pour eux que 1’art de voir...; au lieu de
nous faire trouver les démonstrations, on nous les dicte; au lieu
de nous apprendre & raisonner, le maitre raisonne pour nous et
n’exerce que notre mémoire... » _

«...Faites des figures exactes, combinez-les, posez-les I'une sur
Pautre, examinez leurs rapports: vous trouverez toute la Géomé-
trie élémentaire en marchant d’observation en observation, sans
qu’il soit question ni de définitions, ni de problémes, ni d’aucune
autre forme de démonstration que la simple superposition ».

Je rappelle CLATRAUT qui dans ses « Elémens de Géométrie» de
1741 fit un essai radical, dans un exposé pratique, pour se délivrer
de la systématique d’Euclide. La préface de son occuvre célébre
commence par les lignes suivantes:

« Quoique la Géométrie soit par elle-méme abstraite, 1l faut
avouer cependant que les difficultés qu’éprouvent ceux qui
commencent a s’y appliquer viennent le plus souvent de la
maniére dont elle est enseignée dans les Elémens ordinaires
On y débute toGjours par un grand nombre de définitions, de
demandes, d’axiomes et de principes préliminaires qui semblent
ne promettre rien que de sec au lecteur. Les propositions qui
viennent ensuite ne fixant point DPesprit sur des objets plus
intéressans et étant d’ailleurs difficiles & concevoir, il arrive
communément que les commencans se fatiguent et se rebutent,
avant que d’avoir aucune idée distincte de ce qu’on voulait
leur enseigner. »

Pour donner une impression du texte de Clairaut nous citons
la page 3, en bas, ou 'on fait déja connaissance du carré et du
rectangle:
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« On sait par exemple que la régularité des figures telles que
ABCD, FGHI, appellées rectangles, et composées de quatre
cOtés perpendiculaires les uns aux autres, engage 4 donner leurs
formes aux maisons, a leurs dedans, aux jardins, aux chambres,
aux pans de murailles, etc...

La premiere ABCD de ces figures, dont les cotés sont égaux,
s’appelle communément carré. [’autre FGHI, qui n’a que ses
cOtés opposés égaux, retient le nom de rectangle. »

Enfin nous rappelons quelques propos de Henri Poincarg
dans « Science et Méthode »:

« Peut-on définir la ligne droite ? Je partirais tout simplement
de la regle et je montrerais d’abord a I’éléve comment on peut
vérifier une regle par retournement. »

« Devons-nous conserver la définition classique des paralléles
et dire qu’on appelle ainsi deux droites qui, situées dans le méme
plan, ne se rencontrent pas quelque loin qu’on les prolonge ?
Non, parce que cette définition est invérifiable par I’expérience
et ne saurait en conséquence étre regardée comme une donnée
immeédiate de I'intuition. Non, surtout, parce qu’elle est totale-
ment étrangere & la notion de groupe, a la considération du
mouvement des corps solides qui est la véritable source de la
géométrie. »

«...dans I’enseignement, une bonne définition c’est celle qui
est comprise par les éleves. »

«Sous chaque mot, ils veulent mettre une image sensible. »

Les éléments sensibles.

8. — La Géométrie que nous proposerons dans ce qui suit
doit avoir comme but: le contréle sensible de tous les résultats.
Les définitions doivent étre des définitions sensibles, c’est-a-dire
décrire les objets dont on s’occupe de telle facon qu’on puisse
reconnaitre par une vérification directe si les objets ont les
propriétés demandées.

Le programme de travail doit étre: voir et concevoir.

9. — Au moyen d’exemples de la vie courante 'on fait la
connaissance de différents corps solides aux surfaces variées,
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tels que boites d’allumettes ou de cigares, briques, boite de
biscuits, boules de croquet, billes de billard, etc...

Sur la boite d’allumettes on vérifie, par exemple, les propriétés
principales du parallélépipéde rectangle (la brique); sa surface
se compose de six faces; 1a ou deux faces se rencontrent se forme
une aréte. Chaque face est contigué & quatre autres de sorte
qu’elle est limitée par quatre arétes; c’est pourquoi elle s’appelle
un quadrilatére. Les quadrilateres opposés sont pareils, ce qu’on
vérifie & I'aide d’une autre boite d’allumettes en démontrant
que chacune de ses faces peut se superposer a deux faces
opposées de la premiére boite et cela méme de deux fagons
différentes. De méme, on vérifie que deux briques peuvent se
joindre de facon & composer une seule brique.

On établit ainsi les propriétés fondamentales de la brique; les
arétes sont de méme longueur quatre & quatre, de sorte qu’elles
ne présentent que trois longueurs différentes, les dimensions de
la brique. Mention spéciale est faite du cube.

10. — Une sphere (boule de croquet, bille de billard, globe)
est un corps rond dont la surface ne présente ni arétes ni coins
et qui est complétement pareil dans toutes ses parties. Ceci se
contrdle par exemple & 'aide d’un modéle en argile. Si I’'on pétrit
une motte d’argile de sorte qu’une de ses surfaces s’adapte bien
a une partie étendue de la surface de la sphére, alors elle se
révélera capable de s’adapter a n’importe quelle partie et elle
pourra donc glisser dans toutes les directions le long de la sphére
sans changer de forme. On exprime ce fait en disant que la surface
de la sphere peut se déplacer en elle-méme dans tous les sens.
Lia sphére peut tourner dans tous les sens a lintérieur d’une
cavité ou elle s’adapte.

11. — La sphére est dite courbe tandis que chacune des six
faces d’une brique s’appelle une face plane. D’autres exemples
de faces planes sont la surface d’une table, le plafond, les murs
ou le plancher d’une chambre (exemples assez grossiers), le
verre pour miroirs, etc... (exemples plus raffinés). Mais quelle
est vraiment la condition essentielle pour qu’on puisse dire qu’une
face est exactement plane ? Nous exigeons d’abord qu’elle soit
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pareille dans toutes ses parties, de sorte qu'une motte d’argile
qui s’adapte a une partie étendue de la surface puisse glisser
dans toutes les directions le long de celle-ci sans changer de
forme. Mais il en était ainsi aussi pour la face sphérique, ainsi que
pour toute partie limitée de celle-ci. Il y a donc encore une
qualité que nous demandons pour la face plane, la voici: elle
doit étre pareille des deux cotés, c’est-a-dire qu’elle doit étre
capable de servir de face de contact commune & deux corps
pareils.

Nous trouvons cette définition chez Leibniz (Letbnizens math.
Schr. I, Abt. 1. 5. 189 def (6)) de la fagon suivante: « ut si pomum
secem 1n duo frusta, ut extremum novum unius segmentl non
possit distingui ab extremo novo alterius segmenti, sectio erit
planum ».

Si ’on coupe en deux une pomme de terre, et si 'on ne peut
distinguer les deux surfaces d’intersection, elles sont planes.
Mais comment controler avec exactitude qu’elles sont pareilles ?
Par ce fait, qu’elles peuvent s’adapter et glisser dans toutes
les directions sur une meéme troisieme surface, obtenue par
exemple en coupant une autre pomme de terre.

L’on obtient des faces pareilles en fer en se servant de ces
vérifications directes. [.’on commence par faire trois plaques de
fer dont un cOté est a peu prés plan, et on les faconne ensuite
en les raclant jusqu’a ce qu’elles s’épousent deux par deux. On
peut pousser ce procédé tres loin en exactitude. Les plans ainsi
obtenus (plans correctifs) servent & étalonner d’autres plans.

12. — Une feuille de papier a dessin étendue sur une table
plane forme le plan dans lequel nous dessinons, dit plan a
dessiner. Si 'on y pose une piece de monnale ou une médaille
que 'on tient ferme pendant qu’un crayon finement taillé suit
dans le plan le bord de la piéce, I’on obtient un cercle. 11 apparait.
ensuite que la piéce peut tourner tout en épousant toujours
le cercle.

Prenons une pomme de terre et coupons-la de sorte que la
surface d’intersection soit un cercle. On vérifie que c’est un
cercle en essayant de tourner 'un des morceaux de telle facon
que les surfaces d’intersection restent en contact ininterrompu
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Pune avec lautre tout en s’épousant réciproquement avec
exactitude le long du contour.

Un disque est une plaque qui peut se déplacer en elle-méme
et est pareille des deux c6tés. Le bord du disque est un cercle.

13. — Nous appelons corps diédre (ou diédre) un corps qui a
deux faces planes se rencontrant le long d’une aréte. La compo-
sition du restant de la surface est sans importance. Deux diédres
s’appellent supplémentaires quand ils peuvent se compléter de
fagcon & former un diédre plat, c’est-a-dire s’ils peuvent reposer
sur un plan en ayant chacun une face plane dans celui-ci et en
s’ajustant étroitement le long des faces non situées dans le plan.
Autrement dit, chacun d’eux doit pouvoir remplir le vide qui se
forme & coté de Pautre quand on le pose sur une table. Si
la position des plans est la méme pour les deux diedres
supplémentaires, on les appelle diédres normaux.

Mais comment vérifier si les deux diedres sont pareils ? On
essaie s'ils peuvent remplir le méme vide, donc &tre des diédres
supplémentaires & un méme troisiéme. Par ce procédé on forme
des diédres normaux, trois a4 la fois, en prenant soin qu’ils
puissent deux par deux composer des diédres supplémentaires.
Sur ceci est basée la fabrication de diédres normaux en fer.

Employer cette vérification directe pour découper des diédres
normaux dans une pomme de terre ou pour en modeler en argile.

On appelle les deux plans-limites d’un diédre normal perpendi-
culaires U'un a ' autre ; aréte du diédre normal est une ligne drotte.

Dans la vie courante on trouve partout des imitations plus
ou moins exactes de lignes droites, soit sous forme d’arétes
(de diédres obliques ou droits), soit sous forme de tiges ou
de fils. Si on étire une ficelle mince, elle se révéle capable de
s’adapter avec grande exactitude a ’aréte d’un diédre normal,
c¢’est pourquoi on peut représenter la ligne droite par une ficelle
étirée.

Si I'on tient ferme un diédre normal sur une table plane on
peut déplacer un autre diédre normal, supplémentaire au pre-
mier, le long de celui-ci de telle facon que 'aréte glisse le long
de Iautre aréte. Un tel déplacement s’appelle un glissement
ou une translation.

BIZLIOTHEK der E. T H. )
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14. — Un triédre normal est un corps qui a trois faces planes
qui se rencontrent a angle droit deux par deux de sorte
qu'elles forment trois arétes se joignant dans un sommet, un
point, dit le sommet du triédre. La composition du restant de la
surface est sans importance. On dit que les trois arétes sont, deux
par deux, perpendiculaires 'une & I'autre. Les faces s’appellent
les faces du triédre et forment chacune un angle droit dans le
plan.

Deux triedres normaux peuvent se joindre de fagon a former
un diedre normal. Ceci peut avoir lieu de plusieurs fagons puisque
chaque face d’un triedre peut se joindre & chaque face de
I'autre. |

On peut toujours poser quatre triédres normaux sur un plan
de facon que leurs faces de contact AOB, BOC, COD, DOA
avec le plan occupent celui-ci autour du sommet commun O.

L’aréte OE est commune & tous

E les triédres, les arétes AO et OC

se prolongent I'une 'autre, c’est-

a-dire elles forment une droite

continue qui est 'aréte commune

¢ @) y de deux diédres normaux dont

& chacun se compose de deux des

triédres donnés. Les arétes BO et

OD se prolongent de la méme

fagon. On dit que les deux droites se coupent en O et qu’elles
sont perpendiculaires I'une & autre (AOC | BOD).

On dit que chaque aréte est perpendiculaire ou normale au
plan limité par les deux autres arétes, et inversement que
celui-ci est perpendiculaire du plan normal a 'aréte. Sur la
figure, OE est normale au plan «.

Par chaque point O d’un plan on peut mener une droite
perpendiculaire au plan. On la détermine comme ’aréte d’un
triédre normal posé sur le plan avec sommet en O.Si1’on donne
au triédre des positions différentes sur le plan en conservant le
méme sommet on aura toujours la méme perpendiculaire.

De méme on peut d’un point hors du plan mener une perpen-
diculaire au plan en posant le triédre normal sur le plan de facon
qu'une des arétes passe par le point.

Fig. 1.
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15. — Nous appelons brigue normale une brique qui est limitée
par des faces exactement planes qui forment un diédre normal
le long de chaque aréte. La rencontre de trois arétes forme un
triédre normal; la brique posséde donc huit triedres normaux.
Toutes les propriétés que possédaient approximativement, selon
nos observations, les boites d’allumettes, sont rigoureusement
valables pour les briques normales. On peut fabriquer des briques
normales pareilles entre elles avec une telle exactitude qu’une
fois superposées elles s’ajustent si bien qu’il faut employer
des forces considérables pour les séparer. Les faces de la brique
normale sont des quadrilatéres dont tous les cotés opposés sont
égaux et ou deux coOtés voisins, quels qu’ils soient, forment un
angle droit. On appelle rectangles de tels quadrilateres; exemples:
une feuille de papier, une carte postale, une carte de visite, etc.

Il est établi dans notre champ d’expérience (selon les expé-
riences acquises) que l'on peut fabriquer une brigue normale de
dimensions données.

Il s’ensuit que dans un plan orn peut former un rectangle de
dimensions données.

16. — Si Pon place un diédre normal sur le plan & dessiner,
son aréte y tracera une ligne droite, et comme on peut placer
un autre diédre normal & c6té du premier de sorte que son aréte
suive la méme ligne droite, on voit que cette ligne droite partage
le papier en deux parties qui doivent pouvoir se recouvrir lors-
qu’on plie le papier le long de la droite. I.’on peut donc produire
une ligne droite en pliant simplement une feuille de papier.

I résulte des propriétés du triedre normal qu’en pliant encore
une fois la feuille de papier, I'une des moitiés de la droite recou-
vrant Pautre, on obtient un angle droit, et qu’en étendant
ensuite le papier dans son étendue originelle, ’on y voit marquées
deux lignes droites perpendiculaires I'une a I’autre.

On dessine des lignes droites sur le plan & dessiner a 1’aide
d’un diedre normal, et des angles droits a P’aide d’un triedre
normal, mais on leur préfere des instruments & dessin plats:
la régle qui en réalité est un diédre normal plat avec une large
face sur le plan & dessiner et une trés étroite face perpendiculaire
a celle-ci, et I’équerre qui est un triédre normal avec une large

L’Enseignement mathém., 38me année, 1939 et 1940. 2
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face sur le plan a dessiner et deux faces étroites qui y sont perpen-
diculaires.

17. — Nos instruments de travail seront maintenant: le plan
a dessiner fixe; la régle pour tracer des lignes droites, spéciale-
ment une ligne qui joint un point & un autre; ’équerre pour
tracer des lignes perpendiculaires entre elles (tracé d’angles
droits), spécialement une ligne droite passant par un point donné
et perpendiculaire & une ligne donnée; du papier calque (papier
transparent) pour copier et déplacer les figures; le compas a
deux pointes pour déplacer des segments et pour les diviser
par tatonnements en deux ou plusieurs parties égales; le compas
a crayon pour dessiner des cercles de grandeurs différentes;
peut-étre aussi un disque (piéce de monnaie ou médaille) pour
dessiner des cercles de grandeur fixe; enfin une régle graduée.
Ces instruments de travail devront en principe toujours étre
disponibles. On n’exige pas la construction avec des auxiliaires
limités, comme par exemple ’emploi traditionnel de la regle
et du compas.

18. — On obtient la symétrie par rapport a une ligne droite
d’abord par pliage le long de la ligne, puis par dessin; ’axe d’un
segment, I'axe d’un angle, 'axe du triangle isoscele servent &
démontrer les propriétés habituelles.

On étudie maintenant de plus prés, en dessinant, les propriétés
du rectangle que I'on connait depuis la mention de la brique:
tracé d’un rectangle de dimensions données; vérification des
propriétés connues du rectangle & I’aide d’un calque de celui-ci
qu’'on déplace de fagon a couvrir le rectangle de nouveau; la
premiére fois le calque glisse le long du plan & dessiner, chaque
diagonale se retourne et se couvre elle-méme, d’ou l'on voit
que les diagonales ont le méme milieu et que chacune d’elles
divise le rectangle en deux triangles pareils; la seconde fois I’on
retourne le calque, les diagonales s’intervertissent, d’ot1 I'on voit
qu’elles sont égales. A chaque triangle rectangle dont les cOtés
de I'angle droit sont a et b correspond un rectangle dont les
cOtés sont a et b; d’ou 'on voit que la somme des angles aigus
du triangle est égale & un angle droit. Ensuite I'on arrive facile-
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ment & démontrer que la somme des angles de tout triangle est
égale & deux angles droits.

On dit que deux lignes sont paralléles lorsque I'on peut, tout
le long de ces lignes, introduire entre elles des rectangles ou une
paire de cOtés opposés découpent deux segments correspondants
sur les deux lignes. Chaque ligne qui est perpendiculaire (normale)
a 'une des lignes est aussi perpendiculaire a ’autre; et tous les
segments découpés sur les perpendiculaires sont égaux (la dis-
tance des lignes). Toute ligne oblique qui joint deux points situés
chacun sur sa ligne est diagonale d’un des rectangles mentionnés
ci-dessus et forme donc avec les lignes le méme angle aigu.

La partie du plan située entre deux lignes paralléles s’appelle
une bande; on vérifie & ’aide d’un calque que la bande peut se
déplacer en elle-méme, etc...

La translation le long d’une ligne s’exécute d’abord a l’aide
d’un calque, ensuite seulement en dessinant sur le plan fixe.
A cecis’ajoute intimement ’emploi de la régle et de I’équerre pour
dessiner des paralléles et des lignes perpendiculaires entre elles.

On démontre ensuite qu’'une série de paralléles passant par
une série de points équidistants sur une ligne droite [ sont
équidistantes elles-mémes, car une translation le long de [ qui
déplace chaque point de la série sur le point suivant déplace
aussi chaque paralléle de la série sur la paralléle suivante. On
voit de méme qu’une série de paralléles équidistantes coupent
une Jigne droite en des points équidistants. .

Si 'on divise la diagonale d’un rectangle en un nombre de
segments égaux, par exemple dix, et trace par chaque point
d’intersection deux lignes paralléles aux cotés du rectangle,
celui-ci se divise en petits rectangles égaux entre eux. On se sert
de cette figure pour introduire 'idée de la similitude des triangles
rectangles dans le rapport p: ¢, p et q étant des nombres entiers
plus petits ou égaux a dix. A ceci s’ajoute I'emploi du papier
quadrillé, spécialement du papier en millimétres carrés.

On fait enfin pratiquer de simples mesurages d’aires (rectangle,
triangle rectangle, parallélogramme, triangle quelconque, tra-
peze, ete...) sur des dessins présentés; on mesure les dimensions
necessaires en millimétres entiers, et 1’on calcule aprés aire en
établissant un jugement estimatif sur I’erreur commise.
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19. — Nous achevons ce programme par le théoréme de
Pythagore, et nous ne saurons a cet égard faire mieux que de
citer ’exposé tel qu’il est présenté dans les Elémens de Clairaut,
seconde partie, XVI-XVII:

« Supposons d’abord que les deux quarrés ABCD, CBFE, dont
on se propose de faire un seul carré, soient égaux entr’eux;
il est aisé de remarquer que si on tire les diagonales AC et CF,
les triangles ABC et CBF feront ensemble la valeur d’un quarré.
Donc en transportant au-dessous de AF les deux autres triangles

D H C F
D C E
f E
A B r o d
G h
Fig. 2. Fig. 3.

DCA et CEF, on fera le quarré ACFG, dont le coté AC fera la
diagonale du quarré ABCD, et dont la superficie égalera celle
des deux quarrés proposés; ce quin’a pas besoin d’étre démontré.

Supposons présentement qu’on veuille faire un quarré égal
a la somme des deux quarrés inégaux ADCd, CFEf, ou, ce qui
revient au méme, qu’on se propose de changer la figure ADFE{fd
en un quarreé.

En suivant l'esprit de la méthode précédente, on cherchera
s’il n’est point possible de trouver dans la ligne DF, quelque
point H, tel:

10 Que, tirant les lignes AH et HE, et faisant tourner les
triangles ADH, EFH, autour des points A et E, jusqu’a ce qu’ils
ayent les positions Adh, Efh; ces deux triangles se joignent en A.
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20 Que les quatre cotés AH, HE, Eh, RA soient égaux et
perpendiculaires les uns aux autres.

Or ce point H se trouvera en faisant DH égal au c6té CF ou
EF. Car de I’égalité supposée entre DH et CF, il suit premiere-
ment que si on fait tourner ADH autour de son angle A, en sorte
qu'on lui donne la position Adh, le point H arrivé en h sera
distant du point C d’un intervalle égal & DF.

De la méme égalité supposée entre DH et CF, il suit encore
que HF égalera DC, et qu’ainsi le triangle EFH tournant autour
de E pour prendre la position Efk, le point H arrivera au méme
point A, distant de C d’un intervalle égal & DF.

Donec la figure ADFEfd sera changée en une figure & quatre
cotés AHERA. 11 ne s’agit donc plus que de voir si ses quatre cOtés
sont égaux et perpendiculaires les uns aux autres.

Or I’égalité de ces quatre cotés est évidente, puisque Ak et AE
seront les mémes que AH et HE, et que I’égalité de ces deux
derniers se tirera de ce que DH étant égale a CF ou a FE,
les deux triangles ADH, HEF seront égaux et semblables.

11 ne reste donc plus qu’a voir si les cotés de la figure AHEA
formeront des angles droits; c’est de quoi il est aisé de s’assurer,
en remarquant que pendant que HAD tournera autour de A, pour
arriver en hAd, il faudra que le coté AH fasse le méme mouve-
ment que le coté AD. Or le coté AD fera un angle droit DAdJ,
en devenant Ad. Donc le coté AH fera aussi un angle droit HAA
en devenant Ah.

Quant aux autres angles H, E, A, il est visible qu’ils seront
nécessairement droits. Car il ne serait pas possible qu'une figure
terminée par quatre cOtés égaux elit un angle droit, sans que les
trois autres fussent pareillement droits. »

Dans notre exposé, nous aimerions mieux, & la place de la
derniére remarque, démontrer directement que chacun des
angles est droit, ce qui s’ensuit simplement du fait que la somme

des deux angles aigus du triangle rectangle est égale & un angle
droit.

20. — Intersection et contact. Deux droites perpendiculaires
se coupent en un seul point. Deux droites qui se rencontrent
sous un angle oblique n’ont généralement qu’un seul point



22 ’ J. HIELMSLEV

commun (point d’intersection). Mais les droites peuvent spéciale-
ment étre si prés I’'une de 'autre qu’elles ont de nombreux points
communs qui se rassemblent dans un élément continu le long
de laquelle les lignes se coupent. Comme exemple nous avons les
diagonales d’un rectangle étroit dont les dimensions sont respec-
tivement 20 cm et 4 mra; elles auront, comme dans tout
rectangle, le méme milieu, mais se coupent le long d’un élément
continu dont le centre est ce milieu.

On vérifie les propriétés fondamentales du cercle & 1’aide d’un
calque (centre, rayon, diamétre, rapport de symétrie, rotation);
on examine ensuite les positions différentes d’une droite par
rapport au cercle. On définit la tangente comme une droite qui
suit la périphérie du cercle le long d’un élément continu, et
qui, pour le reste, est hors du cercle. La perpendiculaire » menée
du centre sur la tangente coupe celle-ci en un point qui (& cause
de la symétrie par rapport & n) doit appartenir & ’élément
commun de la tangente et du cercle, et y occuper une position
centrale. On appelle ce point le point central ou le point contact
de la tangente. « La tangente au point A du cercle » signifie une
tangente dont le point contact tombe en A; elle est perpendi-
culaire au rayon qui passe par ce point.

Tout le cercle se laisse diviser en éléments si petits que chacun
fait partie d’une tangente. On peut ainsi concevoir le cercle
comme un polygone dont les cotés sont ces petits éléments.
La longueur de la périphérie du cercle est le périmeétre de ce
polygone. On trouve par expériences qu’elle est environ 31/, fois
aussi longue que le diametre.

[’on divise un arc de cercle en deux ou-plusieurs parties
égales par expériences a l'aide du compas a deux pointes. On
construit de la méme facon des polygones réguliers inscrits dans
le cercle.

Pour mesurer les angles on introduit le rapporteur.

La distance d’un point P & une droite [ signifie la perpendi-
culaire PQ menée du point P au pied Q de la perpendiculaire.
Le cercle au centre P et rayon PQ a un élément situé autour
de Q commun avec la droite. On voit donc que PQ est la distance
la plus courte de P & [, mais qu’il existe d’autres segments de
P a I de méme longueur. On en conclut encore qu’en général
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I’hypoténuse d'un triangle rectangle est plus grande que chacun
des autres cOtés, mais qu’elle peut étre — en certains cas —
égale & I'un de ces cOtés quand I'autre est trés petit par rapport
au premier.

On en déduit enfin qu’en général chaque coté d’un triangle
est plus petit que la somme des deux autres, mais qu’il peut
en certains cas (quand deux angles du triangle sont trés petits)
étre égal a cette somme.

On dessine la tangente d’un point a un cercle en appuyant
la régle contre le point et le cercle, et les tangentes communes
de deux cercles en appuyant la régle contre les deux cercles.

Le probléeme concernant les points d’intersection de deux
cercles se traite de méme par une vérification empirique directe
en se servant de la symétrie par rapport a la droite des centres.
Si tant est que les cercles aient un point commun, ou bien ils
se coupent en deux points distincts (ou deux éléments distincts)
ou bien ils se touchent, c¢’est-a-dire qu’ils ont un seul élément
continu commun pourvu d’un point central situé sur la droite
des centres (point contact); ils ont alors Ia méme tangente en
ce point.

21. — Aussi loin que s’étend I’histoire des sciences, 'on a
entremélé ou, en tout cas, dressé des conflits entre deux domaines,
le monde sensible et la Géométrie abstraite. Le paradoxe de
Zénon sur Achille et la tortue, ainsi que les démonstrations
géométriques de I'existence des grandeurs incommensurables,
voila des exemples célébres.

Dans son livre renommé «La Géoméirie grecque», 1887,
page 97-98, Paul TANNERY écrit comme suit:

« Mais, & I’origine, on fondait la corrélation entre la Géométrie
et ’Arithmétique sur la proportion géométrique dans ’hypothése
de la commensurabilité de toutes les grandeurs, hypothése
certainement aussi naturelle qu’elle est fausse, et qui, & ’époque
ou Platon écrivait les Lois, était encore trés répandue. La
découverte de I'incommensurabilité par Pythagore dut done
causer, en Géométrie, un véritable scandale logique, et pour y
echapper on dut tendre & restreindre autant que possible 'emploi
du principe de similitude, en attendant qu’on fiit arrivé a Pétablir
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sur une théorie de la proportionalité indépendante de ’hypothése

de la commensurabilité. »

Oui, telle fut la vraie conséquence historique du «scandale
logique ». Mais en réalité le scandale se trouve ailleurs. Il se
trouve dans 'hypothése — tacitement acceptée — de la corré-
lation entre la Géométrie et P’Arithmétique, ’hypothése qui
décréte que toute grandeur géométrique correspond a un nombre-
mesure déterminé. C’est ict qu’on a introduit une hypothése fausse.
L’hypothese de la commensurabilité des grandeurs géométriques,
au contraire, n’est pas fausse. Tout mesurage sensible la confirme,
et 1l n’existe pas d’autre mesurage. L’hypothése de I'uniformité
du nombre-mesure, par contre, est fausse. L.’ Arithmétique dispose
de différences tres fines, et cela méme dans le domaine des
nombres rationnels, mais & ces différences indéfiniment fines ne
correspondent pas des différences sensibles pour les grandeurs
géométriques. Toute grandeur géométrique n’a pas seulement un,
mais plusieurs nombres-mesure qui tous sont corrects.

Si 'on avait arrété ce principe comme le vrai principe empi-
pirique concernant la corrélation entre la Géométrie et I’ Arithmé-
tique, il n’y aurait eu aucun « scandale logique ». Les recherches
de Pythagore sur la diagonale d’un carré de c6té 1 n’auraient
pas abouti & découvrir 'existence de grandeurs «incommen-
surables », mais seulement & constater qu’on peut attribuer a la
diagonale deux nombres-mesure a, et a, dont le produit est égal
a 2.

c On ne saurait, en effet, rien dé-
duire d’autre des deux triangles ABC
et ACD que l'existence de deux
nombres-mesure @, et a, pour AC,
tels que

A B D %1

B 1
a.
Fig. 4. 2

Quand on fait connaissance ensuite du nombre 4/2, par un
procédé purement arithmétique, on adopte bien entendu la
facon de parler et de calculer qui s’attache au fait que le nombre
v/ a, a, peut étre adopté comme un nombre-mesure artificiel puis-
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qu’il est situé entre les deux nombres-mesure naturels a; et a,;
ceci est une tout autre affaire qui en elle-méme est trés inté-
ressante et importante, mais qui ne démontre aucunement
«’existence des grandeurs géométriques incommensurables ».

Si l'on doit déterminer un carré dont on a fixé I’aire par le
nombre-mesure @, on aura de méme & fixer deux nombres-
mesure a; et a, dont le produit est égal a a. S’il existe un nombre
rationnel dont le carré est égal & e, on peut employer ou celui-la
ou un nombre-mesure avoisinant convenable; au cas contraire
on choisit deux nombres différents a, et a,, suffisamment proches
I'un de P'autre, dont le produit est égal & a. Comme on peut
trouver ces nombres en calculant arithmétiquement 4/¢ avec un
certain nombre de décimales, on est amené a se servir de la
locution que le c6té du carré s’exprime par 4/a, car on obtient
ainsi plusieurs facilités formelles dans le langage. Mais ceci ne
prouve d’aucune facon que les grandeurs incommensurables
existent en Géométrie, et bien entendu on n’en saurait rien
prouver.

Le théoreme général de Pythagore peut s’exprimer de la méme
maniére. Pour I’hypoténuse on peut fixer deux nombres-mesure
¢y et ¢, dont le produit est égal & la somme des carrés des nombres-
mesure qu’on a fixés pour les cotés de ’angle droit.

On voit ainsi que les nombres irrationnels ne sont point
nécessaires pour décrire les mesures des figures géométriques,
mais qu’on peut les introduire pour des raisons formelles afin
de pouvoir formuler plus facilement les résultats. Et de cette
maniére on évite ici, une fois de plus, un conflit avec le monde
sensible. -

22. — Dans l'enseignement on peut introduire la Géométrie
quantitative par les exemples suivants:

1o Dans un triangle rectangle chacun des cotés de I’angle droit
est egal & 1 dm. Trouver le nombre-mesure de I’hypoténuse.
Nous commengons par dessiner le triangle, ce qui est chose facile
si nous avons du papier en millimétres carrés. Ensuite nous

mesurons ’hypoténuse; sa longueur est comprise entre 141 et
142 mm. |
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On peut cependant aussi trouver ce résultat par calcul a
laide du théoréme de Pythagore. Le carré de chaque coté de
Pangle droit étant égal & 10000 mm?2, le carré de ’hypoténuse
doit done contenir 20000 mm?2. L.e nombre carré le plus proche
se trouve par le calcul suivant:

120000 = 141
1
24) 100
96
281) 400
281

119

141% = 19881, 1422 = 20164

Donc 141 est un nombre inférieur, 142 un nombre supérieur
pour I’hypoténuse.

2% Nous considérons maintenant un plus grand triangle rec-
tangle dont les cotés de I'angle droit sont 1 m. La longueur de
I’hypoténuse sera alors située entre 1414 et 1415 mm calculée
comme la racine carrée de 2000000.

On est ainsi amené a la facon de parler qui consiste & dire que
I’hypoténuse du triangle rectangle défini ci-dessus est égale & 4/2,
ce qui, cependant, n’indique que I’algorithme & employer pour
trouver les nombres inférieurs et supérieurs qui sont appropriés
a chaque cas.

Pour un triangle rectangle dont les cotés de ’angle droit sont
respectivement 2 et 3, on arrivera de la méme facon, en calculant
les nombres-mesure de ’hypoténuse, a I’algorithme qui s’exprime
par le symbole 4/22 + 32 = 4/13 et ainsi de suite.

On arrive ainsi dans tous les cas & calculer I’hypoténuse c
dans un triangle rectangle dont les cotés de I’angle droit sont «
et b par I'algorithme qui s’exprime parla formule ¢ = +/a® + 2.

23. — Ces exemples et d’autres pareils doivent étre complétés
par des exercices destinés & apprendre 'usage d’une table tri-
gonométrique & trois décimales, c¢’est-a-dire une table qui pour
un triangle rectangle ou I’hypoténuse AB est 1 m établit la
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longueur des cotés de ’angle droit — en millimétres entiers —
en fonction de la grandeur — en degrés entiers — de ’angle A.
La table doit non seulement contenir les cdtés de l’angle droit
(sin A et cos A) mais aussi leur rapport (tg A et cotg A), et les
éleves doivent apprendre & se servir de ces tables pour les calculs
concernant le triangle rectangle.

On peut y ajouter des applications plus avancées ainsi que
la Trigonométrie du triangle ordinaire.

LA GEOMETRIE DE PORT-ROYAL

PAR

Jean Itawrp (Paris).

1. — I’enseignement élémentaire de ia Géométrie, en France,
ignore aujourd’hui d’une facon quasi absolue les KEléments
d’Euclide. Nous allons essayer de noter, dans cet article, les
faits historiques les plus marquants qui expliquent cette désaffec-
tion, puis cet oubli du plus ancien monument de la Géométrie
élémentaire.

2. — Une premiére attaque, fort vive, contre les éléments
d’Euclide, fut menée par Pierre La Ramgr, alias Ramus (1515-
1572), mais les massacres de la Saint-Barthélemy semblent avoir
arrété net en France 'influence des Remistes, qui fut au con-
traire considérable en Allemagne rhénane.

Les éléments d’Euclide restent encore, durant un siécle,
I'ouvrage d’enseignement de beaucoup le plus répandu.

3. — Une nouvelle offensive, victorieuse cette fois-ci, est
déclenchée par les Messieurs de Port-Royal, d’abord dans leur

« Logique ou Part de penser» (1662), puis dans leur Géométrie.
en 1667.
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