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LA GÉOMÉTRIE SENSIBLE

(1er article)

PAR

Johannes Hjelmslev (Copenhague)

INTRODUCTION

1. — Des recherches importantes sur les hases de la Géométrie
ont eu lieu autour du commencement de notre siècle et pendant
les années suivantes — essentiellement grâce aux travaux de

Hilbert — et ont apporté des progrès scientifiques remarquables
qui engendrent des problèmes plus profonds que ceux d'EucLiDE.
Mais elles ont surtout jeté de la clarté sur le système d'Euclide.
Elles ont apporté la solution définitive du problème que les

Grecs ont l'honneur d'avoir posé et l'honneur, au cours de

quelques siècles, d'avoir résolu d'une façon déjà si complète
que deux milliers d'années et plus ont été nécessaires pour en
combler les lacunes.

Mais les recherches modernes ont donné d'autres résultats.
On est arrivé à plus que l'achèvement du système d'Euclide.
La forme de cet achèvement, le système purement déductif,
a jeté une lumière nouvelle sur l'effet total de ce système.
L'admirable œuvre scientifique des Grecs est, d'un certain point
de vue, davantage mise en relief. Elle excite plus intensément
notre admiration et servira sans doute, dans les siècles à venir,
d'inspiration à d'importants travaux scientifiques.

2. — En même temps s'est posée d'une manière aiguë la
question concernant le rapport du système au monde sensible
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et à l'enseignement. L'effet immédiat à cet égard a plutôt été
une frayeur générale, car on était habitué à voir une sorte de

description de l'espace réel dans le système géométrique, malgré
toutes ses idéalisations. A mesure qu'on se rend mieux compte
des effets, ils finissent par cristalliser le point de vue inéluctable
que ni le système grec, ni aucune de ses formes modifiées ne
peuvent ou ne doivent servir de base à une description de l'espace
réel ou à un enseignement en Géométrie.

3. — La base du système était le groupe d'axiomes sous la
forme établie dans les Eléments EEuclide. A celui-ci se sont
ajoutés les compléments des époques suivantes ainsi que les
réductions et la précision raffinées des temps modernes, comme
nous pouvons le trouver dans le traité de Hilbert intitulé
« Grundlagen der Geometrie », chap. I. Voilà la base historique
du système.

Et quel est alors le résultat actuel de ce système bimillénaire
Quelle base de travail concise a été fournie par l'achèvement
du système

Un seul terme peut exprimer la réponse: la description par
coordonnées ; quant à la Géométrie plane spécialement, la
détermination du point au moyen des coordonnées, la description
de la droite par une équation de premier degré, la détermination
de la distance entre deux points au moyen de la formule pytha-
gorique.

La description par coordonnées est le résultat définitif que
nous avons atteint et que nous ne pouvions pas ne pas atteindre.
Elle seule nous donne une vue d'ensemble et la maîtrise sur les

moyens auxiliaires, la clarté sur le contenu total du système
axiomatique. Elle nous fournit l'équivalent complet de ce dernier.

4. — On ne peut pas cependant s'empêcher de regarder en

arrière et de se demander si on ne pourrait pas de nos jours
atteindre ce résultat par un chemin plus naturel et direct que
celui qu'on a parcouru historiquement à travers ce grand espace
de temps.

La réponse est tout à fait nette. Personne ne doute aujourd'hui
qu'il existe des moyens beaucoup plus courts et naturels qui
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aboutissent au même résultat. Ceci est bien évident d'un point
I de vue purement axiomatique où l'on ne s'occupe que de la

déduction pure, tout en reconnaissant que le système axiomatique

historique restera une source d'inspiration précieuse pour
des recherches ultérieures.

Mais d'un point de vue pédagogique et empirique s'impose
indiscutablement un seul jugement: le système d'Euclide doit
appartenir à l'histoire, pendant que l'enseignement de la Géométrie

adoptera — peut-être lentement, mais en tout cas sûrement—
d'autres formes.

5. — Une Géométrie qui doit avoir avec le monde sensible

un rapport tel que chacun de ses énoncés contienne toujours et

sans exception une vérité sur des objets sensibles, ne peut pas
être fondée sur le système axiomatique hérité des Grecs; en effet,
beaucoup de postulats de ce système ou bien dépassent le monde
sensible en ce qu'ils n'ont aucun rapport avec lui, ou ne s'occupent
même pas d'objets sensibles (tel que le cinquième postulat
d'Euclide ou les autres axiomes de parallélisme par lesquels
il a été successivement remplacé), ou bien établissent des faits
en contradiction avec le monde sensible (tel que le postulat
sur la détermination uniforme de la droite par deux points ou
celui sur le prolongement uniforme à l'infini du segment).

La première espèce de postulats n'est en tout cas acceptable
que sous forme d'hypothèses dont l'acceptation se justifie en
ce qu'on peut en déduire des résultats « corrects », c'est-à-dire

: des résultats qui par une interprétation convenable se révèlent
corrects pour les objets sensibles.

; On ne peut pas, bien entendu, accepter l'autre espèce sans
j réserve directe. On peut prétendre avec raison que deux points
j déterminent un segment uniforme, mais non qu'un tel segment
j possède dans tous les cas un prolongement uniforme. Deux
j segments d'une longueur de cinquante centimètres peuvent
j s'entrecouper de façon à avoir un segment commun de plusieurs
i centimètres. Voilà un fait qui ne se laisse pas escamoter. Quand
| la Géométrie traditionnelle prétend qu'un cercle et sa tangente
I n'ont qu'un point commun, l'on a un exemple d'une proposition

j qui est fausse dans la Géométrie empirique. Aucun cercle sensible
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ne possède cette propriété. De même c'est un fait que deux
cercles peuvent se toucher de telle sorte que le contact se révèle

par un arc commun de plus de soixante degrés, tandis que la
Géométrie traditionnelle prétend que deux cercles n'ont jamais
plus de deux points communs.

6.— Certes; mais la Géométrie à Vécole doit-elle traiter de

cercles sensibles, de droites sensibles, d'objets sensibles

Je ne saurais croire que personne réponde négativement à

cette question. La Géométrie à Vécole doit traiter du monde
sensible. Le théorème de Pythagore, par exemple, doit énoncer
quelque chose des dimensions d'un objet sensible. Tous les

énoncés de la Géométrie, soit qu'on les appelle des axiomes, qui
sont établis directement, soit qu'on les appelle des théorèmes,
qui sont déduits par raisonnement d'autres propositions, doivent
tous contenir des renseignements sur le monde sensible. Partout
il faut maintenir celui-ci.

C'est pourquoi aucun système abstrait construit comme celui
d'Euclide ne peut nous fournir les bases qu'il nous faut.

Même si l'on accepte d'employer le système axiomatique
d'Euclide (ou une modification de celui-ci) comme un système
d'hypothèses qui se justifient en ce qu'elles aboutissent à des

résultats, par exemple le théorème de Pythagore, applicables
au monde sensible par une interprétation appropriée, cette

applicabilité ne saurait être déduite du système géométrique quand
celui-ci est fondé sur des axiomes qui ne sont pas valables dans le

monde visible. Sans quoi, il faudrait, dans chaque cas, vérifier
directement ensuite si les propositions déduites se révéleraient
exactes tout en étant déduites d'hypothèses fausses ou en tout
cas non contrôlées.

En d'autres termes il n'y aurait aucune relation entre le

système construit par hypothèses et ce monde sensible dont
l'exploration est cependant la tâche principale.

Mais à ceci s'ajoute encore ce qui est, du point de vue
pédagogique, le plus important: Par un procédé pareil, on négligerait

par principe de se servir d'intuition précise et de Vobservation
concrète qui, en dernière instance, restent notre seul guide.
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7. — Dans la littérature pédagogique et mathématique on a,

comme on le sait, énoncé, de nombreuses fois, des éléments

essentiels de la critique ci-dessus.
Je rappelle Rousseau qui dans P « Emile », Livre II, raconte

ses impressions de l'enseignement habituel de la Géométrie en

réclamant des réformes pédagogiques, par exemple dans les

termes suivants :

« J'ai dit que la Géométrie n'était pas à la portée des enfants;
mais c'est notre faute. Nous ne sentons pas que leur méthode

n'est point la nôtre et que ce qui devient pour nous l'art de
| raisonner ne doit être pour eux que l'art de voir...; au lieu de

nous faire trouver les démonstrations, on nous les dicte ; au lieu
j de nous apprendre à raisonner, le maître raisonne pour nous et
| n'exerce que notre mémoire... »

« ...Faites des figures exactes, combinez-les, posez-les l'une sur
l'autre, examinez leurs rapports: vous trouverez toute la Géomé-

: trie élémentaire en marchant d'observation en observation, sans

qu'il soit question ni de définitions, ni de problèmes, ni d'aucune
autre forme de démonstration que la simple superposition ».

Je rappelle Clairaut qui dans ses « Elémens de Géométrie » de

1741 fit un essai radical, dans un exposé pratique, pour se délivrer
de la systématique d'Euclide. La préface de son oeuvre célèbre

commence par les lignes suivantes :

« Quoique la Géométrie soit par elle-même abstraite, il faut
avouer cependant que les difficultés qu'éprouvent ceux qui
commencent à s'y appliquer viennent le plus souvent de la
manière dont elle est enseignée dans les Elémens ordinaires
On y débute toûjours par un grand nombre de définitions, de

demandes, d'axiomes et de principes préliminaires qui semblent
ne promettre rien que de sec au lecteur. Les propositions qui
viennent ensuite ne fixant point l'esprit sur des objets plus
intéressans et étant d'ailleurs difficiles à concevoir, il arrive
communément que les commençans se fatiguent et se rebutent,
avant que d'avoir aucune idée distincte de ce qu'on voulait
leur enseigner. »

Pour donner une impression du texte de Clairaut nous citons
la page 3, en bas, où l'on fait déjà connaissance du carré et du
rectangle :
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« On sait par exemple que la régularité des figures telles que

ABCD, FGHI, appellées rectangles, et composées de quatre
côtés perpendiculaires les uns aux autres, engage à donner leurs
formes aux maisons, à leurs dedans, aux jardins, aux chambres,
aux pans de murailles, etc...

La première ABCD de ces figures, dont les côtés sont égaux,
s'appelle communément carré. L'autre FGHI, qui n'a que ses

côtés opposés égaux, retient le nom de rectangle. »

Enfin nous rappelons quelques propos de Henri Poincaré
dans « Science et Méthode »:

« Peut-on définir la ligne droite Je partirais tout simplement
de la règle et je montrerais d'abord à l'élève comment on peut
vérifier une règle par retournement. »

« Devons-nous conserver la définition classique des parallèles
et dire qu'on appelle ainsi deux droites qui, situées dans le même

plan, ne se rencontrent pas quelque loin qu'on les prolonge
Non, parce que cette définition est invérifiable par l'expérience
et ne saurait en conséquence être regardée comme une donnée
immédiate de l'intuition. Non, surtout, parce qu'elle est totalement

étrangère à la notion de groupe, à la considération du
mouvement des corps solides qui est la véritable source de la
géométrie. »

« ...dans l'enseignement, une bonne définition c'est celle qui
est comprise par les élèves. »

« Sous chaque mot, ils veulent mettre une image sensible. »

Les éléments sensibles.

8. — La Géométrie que nous proposerons dans ce qui suit
doit avoir comme but: le contrôle sensible de tous les résultats.
Les définitions doivent être des définitions sensibles, c'est-à-dire
décrire les objets dont on s'occupe de telle façon qu'on puisse
reconnaître par une vérification directe si les objets ont les

propriétés demandées.

Le programme de travail doit être: voir et concevoir.

9. — Au moyen d'exemples de la vie courante l'on fait la
connaissance de différents corps solides aux surfaces variées,
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tels que boîtes d'allumettes ou de cigares, briques, boîte de

biscuits, boules de croquet, billes de billard, etc...
Sur la boîte d'allumettes on vérifie, par exemple, les propriétés

principales du parallélépipède rectangle (la brique); sa surface

se compose de six faces; là où deux faces se rencontrent se forme
une arête. Chaque face est contiguë à quatre autres de sorte
qu'elle est limitée par quatre arêtes; c'est pourquoi elle s'appelle
un quadrilatère. Les quadrilatères opposés sont pareils, ce qu'on
vérifie à l'aide d'une autre boîte d'allumettes en démontrant
que chacune de ses faces peut se superposer à deux faces

opposées de la première boîte et cela même de deux façons
différentes. De même, on vérifie que deux briques peuvent se

joindre de façon à composer une seule brique.
On établit ainsi les propriétés fondamentales de la brique; les

arêtes sont de même longueur quatre à quatre, de sorte qu'elles
ne présentent que trois longueurs différentes, les dimensions de
la brique. Mention spéciale est faite du cube.

10. — Une sphère (boule de croquet, bille de billard, globe)
est un corps rond dont la surface ne présente ni arêtes ni coins
et qui est complètement pareil dans toutes ses parties. Ceci se

contrôle par exemple à l'aide d'un modèle en argile. Si l'on pétrit
une motte d'argile de sorte qu'une de ses surfaces s'adapte bien
à une partie étendue de la surface de la sphère, alors elle se
révélera capable de s'adapter à n'importe quelle partie et elle

pourra donc glisser dans toutes les directions le long de la sphère
sans changer de forme. On exprime ce fait en disant que la surface
de la sphère peut se déplacer en elle-même dans tous les sens.
La sphère peut tourner dans tous les sens à l'intérieur d'une
cavité où elle s'adapte.

11. — La sphère est dite courbe tandis que chacune des six
faces d'une brique s'appelle une face plane. D'autres exemples
de faces planes sont la surface d'une table, le plafond, les murs
ou le plancher d'une chambre (exemples assez grossiers), le
verre pour miroirs, etc... (exemples plus raffinés). Mais quelle
est vraiment la condition essentielle pour qu'on puisse dire qu'une
face est exactement plane Nous exigeons d'abord qu'elle soit
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pareille dans toutes ses parties, de sorte qu'une motte d'argile
qui s'adapte à une partie étendue de la surface puisse glisser
dans toutes les directions le long de celle-ci sans changer de
forme. Mais il en était ainsi aussi pour la face sphérique, ainsi que
pour toute partie limitée de celle-ci. Il y a donc encore une
qualité que nous demandons pour la face plane, la voici: elle
doit être pareille des deux côtés, c'est-à-dire qu'elle doit être
capable de servir de face de contact commune à deux corps
pareils.

Nous trouvons cette définition chez Leibniz (Leibnizens math.
Sehr. II, Abt. 1. S. 189 def (6)) de la façon suivante : « ut si pomum
secern in duo frusta, ut extremum novum unius segmenti non
possit distingui ab extremo novo alterius segmenti, Sectio erit
planum ».

Si l'on coupe en deux une pomme de terre, et si l'on ne peut
distinguer les deux surfaces d'intersection, elles sont planes.
Mais comment contrôler avec exactitude qu'elles sont pareilles
Par ce fait, qu'elles peuvent s'adapter et glisser dans toutes
les directions sur une même troisième surface, obtenue par
exemple en coupant une autre pomme de terre.

L'on obtient des faces pareilles en fer en se servant de ces

vérifications directes. L'on commence par faire trois plaques de

fer dont un côté est à peu près plan, et on les façonne ensuite
en les raclant jusqu'à ce qu'elles s'épousent deux par deux. On

peut pousser ce procédé très loin en exactitude. Les plans ainsi
obtenus (plans correctifs) servent à étalonner d'autres plans.

12. — Une feuille de papier à dessin étendue sur une tablo
plane forme le plan dans lequel nous dessinons, dit plan à

dessiner. Si l'on y pose une pièce de monnaie ou une médaille

que l'on tient ferme pendant qu'un crayon finement taillé suit
dans le plan le bord de la pièce, l'on obtient un cercle. Il apparaît
ensuite que la pièce peut tourner tout en épousant toujours,
le cercle.

Prenons une pomme de terre et coupons-la de sorte que la
surface d'intersection soit un cercle. On vérifie que c'est un
cercle en essayant de tourner l'un des morceaux: de telle façon

que les surfaces d'intersection restent en contact ininterrompu
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1 une avec l'autre tout en s'épousant réciproquement avec
exactitude le long du contour.

Un disque est une plaque qui peut se déplacer en elle-même
et est pareille des deux côtés. Le bord du disque est un cercle.

13. — Nous appelons corps dièdre (ou dièdre) un corps qui a
deux faces planes se rencontrant le long d'une arête. La composition

du restant de la surface est sans importance. Deux dièdres
s'appellent supplémentaires quand ils peuvent se compléter de
façon à former un dièdre plat, c'est-à-dire s'ils peuvent reposer
sur un plan en ayant chacun une face plane dans celui-ci et en
s ajustant étroitement le long des faces non situées dans le plan.
Autrement dit, chacun d'eux doit pouvoir remplir le vide qui se
forme à côté de l'autre quand on le pose sur une table. Si
la position des plans est la même pour les deux dièdres
supplémentaires, on les appelle dièdres normaux.

Mais comment vérifier si les deux dièdres sont pareils On
essaie s'ils peuvent remplir le même vide, donc être des dièdres
supplémentaires à un même troisième. Par ce procédé on forme
des dièdres normaux, trois à la fois, en prenant soin qu'ils
puissent deux par deux composer des dièdres supplémentaires.
Sur ceci est basée la fabrication de dièdres normaux en fer.

Employer cette vérification directe pour découper des dièdres
normaux dans une pomme de terre ou pour en modeler en argile.

On appelle les deux plans-limites d'un dièdre normal perpendiculaires

Vun à Vautre ; l'arête du dièdre normal est une ligne droite.
Dans la vie courante on trouve partout des imitations plus

ou moins exactes de lignes droites, soit sous forme d'arêtes
(de dièdres obliques ou droits), soit sous forme de tiges ou
de fils. Si l'on étire une ficelle mince, elle se révèle capable de
s adapter avec grande exactitude à l'arête d'un dièdre normal,
c'est pourquoi on peut représenter la ligne droite par une ficelle
étirée.

Si l'on tient ferme un dièdre normal sur une table plane on
peut déplacer un autre dièdre normal, supplémentaire au
premier, le long de celui-ci de telle façon que l'arête glisse le long
de l'autre arête. Un tel déplacement s'appelle un glissement
ou une translation.
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14. — Un trièdre normal est un corps qui a trois faces planes

qui se rencontrent à angle droit deux par deux de sorte
qu'elles forment trois arêtes se joignant dans un sommet, un
point, dit le sommet du trièdre. La composition du restant de la
surface est sans importance. On dit que les trois arêtes sont, deux

par deux, perpendiculaires l'une à l'autre. Les faces s'appellent
les faces du trièdre et forment chacune un angle droit dans le
plan.

Deux trièdres normaux peuvent se joindre de façon à former
un dièdre normal. Ceci peut avoir lieu de plusieurs façons puisque
chaque face d'un trièdre peut se joindre à chaque face de
l'autre.

On peut toujours poser quatre trièdres normaux sur un plan
de façon que leurs faces de contact AOB, BOG, COD, DOA
avec le plan occupent celui-ci autour du sommet commun 0.

façon. On dit que les deux droites se coupent en 0 et qu'elles
sont perpendiculaires l'une à l'autre (AOC _L BOD).

On dit que chaque arête est perpendiculaire ou normale au
plan limité par les deux autres arêtes, et inversement que
celui-ci est perpendiculaire du plan normal à l'arête. Sur la
figure, OE est normale au plan oc.

Par chaque point 0 d'un plan on peut mener une droite
perpendiculaire au plan. On la détermine comme l'arête d'un
trièdre normal posé sur le plan avec sommet en 0. Si l'on donne

au trièdre des positions différentes sur le plan en conservant le

même sommet on aura toujours la même perpendiculaire.
De même on peut d'un point hors du plan mener une

perpendiculaire au plan en posant le trièdre normal sur le plan de façon
qu'une des arêtes passe par le point.

Fig. 1.

E

L'arête OE est commune à tous
les trièdres, les arêtes AO et OC

se prolongent l'une l'autre, c'est-
à-dire elles forment une droite
continue qui est l'arête commune
de deux dièdres normaux dont
chacun se compose de deux des

trièdres donnés. Les arêtes BO et
OD se prolongent de la même
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15. — Nous appelons brique normale une brique qui est limitée

par des faces exactement planes qui forment un dièdre normal
le long de chaque arête. La rencontre de trois arêtes forme un
trièdre normal; la brique possède donc huit trièdres normaux.

i Toutes les propriétés que possédaient approximativement, selon
j nos observations, les boîtes d'allumettes, sont rigoureusement

valables pour les briques normales. On peut fabriquer des briques
; normales pareilles entre elles avec une telle exactitude qu'une

fois superposées elles s'ajustent si bien qu'il faut employer
des forces considérables pour les séparer. Les faces de la brique

j normale sont des quadrilatères dont tous les côtés opposés sont
| égaux et où deux côtés voisins, quels qu'ils soient, forment un
i angle droit. On appelle rectangles de tels quadrilatères ; exemples :

j une feuille de papier, une carte postale, une carte de visite, etc.
j II est établi dans notre champ d'expérience (selon les expé-
i riences acquises) que Von peut fabriquer une brique normale de

\ dimensions données.

Il s'ensuit que dans un plan on peut former un rectangle de

dimensions données.

16. — Si l'on place un dièdre normal sur le plan à dessiner,
son arête y tracera une ligne droite, et comme on peut placer
un autre dièdre normal à côté du premier de sorte que son arête
suive la même ligne droite, on voit que cette ligne droite partage
le papier en deux parties qui doivent pouvoir se recouvrir
lorsqu'on plie le papier le long de la droite. L'on peut donc produire
une ligne droite en pliant simplement une feuille de papier.

Il résulte des propriétés du trièdre normal qu'en pliant encore
une fois la feuille de papier, l'une des moitiés de la droite recouvrant

l'autre, on obtient un angle droit, et qu'en étendant
ensuite le papier dans son étendue originelle, l'on y voit marquées
deux lignes droites perpendiculaires l'une à l'autre.

On dessine des lignes droites sur le plan à dessiner à l'aide
d'un dièdre normal, et des angles droits à l'aide d'un trièdre
normal, mais on leur préfère des instruments à dessin plats:
la règle qui en réalité est un dièdre normal plat avec une large
face sur le plan à dessiner et une très étroite face perpendiculaire
à celle-ci, et l'équerre qui est un trièdre normal avec une large

L'Enseignement mathém., 38 me année, 1939 et 1940. 2
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face sur le plan à dessiner et deux faces étroites qui y sont
perpendiculaires.

17. — Nos instruments de travail seront maintenant: le plan
à dessiner fixe; la règle pour tracer des lignes droites, spécialement

une ligne qui joint un point à un autre; l'équerre pour
tracer des lignes perpendiculaires entre elles (tracé d'angles
droits), spécialement une ligne droite passant par un point donné
et perpendiculaire à une ligne donnée; du papier calque (papier
transparent) pour copier et déplacer les figures; le compas à

deux pointes pour déplacer des segments et pour les diviser
par tâtonnements en deux ou plusieurs parties égales; le compas
à crayon pour dessiner des cercles de grandeurs différentes;
peut-être aussi un disque (pièce de monnaie ou médaille) pour
dessiner des cercles de grandeur fixe; enfin une règle graduée.
Ces instruments de travail devront en principe toujours être
disponibles. On n'exige pas la construction avec des auxiliaires
limités, comme par exemple l'emploi traditionnel de la règle
et du compas.

18. — On obtient la symétrie par rapport à une ligne droite
d'abord par pliage le long de la ligne, puis par dessin; l'axe d'un
segment, l'axe d'un angle, l'axe du triangle isoscèle servent à

démontrer les propriétés habituelles.
On étudie maintenant de plus près, en dessinant, les propriétés

du rectangle que l'on connaît depuis la mention de la brique:
tracé d'un rectangle de dimensions données; vérification des

propriétés connues du rectangle à l'aide d'un calque de celui-ci
qu'on déplace de façon à couvrir le rectangle de nouveau; la
première fois le calque glisse le long du plan à dessiner, chaque
diagonale se retourne et se couvre elle-même, d'où l'on voit
que les diagonales ont le même milieu et que chacune d'elles
divise le rectangle en deux triangles pareils; la seconde fois l'on
retourne le calque, les diagonales s'intervertissent, d'où l'on voit
qu'elles sont égales. A chaque triangle rectangle dont les côtés

de l'angle droit sont a et b correspond un rectangle dont les

côtés sont a et b; d'où l'on voit que la somme des angles aigus
du triangle est égale a un angle droit. Ensuite l'on arrive facile-
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ment à démontrer que la somme des angles de tout triangle est
I égale à deux angles droits.
1 On dit que deux lignes sont parallèles lorsque l'on peut, tout
j le long de ces lignes, introduire entre elles des rectangles où une
j paire de côtés opposés découpent deux segments correspondants
1 sur les deux lignes. Chaque ligne qui est perpendiculaire (normale)
| à l'une des lignes est aussi perpendiculaire à l'autre; et tous les

segments découpés sur les perpendiculaires sont égaux (la dis-
j tance des lignes). Toute ligne oblique qui joint deux points situés

chacun sur sa ligne est diagonale d'un des rectangles mentionnés
j ci-dessus et forme donc avec les lignes le même angle aigu.
] La partie du plan située entre deux lignes parallèles s'appelle

y{ une bande; on vérifie à l'aide d'un calque que la bande peut se

j déplacer en elle-même, etc...
La translation le long d'une ligne s'exécute d'abord à l'aide

A d'un calque, ensuite seulement en dessinant sur le plan fixe,
j A ceci s'ajoute intimement l'emploi de la règle et de l'équerre pour

1 dessiner des parallèles et des lignes perpendiculaires entre elles.
On démontre ensuite qu'une série de parallèles passant par

une série de points équidistants sur une ligne droite l sont
j équidistantes elles-mêmes, car une translation le long de l qui

1 déplace chaque point de la série sur le point suivant déplace
aussi chaque parallèle de la série sur la parallèle suivante. On

j voit de même qu'une série de parallèles équidistantes coupent
j une ligne droite en des points équidistants.
y Si l'on divise la diagonale d'un rectangle en un nombre de
J segments égaux, par exemple dix, et trace par chaque point
] d'intersection deux lignes parallèles aux côtés du rectangle,
jj celui-ci se divise en petits rectangles égaux entre eux. On se sert
I de cette figure pour introduire l'idée de la similitude des triangles
| rectangles dans le rapport p: q, p et q étant des nombres entiers
| plus petits ou égaux à dix. A ceci s'ajoute l'emploi du papier
l quadrillé, spécialement du papier en millimètres carrés.

| On fait enfin pratiquer de simples mesurages d'aires (rectangle,
triangle rectangle, parallélogramme, triangle quelconque, tra-i pèze, etc...) sur des dessins présentés; on mesure les dimensions

% nécessaires en millimètres entiers, et l'on calcule après l'aire en
établissant un jugement estimatif sur l'erreur commise.
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19. — Nous achevons ce programme par le théorème de

Pythagore, et nous ne saurons à cet égard faire mieux que de
citer l'exposé tel qu'il est présenté dans les Elémens de Clairaut,
seconde partie, XVI-XVII:

« Supposons d'abord que les deux quarrés ABCD, CBFE, dont
on se propose de faire un seul carré, soient égaux entr'eux;
il est aisé de remarquer que si on tire les diagonales AG et CF,
les triangles ABC et GBF feront ensemble la valeur d'un quarré.
Donc en transportant au-dessous de AF les deux autres triangles

DCA et CEF, on fera le quarré ACFG, dont le côté AC fera la
diagonale du quarré ABCD, et dont la superficie égalera celle
des deux quarrés proposés; ce qui n'a pas besoin d'être démontré.

Supposons présentement qu'on veuille faire un quarré égal
à la somme des deux quarrés inégaux ADCd, CFE/, ou, ce qui
revient au même, qu'on se propose de changer la figure ADFEfd
en un quarré.

En suivant l'esprit de la méthode précédente, on cherchera
s'il n'est point possible de trouver dans la ligne DF, quelque
point H, tel:

1° Que, tirant les lignes AH et HE, et faisant tourner les

triangles ADH, EFH, autour des points A et E, jusqu'à ce qu'ils
ayent les positions Adh, Efh; ces deux triangles se joignent en h.
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2° Que les quatre côtés AH, HE, EA, AA soient égaux et

perpendiculaires les uns aux autres.

Or ce point H se trouvera en faisant DH égal au côté GF ou
EF. Car de l'égalité supposée entre DH et GF, il suit premièrement

que si on fait tourner AD H autour de son angle A, en sorte

qu'on lui donne la position Adh, le point H arrivé en A sera

distant du point C d'un intervalle égal à DF.
De la même égalité supposée entre DH et CF, il suit encore

que HF égalera DC, et qu'ainsi le triangle EFH tournant autour
de E pour prendre la position E/A, le point H arrivera au même

point A, distant de C d'un intervalle égal à DF.
Donc la figure ADFE/g! sera changée en une figure à quatre

côtés AHEA. Il ne s'agit donc plus que de voir si ses quatre côtés

sont égaux et perpendiculaires les uns aux autres.
Or l'égalité de ces quatre côtés est évidente, puisque AA et AE

seront les mêmes que AH et HE, et que l'égalité de ces deux
derniers se tirera de ce que DH étant égale à GF ou à FE,
les deux triangles ADH, HEF seront égaux et semblables.

Il ne reste donc plus qu'à voir si les côtés de la figure AHEA
formeront des angles droits; c'est de quoi il est aisé de s'assurer,
en remarquant que pendant que HAD tournera autour de A, pour
arriver en AAJ, il faudra que le côté AH fasse le même mouvement

que le côté AD. Or le côté AD fera un angle droit DAd,
en devenant Ad. Donc le côté AH fera aussi un angle droit HAA
en devenant AA.

Quant aux autres angles H, E, A, il est visible qu'ils seront
nécessairement droits. Car il ne serait pas possible qu'une figure
terminée par quatre côtés égaux eût un angle droit, sans que les
trois autres fussent pareillement droits. »

Dans notre exposé, nous aimerions mieux, à la place de la
dernière remarque, démontrer directement que chacun des

angles est droit, ce qui s'ensuit simplement du fait que la somme
des deux angles aigus du triangle rectangle est égale à un angle
droit.

20. — Intersection et contact. Deux droites perpendiculaires
se coupent en un seul point. Deux droites qui se rencontrent
sous un angle oblique n'ont généralement qu'un seul point
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commun (point d'intersection). Mais les droites peuvent spécialement

être si près l'une de l'autre qu'elles ont de nombreux points
communs qui se rassemblent dans un élément continu le long
de laquelle les lignes se coupent. Comme exemple nous avons les

diagonales d'un rectangle étroit dont les dimensions sont
respectivement 20 cm et 4 mm; elles auront, comme dans tout
rectangle, le même milieu, mais se coupent le long d'un élément
continu dont le centre est ce milieu.

On vérifie les propriétés fondamentales du cercle à l'aide d'un
calque (centre, rayon, diamètre, rapport de symétrie, rotation);
on examine ensuite les positions différentes d'une droite par
rapport au cercle. On définit la tangente comme une droite qui
suit la périphérie du cercle le long d'un élément continu, et
qui, pour le reste, est hors du cercle. La perpendiculaire n menée
du centre sur la tangente coupe celle-ci en un point qui (à cause
de la symétrie par rapport à n) doit appartenir à l'élément
commun de la tangente et du cercle, et y occuper une position
centrale. On appelle ce point le point central ou le point contact
de la tangente. « La tangente au point A du cercle » signifie une
tangente dont le point contact tombe en A; elle est perpendi-
cu]aire au rayon qui passe par ce point.

Tout le cercle se laisse diviser en éléments si petits que chacun
fait partie d'une tangente. On peut ainsi concevoir le cercle

comme un polygone dont les côtés sont ces petits éléments.
La longueur de la périphérie du cercle est le périmètre de ce

polygone. On trouve par expériences qu'elle est environ 3x/7 fois
aussi longue que le diamètre.

L'on divise un arc de cercle en deux ou plusieurs parties
égales par expériences à l'aide du compas à deux pointes. On

construit de la même façon des polygones réguliers inscrits dans
le cercle.

Pour mesurer les angles on introduit le rapporteur.
La distance d'un point P à une droite l signifie la perpendiculaire

PQ menée du point P au pied Q de la perpendiculaire.
Le cercle au centre P et rayon PQ a un élément situé autour
de Q commun avec la droite. On voit donc que PQ est la distance
la plus courte de P à ï, mais qu'il existe d'autres segments de

P à I de même longueur. On en conclut encore qu'en général
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l'hypoténuse d'un triangle rectangle est plus grande que chacun

des autres côtés, mais qu'elle peut être — en certains cas —
égale à l'un de ces côtés quand l'autre est très petit par rapport
au premier.

| On en déduit enfin qu'en général chaque côté d'un triangle
1 est plus petit que la somme des deux autres, mais qu'il peut
I en certains cas (quand deux angles du triangle sont très petits)
| être égal à cette somme.
j On dessine la tangente d'un point à un cercle en appuyant
î la règle contre le point et le cercle, et les tangentes communes
| de deux cercles en appuyant la règle contre les deux cercles,

j Le problème concernant les points d'intersection de deux
j cercles se traite de même par une vérification empirique directe
j en se servant de la symétrie par rapport à la droite des centres,
i Si tant est que les cercles aient un point commun, ou bien ils

se coupent en deux points distincts (ou deux éléments distincts)
J ou bien ils se touchent, c'est-à-dire qu'ils ont un seul élément

continu commun pourvu d'un point central situé sur la droite
des centres (point contact); ils ont alors la même tangente en
ce point.

21. — Aussi loin que s'étend l'histoire des sciences, l'on a
entremêlé ou, en tout cas, dressé des conflits entre deux domaines,
le monde sensible et la Géométrie abstraite. Le paradoxe de
Zénon sur Achille et la tortue, ainsi que les démonstrations

i géométriques de l'existence des grandeurs incommensurables,
i voilà des exemples célèbres.
j Dans son livre renommé « La Géométrie grecque », 1887,
j page 97-98, Paul Tannery écrit comme suit:
j « Mais, à l'origine, on fondait la corrélation entre la Géométrie

et l'Arithmétique sur la proportion géométrique dans l'hypothèse
j de la commensurabilité de toutes les grandeurs, hypothèse
j certainement aussi naturelle qu'elle est fausse, et qui, à l'époque
j où Platon écrivait les Lois, était encore très répandue. La
j découverte de l'incommensurabilité par Pythagore dut donc
j causer, en Géométrie, un véritable scandale logique, et pour y

échapper on dut tendre à restreindre autant que possible l'emploi
j du principe de similitude, en attendant qu'on fût arrivé à l'établir
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sur une théorie de la proportionalité indépendante de l'hypothèse
de la commensurabilité. »

Oui, telle fut la vraie conséquence historique du « scandale

logique s. Mais en réalité le scandale se trouve ailleurs. Il se

trouve dans l'hypothèse — tacitement acceptée — de la
corrélation entre la Géométrie et l'Arithmétique, l'hypothèse qui
décrète que toute grandeur géométrique correspond à un nombre-

mesure déterminé. Cest ici qu'on a introduit une hypothèse fausse.

L'hypothèse de la commensurabilité des grandeurs géométriques,
au contraire, n'est pas fausse. Tout mesurage sensible la confirme,
et il n'existe pas d'autre mesurage. L'hypothèse de l'uniformité
du nombre-mesure, par contre, est fausse. L'Arithmétique dispose
de différences très fines, et cela même dans le domaine des

nombres rationnels, mais à ces différences indéfiniment fines ne

correspondent pas des différences sensibles pour les grandeurs
géométriques. Toute grandeur géométrique n'a pas seulement un,
mais plusieurs nombres-mesure qui tous sont corrects.

Si l'on avait arrêté ce principe comme le vrai principe empi-
pirique concernant la corrélation entre la Géométrie et l'Arithmétique,

il n'y aurait eu aucun « scandale logique ». Les recherches
de Pythagore sur la diagonale d'un carré de côté 1 n'auraient
pas abouti à découvrir l'existence de grandeurs « incommensurables

», mais seulement à constater qu'on peut attribuer à la

diagonale deux nombres-mesure a1 et a2 dont le produit est égal
à 2.

On ne saurait, en effet, rien
déduire d'autre des deux triangles ABC
et ACD que l'existence de deux
nombres-mesure a± et a2 pour AC,
tels que

CL-1 1

Quand on fait connaissance ensuite du nombre \/2, par un
procédé purement arithmétique, on adopte bien entendu la
façon de parler et de calculer qui s'attache au fait que le nombre

ya a2 peut être adopté comme un nombre-mesure artificiel puis-
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qu'il est situé entre les deux nombres-mesure naturels ax et a2;

ceci est une tout autre affaire qui en elle-même est très
intéressante et importante, mais qui ne démontre aucunement
« l'existence des grandeurs géométriques incommensurables ».

Si l'on doit déterminer un carré dont on a fixé l'aire par le

nombre-mesure a, on aura de même à fixer deux nombres-

mesure a1 et a2 dont le produit est égal à a. S'il existe un nombre
rationnel dont le carré est égal à a, on peut employer ou celui-là

ou un nombre-mesure avoisinant convenable; au cas contraire
on choisit deux nombres différents av et a2, suffisamment proches
l'un de l'autre, dont le produit est égal à a. Comme on peut
trouver ces nombres en calculant arithmétiquement a avec un
certain nombre de décimales, on est amené à se servir de la
locution que le côté du carré s'exprime par y'a, car on obtient
ainsi plusieurs facilités formelles dans le langage. Mais ceci ne

prouve d'aucune façon que les grandeurs incommensurables
existent en Géométrie, et bien entendu on n'en saurait rien

prouver.
Le théorème général de Pythagore peut s'exprimer de la même

manière. Pour l'hypoténuse on peut fixer deux nombres-mesure
c± et c2 dont le produit est égal à la somme des carrés des nombres-
mesure qu'on a fixés pour les côtés de l'angle droit.

On voit ainsi que les nombres irrationnels ne sont point
nécessaires pour décrire les mesures des figures géométriques,
mais qu'on peut les introduire pour des raisons formelles afin
de pouvoir formuler plus facilement les résultats. Et de cette
manière on évite ici, une fois de plus, un conflit avec le monde
sensible.

22. — Dans l'enseignement on peut introduire la Géométrie
quantitative par les exemples suivants:

1° Dans un triangle rectangle chacun des côtés de l'angle droit
est égal à 1 dm. Trouver le nombre-mesure de l'hypoténuse.
Nous commençons par dessiner le triangle, ce qui est chose facile
si nous avons du papier en millimètres carrés. Ensuite nous
mesurons l'hypoténuse; sa longueur est comprise entre 141 et
142 mm.



26 J. HJELMSLEV
On peut cependant aussi trouver ce résultat par calcul à

l'aide du théorème de Pythagore. Le carré de chaque côté de

l'angle droit étant égal à 10000 mm2, le carré de l'hypoténuse
doit donc contenir 20000 mm2. Le nombre carré le plus proche
se trouve par le calcul suivant:

A/20000 141
1

24) 100

96

281) 400
281

119

1412 19881 1422 20164

Donc 141 est un nombre inférieur, 142 un nombre supérieur
pour l'hypoténuse.

2° Nous considérons maintenant un plus grand triangle
rectangle dont les côtés de l'angle droit sont 1 m. La longueur de

l'hypoténuse sera alors située entre 1414 et 1415 mm calculée

comme la racine carrée de 2000000.
On est ainsi amené à la façon de parler qui consiste à dire que

l'hypoténuse du triangle rectangle défini ci-dessus est égale à y/2,
ce qui, cependant, n'indique que l'algorithme à employer pour
trouver les nombres inférieurs et supérieurs qui sont appropriés
à chaque cas.

Pour un triangle rectangle dont les côtés de l'angle droit sont

respectivement 2 et 3, on arrivera de la même façon, en calculant
les nombres-mesure de l'hypoténuse, à l'algorithme qui s'exprime
par le symbole y^2 -f- 32 Vf3 et ainsi de suite.

On arrive ainsi dans tous les cas à calculer l'hypoténuse c

dans un triangle rectangle dont les côtés de l'angle droit sont a

et b par l'algorithme qui s'exprime par la formule c ->/«2 + ^2-

23. — Ces exemples et d'autres pareils doivent être complétés

par des exercices destinés à apprendre l'usage d'une table tri-
gonométrique à trois décimales, c'est-à-dire une table qui pour
un triangle rectangle où l'hypoténuse AB est 1 m établit la
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j
] longueur des côtés de l'angle droit — en millimètres entiers —
j en fonction de la grandeur — en degrés entiers — de l'angle A.
j La table doit non seulement contenir les côtés de l'angle droit
\ (sin A et cos A) mais aussi leur rapport (tg A et cotg A), et les

élèves doivent apprendre à se servir de ces tables pour les calculs
concernant le triangle rectangle.

On peut y ajouter des applications plus avancées ainsi que
i la Trigonométrie du triangle ordinaire.

LA GÉOMÉTRIE DE PORT-ROYAL

PAR

Jean Itard (Paris).

1. — L'enseignement élémentaire de la Géométrie, en France,
ignore aujourd'hui d'une façon quasi absolue les Eléments
d'Euclide. Nous allons essayer de noter, dans cet article, les

faits historiques les plus marquants qui expliquent cette désaffection,

puis cet oubli du plus ancien monument de la Géométrie
élémentaire.

2. — Une première attaque, fort vive, contre les éléments
d'Euclide, fut menée par Pierre La Ramée, alias Ramus (1515-
1572), mais les massacres de la Saint-Barthélemy semblent avoir
arrêté net en France l'influence des Romistes, qui fut au
contraire considérable en Allemagne rhénane.

Les éléments d'Euclide restent encore, durant un siècle,
l'ouvrage d'enseignement de beaucoup le plus répandu.

3. — Une nouvelle offensive, victorieuse cette fois-ci, est
déclenchée par les Messieurs de Port-Royal, d'abord dans leur
« Logique ou Part de penser » (1662), puis dans leur Géométrie
en 1667.

il
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