Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 37 (1938)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: CONTRIBUTION À LA CLASSIFICATION DES TRANSFORMATIONS

CORRÉLATIVES RÉGULIÈRES DANS UN PLAN ET DANS UN

ESPACE À TROIS DIMENSIONS

Autor: Vyichlo, F.

DOI: https://doi.org/10.5169/seals-28594

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CONTRIBUTION À LA CLASSIFICATION DES TRANSFORMATIONS CORRÉLATIVES RÉGULIÈRES DANS UN PLAN ET DANS UN ESPACE À TROIS DIMENSIONS

PAR

F. VYČICHLO (Praha).

La classification des corrélations régulières dans un espace à n dimensions a été faite et publiée par Siro Medici ¹. Celui-ci s'est servi des résultats des études de C. Segre ², Bertini ³, Predello ⁴ et Del Prete ⁵ et, pour faire la classification des corrélations A, il s'est servi de la classification des homographies Ω , pour lesquelles:

$$A \cdot \Omega = A \cdot A^2 = A^2 \cdot A = \Omega \cdot A .$$

M. K. Kommerell ⁶ s'est occupé de la classification des transformations corrélatives données par la relation

$$\sum a_{ik} x_i' x_k = 0$$
, $(i, k = 1, ..., 4)$.

¹ Siro Medici, Sulle omografie e correlazioni non singolari in uno spazio ad un numero qualunque di dimensioni. Giornale di Battaglini, vol. 44, 1906.

² C. Segre, Sulla teoria e sulla classificazione delle omografie in uno spazio ad un numero qualunque di dimensioni. *Memorie della R. Accademia dei Lincei*, ser. 3a, vol. XIX, 1884.

C. Segre, Ricerche sulle omografie e sulle correlazioni in generale e particolarmente su quelle dello spazio ordinario considerate nella geometria della retta. Memorie della R. Accademia delle Scienze di Torino, ser. 2a, vol. 37, 1886.

³ Bertini, Costruzione delle omografie di uno spazio lineare qualunque. Rendiconti del R. Istituto Lombardo, ser. 2a, vol. 20, 1887.

⁴ Predello, Le omografie in uno spazio ad un numero qualunque di dimensioni.

Annali di matematica, vol. 17, 1890.

PREDELLO, Sulla teoria generale delle omografie. Atti della R. Accademia delle Scienze

di Torino, vol. 27, 1891.

5 Del Prete, Le omografie e correlazioni permutabili tra loro in uno spazio ad un numero qualunque di dimensioni. Giornale di Battaglini, vol. 37 e 38, 1899, 1900.

⁶ K. Kommerell, Klassifikation der Raumkorrelationen. Math. Zeitschrift, 10 Bd., 1921.

Sa classification est basée sur la généralisation de la classification affine des quadriques. Il distingue seulement deux groupes de corrélations dans l'espace, à savoir: la corrélation centrale et la corrélation parabolique. Dans le dernier groupe se trouvent quatre classes de corrélations. Toutes ces corrélations sont étudiées géométriquement.

La classification des transformations corrélatives planes se trouve aujourd'hui dans tous les livres d'enseignement concernant la géométrie projective 7.

Dans ce Mémoire nous ferons la classification des corrélations régulières qui se trouvent, soit dans un plan soit dans un espace à trois dimensions, à l'aide des trois propriétés projectives invariantes, à savoir: à l'aide des couples involutifs, à l'aide de la qualité et de la position réciproque des coniques ou des quadriques fondamentales de la corrélation. Nous montrerons que le nombre de couples involutifs, la qualité et la position réciproque des surfaces fondamentales forment la propriété caractéristique d'un cas de la corrélation.

Dans la première partie de notre Mémoire nous emploierons cette propriété à la classification de la corrélation en groupes et plus tard (dans la seconde partie) nous écrirons les équations des corrélations de ces groupes différents seulement quant à cette propriété.

1. — Lemmes.

Soit A la matrice à n colonnes des éléments a_{ik} , (i, k = 1, ... n) et soient ix, $i\xi$, etc. (i = 1, 2) les matrices des coordonnées d'un point ou d'un plan qui appartient à l'espace $i^{\text{ième}}$; c'est-à-dire

$$i_{x} = \begin{pmatrix} i_{x_{1}} & 0 & 0 & \dots & 0 \\ i_{x_{2}} & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ i_{x_{n}} & 0 & 0 & \dots & 0 \end{pmatrix}, \text{ etc.}$$

$$(1)$$

⁷ O. VEBLEN — J. W. Joung, Projective Geometry, I, p. 278.

A. COMMESSATTI, Lezioni di Geometria analitica e proiettiva, II, p. 252.

J. VOJTECH, Geometrie projektivní, p. 296.

Voir aussi: P. Lévy, Sur les transformations corrélatives. Bulletin Soc. mathématique de France, 1929.

L'équation d'une corrélation régulière qui existe entre les espaces $^1\Sigma$, $^2\Sigma$ est la suivante:

$$^{2}\xi = A \cdot ^{1}x , \qquad (2)$$

où A est la matrice régulière, c'est-à-dire Dét. $|A| \neq 0$.

La corrélation qui est donnée par (2) est appelée la corrélation A.

A l'hyperplan $^1\xi$ correspond, dans A régulière, le point 2x déterminé par l'équation

 $^{2}x = \overline{\mathbf{A}}^{-1} \cdot ^{1}\xi . \tag{3}$

La démonstration est évidente.

Dans ce qui suit, nous nous occuperons des corrélations A régulières qui existent entre deux espaces collocaux, c'est-à-dire nous supposerons que l'on ait Dét. $|A| \neq 0$ et $^1\Sigma \equiv ^2\Sigma$.

Théorème 1. — Quand et uniquement quand tous les éléments correspondants dans les deux espaces coïncident, la matrice A est demi-symétrique. Cette corrélation est régulière uniquement quand la dimension (à savoir le nombre n-1) est un nombre impair 8 .

La corrélation considérée s'appelle système nul ou corrélation nulle.

Démonstration: a) Quand on a

$$_{2}\overline{\xi}\cdot _{1}x=0$$

pour n'importe quel 1x, c'est-à-dire

$$\bar{\mathbf{1}}x \cdot \mathbf{A} \cdot \mathbf{1}x = 0$$
,

la matrice de cette forme quadratique est égale à zéro.

Or

$$A + \overline{A} = 0$$
, ou $A = -\overline{A}$.

b) Si nous poursuivons la succession d'idées, nous obtiendrons

$$2\overline{\xi} \cdot 1x = 0$$

pour n'importe quel ^{1}x .

13

⁸ Si n=2 (sur une droite), nous avons l'homographie.

On trouve de même

$${}^{1}\bar{\xi}\cdot{}^{2}x=0.$$

c) La matrice demi-symétrique et d'ordre impair n'est jamais régulière.

Тне́овѐме 2. — Le système nul est la corrélation involutive. Démonstration: Au point $^1x \equiv ^2x$ correspondent les hyperplans

$$^{2}\xi = A \cdot ^{1}x$$
 , $^{1}\xi = \overline{A} \cdot ^{1}x$.

Si nous supposons $A = -\overline{A}$, il vient ${}^{2}\xi \equiv {}^{1}\xi$.

Théorème 3. — Si A n'est pas la corrélation nulle, les points du premier espace et aussi du deuxième espace, qui coïncident avec leurs hyperplans correspondants, forment une seule hyperquadrique.

Nous appelons cette surface la quadrique ponctuelle fondamentale et nous la désignons par K_1 .

Démonstration: Si

$${}^{2}\overline{\xi}\cdot{}^{1}x=0$$

et respectivement

$${}^{1}\overline{\xi}\cdot{}^{2}x=0,$$

on a

$$\overline{x} \cdot \overline{A} \cdot x = 0$$

et respectivement

$${}^{2}\overline{x} \cdot \overline{A} \cdot {}^{2}x = 0 .$$

Ce sont les équations de la même hyperquadrique à matrice $A + \overline{A}$.

Théorème 4. — Si A n'est pas la corrélation nulle, les hyperplans du premier espace et aussi du deuxième espace, qui coïncident avec leurs points correspondants, enveloppent une seule hyperquadrique.

C'est la deuxième quadrique fondamentale de la corrélation A. Nous la désignons par K₂.

Démonstration semblable à celle faite plus haut.

L'équation de K2 est

$${}^{1}\overline{\xi} \cdot (A^{-1} + \overline{A}^{-1}) \cdot {}^{1}\xi = 0$$
.

Théorème 5. — N'importe quelle quadrique fondamentale correspond à l'autre dans la corrélation A.

La démonstration en est immédiate.

Théorème 6. — Les quadriques fondamentales K₁, K₂ ont la même caractéristique (rang) 9.

Démonstration:

$$A^{-1} + \overline{A}^{-1} = A^{-1} \cdot (A + \overline{A}) \cdot \overline{A}^{-1} .$$

Théorème 7. — Si nous faisons la correspondance entre les points de l'espace et leurs plans polaires par rapport à la quadrique régulière \overline{x} . B. x = 0 (où B est la matrice symétrique), nous obtenons la corrélation involutive, régulière, à savoir $z = B \cdot x$. Les quadriques fondamentales de cette corrélation se confondent avec la quadrique donnée; la corrélation est appelée polarité.

Inversement: Si la matrice A est symétrique, la corrélation A est la polarité par rapport à la surface \overline{x} . A . x = 0.

Démonstration: Le plan polaire d'un point 1x par rapport à la quadrique $^1\overline{x}$. B. $^1x = 0$ (où $|B| \neq 0$) est $^2\xi = \overline{B}$. $^1x = B$. 1x . La corrélation $^2\xi = B$. 1x possède évidemment les propriétés énoncées.

Si A est la matrice symétrique, l'équation ${}^2\xi=A$. 1x détermine le plan polaire du point 1x par rapport à la quadrique ${}^1\bar{x}$. A. ${}^1x=0$.

Théorème 8. — Si la dimension de l'espace pris en considération (à savoir le nombre n-1) est un nombre impair, il existe deux corrélations involutives, à savoir, le système nul et la polarité. Si la dimension est paire, il existe une seule corrélation involutive, à savoir la polarité.

Démonstration: Si A est la corrélative involution, on a l'identité ρ . A. ${}^1x = \overline{A}$. 1x ($\rho \neq 0$ est une constante), pour n'importe quelle valeur 1x . En raison de cette équation nous pouvons écrire ρ . A = \overline{A} , ou $\rho a_{ik} = a_{ki}$, c'est-à-dire $\rho^2 a_{ik} = a_{ik}$, $\rho = \pm 1$; (au moins une valeur a_{ik} est différente de zéro).

Enfin $\overline{A} = \pm A$.

⁹ Le rang (la caractéristique) de la quadrique est égal au rang (à la caractéristique) du discriminant de cette surface.

Тне́опѐме 9. — Tous les points et de même tous les plans des couples involutifs appartenant à la corrélation A sont justement tous les points ou les plans doubles de l'homographie $1x' = \overline{A}^{-1} \cdot A \cdot 1x$.

C'est pourquoi la corrélation A possède au moins une paire involutive.

Démonstration: Si $(^{1}x; ^{2}\xi)$ est une paire involutive de la corrélation A, on déduit:

$$^{2}\xi = A \cdot {}^{1}x$$
, $\rho \cdot {}^{1}x = \overline{A}^{-1} \cdot {}^{2}\xi$.

c'est-à-dire ρ . $^1x=\overline{\mathbf{A}}^{-1}$. \mathbf{A} . 1x . Or, le point 1x est le point double de l'homographie $\overline{\mathbf{A}}^{-1}$. \mathbf{A} .

La succession d'idées peut être achevée.

Тне́овѐме 10. — Soit (1x ; $^2\xi$) un couple involutif de la corrélation A et que 1x (resp. $^2\xi$) ne soit pas un élément singulier de la surface K_1 (resp. K_2). Ensuite $^2\xi$ est le plan polaire du point 1x par rapport à K_1 , le point 1x est le pôle du plan $^2\xi$ par rapport à K_2 .

Démonstration: D'après la supposition nous avons

$$\rho \cdot \mathbf{A} \cdot \mathbf{1} x = \overline{\mathbf{A}} \cdot \mathbf{1} x$$

respectivement

$$\rho\cdot A^{-1}\cdot {}^2\xi=\overline{A}^{-1}\cdot {}^2\xi\;.$$

C'est-à-dire

$$(A + \overline{A}) \cdot {}^{1}x = (1 + \rho) \cdot A \cdot {}^{1}x = {}^{2}\xi \cdot (1 + \rho)$$

respectivement

$$(A^{-1} + \overline{A}^{-1}) \cdot {}^{2}\xi = (1 + \rho) \cdot A^{-1} \cdot {}^{2}\xi = {}^{1}x \cdot (1 + \rho)$$
.

Тне́овѐме 11. — Soit (${}^{1}x$; ${}^{2}\xi$) un couple des éléments correspondants dans A et soit ${}^{2}\xi$ le plan polaire du point ${}^{1}x$ par rapport à K_{1} (resp. ${}^{1}x$ le pôle du plan ${}^{2}\xi$ par rapport à K_{2}).

Alors les éléments ^{1}x , $^{2}\xi$ forment un couple involutif $(^{1}x; ^{2}\xi)$ de la corrélation A.

Démonstration: On a:

$$^{2}\xi = A \cdot {}^{1}x$$

et aussi

$$\rho \cdot {}^{2}\xi = (A + \overline{A}) \cdot {}^{1}x .$$

C'est-à-dire

$$(\rho - 1) \cdot A \cdot {}^{1}x = \overline{A} \cdot {}^{1}x .$$

De même

$${}^{1}x = A^{-1} \cdot {}^{2}\xi$$
, $\rho \cdot {}^{1}x = (A^{-1} + \overline{A}^{-1}) \cdot {}^{2}\xi$,

ou

$$(\rho - 1) \cdot A^{-1} \cdot {}^{2}\xi = \overline{A}^{-1} \cdot {}^{2}\xi .$$

Théorème 12. — Au point singulier de la quadrique K_1 correspond involutivement le plan qui est singulier pour K_2 et qui passe par ce point.

Démonstration: Soit 1x le point singulier de K₁; alors on a

$$(A + \overline{A}) \cdot {}^{1}x = 0$$
 ou $A \cdot {}^{1}x = -\overline{A} \cdot {}^{1}x$.

C'est-à-dire le point 1x appartient au couple involutif. Soit $^2\xi = A \cdot ^1x$; ensuite nous avons:

$$(A^{-1} + \overline{A}^{-1}) \cdot {}^{2}\xi = (I + \overline{A}^{-1} \cdot A) \cdot {}^{1}x = \overline{A}^{-1} \cdot (\overline{A} + A) \cdot {}^{1}x = 0$$

c'est-à-dire ²ξ est le plan singulier de la quadrique K₂.

Théorème 13. — Le plan d'une paire involutive qui n'est pas le plan singulier de la surface K_2 , possède tous les points singuliers de la quadrique K_1 . Le point d'un couple involutif qui n'est pas singulier pour la quadrique K_1 est situé dans tous les plans singuliers de la surface K_2 .

Démonstration: Elle découle des théorèmes 12 et 10.

2. — LA CLASSIFICATION DES CORRÉLATIONS PLANES.

Théorème 14. — Les coniques fondamentales de la corrélation plane A se confondent en une seule conique quand et uniquement quand, la corrélation est la polarité.

Preuve: Soit $K_1 \equiv K_2$. Ensuite la droite qui correspond au point 1x de la conique K_1 est la tangente de cette courbe en 1x . L'homographie \overline{A}^{-1} . A possède chaque point de la conique K_1 pour point double et il en résulte qu'elle est l'identité.

En raison du théorème 8, la corrélation A est la polarité. Dans ce qui suit nous exclurons ce cas et nous supposerons que A ne soit pas la polarité.

Théorème 15. — Quand les coniques fondamentales de la corrélation A sont les coniques irréductibles nous n'allons distinguer que deux cas:

1º La conique K_1 est tangente à K_2 aux deux points a, b; la corrélation A possède trois couples involutifs $(a; T_a)$, $(b; T_b)$, $(T_a \times T_b; ab)$, où T_a , T_b sont les tangentes communes en a, respectivement en b.

2º Les coniques K_1 et K_2 ont, au point a, le contact quadriponctuel (d'ordre trois); la corrélation A possède un couple involutif $(a; T_a)$, où T_a est la tangente au point a.

Démonstration: Soit a le point commun des coniques irréductibles K_1 , K_2 . La droite qui correspond involutivement au point $^1a \equiv a$ est la tangente de K_2 . Le théorème 10 montre que cette droite est aussi tangente à K_1 en a. Il en résulte que les coniques K_1 et K_2 peuvent posséder en commun soit deux points distincts a, b avec les tangentes T_a , T_b , soit un seul point a avec contact quadriponctuel.

1º Dans le premier cas la droite ab correspond involutivement au point $0 \equiv (T_a \times T_b)$. (Voir fig. 1.) La corrélation A n'a pas les autres couples involutifs. Soit (p; P) un tel couple; d'après le théorème 10 le point p est situé sur la droite ab. Si le point 1r est un point des points communs à la droite p et à la conique K_1 , il correspond involutivement à la droite p $^1r \equiv ^2X$. Ensuite

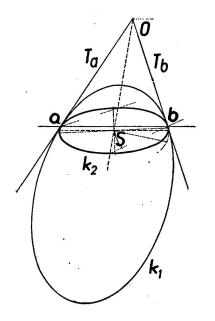


Fig. 1

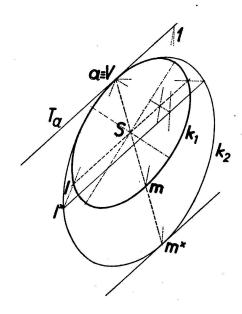


Fig. 2.

l'homographie \overline{A}^{-1} . A a quatre points doubles, à savoir: $a, b, (T_a \times T_b), {}^1r$ qui sont linéairement indépendants, et par suite elle est l'identité, c'est-à-dire que la corrélation A est la

polarité. (Per absurdum.)

Théorème 16. — Quant à la conique K₁ décomposée en deux droites distinctes L, S et quant à la conique K₂ décomposée en

deux points l_1 , l_2 , nous avons seulement un cas.

3º La droite $L_2 \equiv l_1 l_2$ passe par le point $l \equiv (L \times S)$. Ni le point l_1 ni le point l_2 ne peuvent coïncider en l. La corrélation A a deux couples involutifs: $(l; L_2)$, $(s; L_1)$, où s est le point de la droite L_2 pour lequel $(lsl_1l_2) = -1$ et L_1 est la droite du faisceau (l) déterminé par le birapport harmonique $(LSL_1L_2) = -1$.

Démonstration: Le théorème 12 montre que $(l; L_2)$ est un couple involutif et que l est situé sur L_2 . (Voir fig. 3.) La droite ²S du faisceau (l), qui correspond au point l s s donné sur L par la relation $(lsl_1l_2) = -1$, forme avec s un couple involutif d'après le théorème 11.

D'après le théorème 10 nous avons ${}^2S \equiv L_1$, où L_1 est la droite du faisceau (l) pour laquelle (LSL_1L_2) = -1. Si un couple (p; P), différent de (l; L_2), est un couple involutif de la corrélation A, nous déduirons, d'après le théorème 13, que p est situé sur L_1 , c'est-à-dire $P \equiv L_1$, $p \equiv s$.

Théorème 17. — Si la conique K_1 est dégénérée en droite double L et si la conique K_2 est le point double l, on peut démontrer que:

4º Le point l n'est pas situé sur la droite L. La corrélation A possède le couple (l; L) involutif et le faisceau des couples (x; X)

involutifs, où x parcourt la droite L et où X est la droite xl. (Voir fig. 4.)

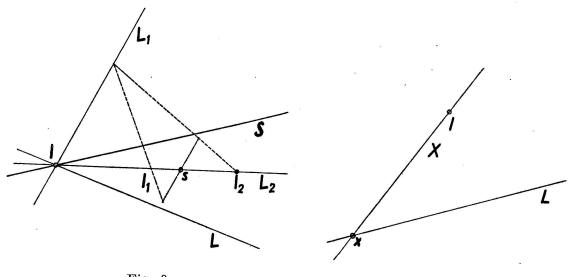


Fig. 3.

Fig. 4.

La démonstration est simple.

Théorème 18. — Si nous choisissons convenablement le système des coordonnées, nous pouvons écrire pour la corrélation du premier ou du quatrième cas:

$$\mathbf{A} = \begin{pmatrix} 0 & a_{12} & 0 \\ a_{21} & 0 & 0 \\ 0 & 0 & a_{33} \end{pmatrix}.$$

Quand, et uniquement quand $a_{21} \neq \pm a_{12}$, nous obtenons le premier cas et, quand et uniquement quand $a_{21} = -a_{12}$, nous obtenons le quatrième.

Preuve: Nous choisirons dans le premier cas: $a \equiv o_1$, $b \equiv o_2$, $(T_a \times T_b) \equiv o_3$; dans le quatrième: $l \equiv o_3$; les deux points de la droite L_2 , qui sont distincts et différents de l, seront pris pour o_2 , respectivement o_3 .

Si $a_{21} = a_{12}$, la corrélation est la polarité. (D'après le théorème 7.) Si $a_{21} = -a_{12}$, la conique K_1 est la droite double.

Тне́опѐме 19. — La corrélation du cas 3° peut être écrite:

$$\mathbf{A} = egin{pmatrix} a_{\mathbf{11}} & a_{\mathbf{12}} & 0 \ -a_{\mathbf{12}} & 0 & 0 \ 0 & 0 & a_{\mathbf{33}} \end{pmatrix}, \quad ext{ où } \quad a_{\mathbf{11}}
eq 0 \ .$$

Preuve: Soit $s \equiv o_3$, $L_1 \equiv x_3 = 0$, $l \equiv o_2$.

Comme K_1 est la conique décomposée en deux droites L, S qui passent par o_2 , on a $a_{21}=-a_{12},\ a_{11}\not=0$.

Théorème 20. — La corrélation du cas 2º peut être écrite de la manière suivante:

$$A = egin{pmatrix} 0 & 0 & a_{13} \ a_{21} & a_{22} & 0 \ a_{13} & 0 & 0 \end{pmatrix}, \quad ext{ où } \quad a_{21}
eq 0 \ .$$

Démonstration: Soit $a \equiv o_3$, $T_a \equiv x_1 = 0$.

Soit o_2 un point arbitraire sur T_a et soit $x_2 = 0$ la droite qui correspond au point o_2 en A. Enfin soit o_1 le point d'intersection de la conique K_1 avec la droite $x_2 = 0$. (Voir fig. 5.)

Les droites qui correspondent au point $(0: y_2: y_3)$ dans les deux espaces pris en considération sont:

$$^{2}(a_{13}y_{3}:a_{22}y_{2}:0)$$
 , $^{1}((a_{21}y_{2}+a_{31}y_{3}):a_{22}y_{2}:0)$.

L'équation $a_{13}y_3: a_{22}y_2 = (a_{21}y_2 + a_{31}y_3): a_{22}y_2$ a (d'après le théorème 15) une unique solution, à savoir: $y_2 = 0$; alors nous aurons $a_{31} = a_{13}; a_{21} \neq 0$.

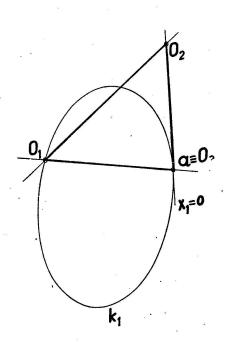


Fig. 5.

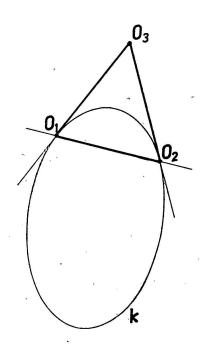


Fig. 6.

Théorème 21. — La polarité plane peut être écrite d'une des manières suivantes:

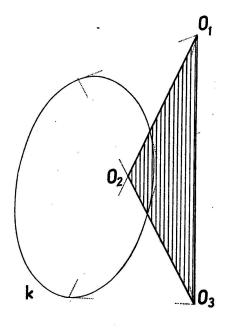
$$A = \begin{pmatrix} 0 & a_{12} & 0 \\ a_{12} & 0 & 0 \\ 0 & 0 & a_{33} \end{pmatrix} \quad \text{ou} \quad A = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{pmatrix}.$$

Le choix des systèmes des coordonnées est évident. (Voir fig. 6 et 7.)

3. — La classification des corrélations dans un espace à trois dimensions.

Théorème 22. — Chaque corrélation régulière dans l'espace possède un couple involutif des éléments qui coïncident.

Démonstration: Le théorème 9 montre que chaque corrélation A a un couple involutif (${}^{1}a$; ${}^{2}\alpha$). Soit le point ${}^{1}a$ en dehors du plan ${}^{2}\alpha$. Les plans ${}^{2}\xi$, qui correspondent aux points ${}^{1}x$ du plan ${}^{2}\alpha$, coupent ${}^{2}\alpha$ aux droites ${}^{2}X$. Les éléments des couples (${}^{1}x$; ${}^{2}X$) correspondent l'un à l'autre dans une corrélation plane B non singulière (Dét. $|B| \neq 0$) qui possède un couple (${}^{1}b$; ${}^{2}B$) involutif des éléments coıncidants. Ensuite le plan déterminé par le point ${}^{1}a$ et par la droite ${}^{2}B$ correspond involutivement au point ${}^{1}b$ dans A.



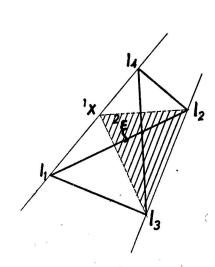


Fig. 8.

Théorème 23. — Quand les quadriques fondamentales de la corrélation A ont le rang 4, cinq cas vont se présenter:

1º Les quadriques K_1 , K_2 possèdent un quadrilatère gauche $l_1l_2l_3l_4$ en commun. La corrélation a quatre couples involutifs:

$$(l_{1}\;;\;\lambda_{1})\;\;,\qquad (l_{2}\;;\;\lambda_{2})\;\;,\qquad (l_{3}\;;\;\lambda_{3})\;\;;\qquad (l_{4}\;;\;\lambda_{4})$$

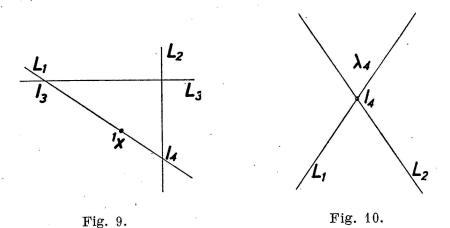
où

$$\lambda_1 \equiv (l_1 \, l_2 \, l_3) \; , \quad \lambda_2 \equiv (l_1 \, l_2 \, l_4) \; , \quad \lambda_3 \equiv (l_1 \, l_3 \, l_4) \; , \quad \lambda_4 = (l_2 \, l_3 \, l_4) \; .$$

(Voir fig. 8.)

20 K₁, K₂ possèdent un quadrilatère gauche $l_1 l_2 l_3 l_4$ en commun. La corrélation a les couples involutifs suivants: $(l_2; \lambda_2)$, $(l_3; \lambda_3)$, $(^1x; ^2\xi)$, où λ_2 , λ_3 sont les plans, mentionnés plus haut et où le point 1x parcourt la droite $l_1 l_4$; le plan $^2\xi$ est déterminé par les points 1x , l_2 , l_3 . (Voir fig. 8.)

30 K₁, K₂ possédent les droites, de système gauche, L₂, L₃ et leur transversale double l_4l_3 en commun. La corrélation a deux couples involutifs: $(l_3; \lambda_3)$, $(l_4; \lambda_4)$, où $\lambda_3 \equiv (l_4, L_3)$, $\lambda_4 \equiv (l_3, L_2)$. (Voir fig. 9.)



40 K_1 , K_2 possèdent les droites de système gauche L_2 , L_3 et leur transversale double l_4l_3 en commun. La corrélation a un faisceau des couples involutifs (1x ; $^2\xi$), où 1x parcourt la droite l_4l_3 ; $^2\xi$ est un plan du faisceau (l_4l_3). (Voir fig. 9.) (Le plan (l_3 , L_2) correspond au point l_4 et le plan (l_4 , L_3) correspond au point l_3 .)

50 K_1 , K_2 possèdent deux droites doubles L_1 , L_2 (qui se coupent au point l_4) en commun, c'est-à-dire que les surfaces K_1 , K_2 sont tangentes l'une à l'autre le long des droites L_1 , L_2 . (Voir fig. 10.)

La corrélation a un unique couple involutif, à savoir $(l_4; \lambda_4)$, où $\lambda_4 \equiv (L_1, L_2)$.

 $D\'{e}monstration$: D'après le théorème 22 il existe un point l_4 qui correspond au plan λ_4 et qui coïncide avec ce plan. Ce plan est tangent à la quadrique K_1 au point l_4 (d'après le théorème 10). Alors, il coupe K_1 aux droites L_1 , L_2 . Les droites L_1 , L_2 sont les droites doubles d'une homographie B induite en λ_4 par l'homographie \overline{A}^{-1} . A, qui a le plan λ_4 pour le plan double. La position des points doubles l_2 , l_3 de l'homographie B et par suite de l'homographie \overline{A}^{-1} . A donne trois cas:

- a) Les points l_2 , l_3 sont situés sur les deux droites L_1 , L_2 . Les plans $^2\lambda_2 \equiv \lambda_2$, $^2\lambda_3 \equiv \lambda_3$ qui correspondent aux points $^1l_2 \equiv l_2$, $^1l_3 \equiv l_3$ en corrélation A, possèdent avec la quadrique respectivement les droites l_4l_2 , l_4l_3 en commun. Ces plans se coupent en une droite qui coupe la quadrique K_1 (excepté le point l_4) au point l_1 . Le plan $^2\lambda_1 \equiv \lambda_1$ qui correspond à ce point $^1l_1 \equiv l_1$ possède les points $l_1l_2l_3$. Nous avons ainsi obtenu les cas 1° et 2° mentionnés plus haut.
- b) Seulement un point (par exemple le point l_3) est situé sur L_1 mais aucune des droites de la quadrique K_1 , qui sont situées en λ_4 (c'est-à-dire L_2) ou en λ_3 (c'est-à-dire L_3) ne contiennent plus de point double de l'homographie \overline{A}^{-1} . A. Dans le cas qui nous occupe nous obtiendrons les cas 3° et 4°.
- c) Aucune droite des L_1 , L_2 (en λ_4) ne contient un point double de l'homographie \overline{A}^{-1} . A. C'est le cinquième cas de notre théorème. Le plan ${}^2\lambda_4 \equiv \lambda_4$, qui correspond au point ${}^1l_4 \equiv l_4$ en A, possède avec la quadrique K_1 deux droites L_1 , L_2 en commun, qui sont aussi les droites de la quadrique K_2 , parce qu'elles sont les axes des faisceaux des plans tangents à la quadrique K_1 .

Or, dans le cas a) les surfaces K_1 , K_2 ont un quadrilatère gauche en commun, dans le cas b) elles possèdent uniquement les droites L_2 , L_3 et leur transversale $L_1 \equiv l_3 l_4$ en commun.

Soit ${}^{1}R$ une autre droite commune aux quadriques K_{1} , K_{2} . La droite ${}^{1}R$ est une transversale des droites L_{2} , L_{3} . La droite ${}^{2}R$ qui correspond à ${}^{1}R$ en corrélation A, soit coïncide avec ${}^{1}R$ soit ne coupe jamais la droite ${}^{1}R$. Si ${}^{1}R \equiv {}^{2}R$, nous obtiendrons les cas 10 et 2 0. Si ${}^{1}R$ et ${}^{2}R$ sont les droites gauches, la droite ${}^{2}R$

coïncide avec $L_1 \equiv l_3 l_4$, parce que ²R est aussi la droite commune aux surfaces K_1 , K_2 . Or, ¹R $\equiv L_1$.

Dans le dernier cas c) les quadriques K1, K2 possèdent uniquement les droites L1, L2 en commun et point d'autres. Si nous supposons que R soit une autre droite commune aux K1 et K2, nous déduirons soit que R coupe L1 mais jamais L2, soit que R coupe L2, mais non L1. Or, c'est le cas b) considéré plus haut. Si les quadriques K1, K2 ont un quadrilatère gauche commun, la corrélation A possède soit uniquement quatre couples involutifs que nous avons déjà pris en considération, et le cas 1º se présente, soit, outre quatre couples mentionnés, un autre couple involutif (1p ; ${}^2\pi$). Le point 1p est situé dans un plan du tétraèdre $l_1 l_2 l_3 l_4$, mais jamais sur un côté du quadrilatère gauche. (Dans ce dernier cas la surface K_1 est tangente à la quadrique K_2 le long du côté mentionné.) (Voir théorème 10.) Alors le point ¹p est situé sur l_1l_4 ou l_2l_3 . Ensuite, d'après théorème 9, n'importe quel point de cette droite est le point d'un couple involutif. C'est ce qui, en effet, a lieu tout au plus pour l'une des droites l_1l_4 , l_2l_3 . (Voir théorème 27.) Nous obtenons ainsi le cas 2°.

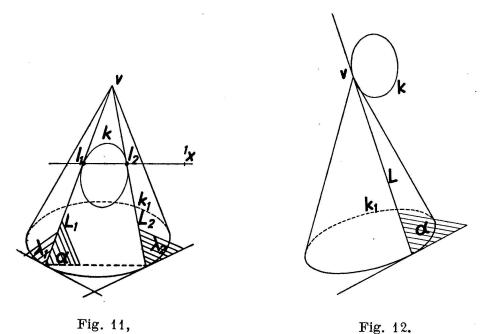
Si les surfaces K_1 , K_2 possèdent un quadrilatère gauche incomplet en commun, la corrélation A a soit seulement deux couples involutifs, énoncés plus haut (cas 3°), soit, outre ces couples, un autre couple involutif (1p ; ${}^2\pi$). Le point 1p doit être situé sur le côté $l_3 l_4$. Dans le cas contraire la transversale X des droites gauches L_2L_3 , passant par le point, 1p est la droite double de l'homographie \overline{A}^{-1} . A. (Voir théorème 9.) C'est-à-dire: Un point des points d'intersection (X \times L₂), (X \times L₃) au moins, est un autre point double de cette homographie. (Mais ce n'est pas notre supposition.) Ensuite n'importe quel point de la droite $l_3 l_4$ est le point d'un couple involutif — d'après le théorème 9. C'est le cas 4° qui a lieu.

Enfin si K_1 , K_2 sont tangentes l'une à l'autre le long de deux droites L_1 , L_2 qui se coupe en l_4 , la corrélation A possède évidemment un unique couple involutif, à savoir: $(l_4; \lambda_4)$, où $\lambda_4 \equiv (L_1, L_2)$. Nous obtenons le cas 5° .

Théorème 24. — Quand les quadriques fondamentales de la corrélation A ont le rang 3, c'est-à-dire que K₁ est l'ensemble des

points du cône irréductible (au sommet ρ), et que K_2 est l'ensemble des plans qui ont pour enveloppée une conique irréductible K du plan α , les cas suivants vont se présenter:

6° Le plan α coupe le cône K_1 en les deux droites distinctes L_1 , L_2 , qui sont les tangentes de la conique K aux points l_1 , l_2 . La corrélation a trois couples involutifs: $(v; \alpha)$, $(l_1; \lambda_1)$, $(l_2; \lambda_2)$, où λ_1 , λ_2 sont les plans tangents du cône K_1 le long de la droite L_1 respectivement L_2 . (Voir fig. 11.)



7º La position du cône K_1 et de la conique K est la même que dans le cas précédent (6º). La corrélation possède les couples involutifs: (ν ; α), (1x ; $^2\xi$), où le point 1x parcourt la droite l_1l_2 . (Voir fig. 11.)

8º Le plan α est tangent au cône le long de la droite L. La conique K est tangente à cette droite au point φ . La corrélation a un seul couple involutif, à savoir $(\varphi; \alpha)$. (Voir fig. 12.)

Démonstration: Le couple $(v; \alpha)$ est le couple involutif — d'après le théorème 12 — et le plan α possède le point v.

a) Soit α le plan qui coupe le cône K_1 aux deux droites différentes L_1 , L_2 . Une droite au moins (par exemple L_1) coupe la conique K au point l_1 différent du sommet ρ . Par suite les plans, qui correspondent aux points de la droite L_1 (ils forment un faisceau de l'axe L_1) sont tangents à la conique K, la droite L_1 est aussi la tangente de la courbe K au point l_1 . De la même manière nous déduirons que la droite L_2 est tangente à K en l_2 .

Les plans qui correspondent aux points l_1 , l_2 forment avec ces points les couples involutifs (d'après le théorème 11). Ce sont les plans λ_1 , λ_2 qu'il y a lieu de considérer.

Si le cas 6° n'a pas lieu, la corrélation possède outre les couples $(\varphi; \alpha)$, $(l_1; \lambda_1)$, $(l_2; \lambda_2)$ une autre paire involutive, à savoir $({}^1x; {}^2\xi)$. D'après le théorème 10 le point 1x est situé sur la droite l_1l_2 . Or, en raison du théorème 9, n'importe quel point de la droite l_1l_2 appartient à une paire involutive. C'est le cas 7° qui se produit.

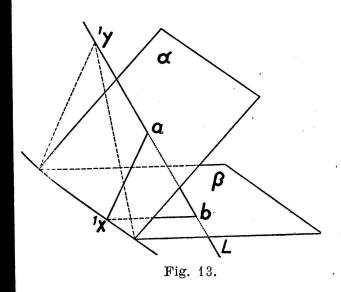
b) Soit maintenant α le plan qui est tangent au cône K_1 le long de la droite L. La corrélation A transforme la figure géométrique formée par les éléments (K_1, α, L) en figure formée par (K, ν, L) c'est-à-dire que la droite L est tangente à K en ν . Si $({}^1x; {}^2\xi)$ est un couple involutif et différent de $(\nu; \alpha)$, le point 1x est situé sur L. On en déduit que le plan ${}^2\xi$ possède la droite L; mais ce n'est jamais possible d'après le théorème 10. Or, le cas 80 a lieu.

Théorème 25. — Si les surfaces K_1 , K_2 ont le rang 2, c'est-àdire si K_1 est une paire de plans α , β et K_2 est un couple des points a, b, nous avons trois cas:

9º Le point a est situé dans le plan α , le point b en β ; les droites ab, ($\alpha \times \beta$), sont les droites formant système gauche. (Voir fig. 13.) La corrélation A, prise en considération, possède les couples involutifs suivants:

$$(a; \alpha), (b; \beta), (^{1}x; ^{2}\xi),$$

où 1x parcourt la droite ($\alpha \times \beta$) et $^2\xi$ est le plan du faisceau (ab), à savoir $^2\xi \equiv (^1xab)$.



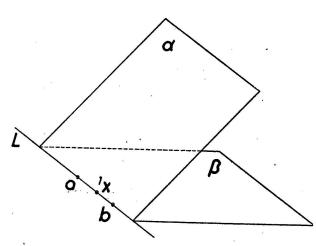


Fig. 14.

10° La position des K_1 , K_2 est la même que dans le cas précédent. La corrélation possède les couples involutifs $({}^1x; {}^2\xi)$, $({}^1y; {}^2\eta)$, où 1x parcourt la droite d'intersection $(\alpha \times \beta)$, 1y parcourt la droite qui joint les points a, b et les plans ${}^2\xi$, ${}^2\eta$ sont déterminés de la manière suivante: (Voir fig. 13.)

$$^{2}\xi \equiv (^{1}x a b)$$
 , $^{2}\eta \equiv \left[^{1}y$, $(\alpha \times \beta)\right]$.

11º La droite qui joint les points a, b coıncide avec la droite d'intersection des plans α , β . La corrélation possède les paires involutives (${}^{1}x$; ${}^{2}\xi$), où ${}^{1}x$ parcourt la droite ab et où ${}^{2}\xi$ possède la droite ($\alpha \times \beta$). (Voir fig. 14.)

Démonstration: Soit L l'axe du faisceau des plans qui correspondent aux points de la droite ($\alpha \times \beta$) en corrélation A. L'axe L est formé avec ($\alpha \times \beta$) dans une paire gauche de droites, ou coı̈ncide avec ($\alpha \times \beta$).

a) Soient L, $(\alpha \times \beta)$ les droites formant système gauche. Les points 1x , 2x qui correspondent au plan $\alpha \equiv ^1\alpha \equiv ^2\alpha$, sont situés dans le plan α .

Dans le cas contraire les plans qui correspondent aux points du plan α coupent α aux droites qui correspondent aux mêmes points en corrélation B (Dét. $|B| \neq 0$). Mais cette corrélation possède uniquement les paires dont les éléments coïncident — ce qui n'a jamais lieu. Par conséquent les points 1x , 2x sont situés sur L; on a $^1x \equiv ^2x \equiv (L \times \alpha)$. Ce point est aussi un des points a, b (de la conique K_2).

Soit par exemple ${}^{1}x \equiv a$; ensuite il y a $b \equiv (L \times \beta)$.

Si la corrélation A n'a d'autre paire involutive, le cas 9° se produit. Dans le cas contraire nous aurons un autre couple (${}^{1}x$; ${}^{2}\xi$). D'après le théorème 13 le point ${}^{1}x$ doit être situé sur ab et n'importe quel point de cette droite correspond involutivement à un plan et forme avec lui une paire involutive. Le cas 10° a lieu.

b) Si L \equiv ($\alpha \times \beta$), les points a, b, sont situés aussi sur ($\alpha \times \beta$). D'après le théorème 13 il n'est point d'autres points des couples involutifs en dehors de la droite ab. Le cas 11° va se présenter.

Théorème 26. — Si les quadriques fondamentales ont le rang 1, c'est-à-dire si K_1 est le plan double α et si K_2 est le point double α ,

une seule possibilité se produit.

12º Le point a est situé dans le plan α et forme avec ce plan une paire involutive de la corrélation A. La corrélation possède les couples involutifs (${}^{1}x$; ${}^{2}\xi$), où ${}^{1}x$ parcourt le plan α , ${}^{2}\xi$ passe par le point a.

Preuve: Les points 1a , 2a qui correspondent au plan α sont situés dans le plan α . D'après le théorème 12 (et par analogie avec la démonstration du théorème 25 a) nous avons $^1a \equiv ^2a \equiv a$. Enfin il n'existe pas d'autre couple involutif (1x ; $^2\xi$) pour lequel 1x ne soit pas situé dans α . Dans le cas contraire on a $^2\xi \equiv \alpha$ (d'après le théorème 13); mais ce n'est jamais possible.

Dans ce qui suit, nous divisons les cas 1º à 12º, que nous avons

pris en considération, en les quatre groupes suivants:

En Ier groupe sont les cas: 1°, 2°, 9°, 10°; en IIe groupe sont les cas: 5°, 6°, 7°, 12°; en IIIe groupe sont les cas: 3°, 4°, 11°; en IVe groupe est le cas: 8°.

Théorème 27. — Les corrélations du premier groupe peuvent être écrites de la manière suivante:

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & a_{14} \\ 0 & 0 & a_{23} & 0 \\ 0 & a_{32} & 0 & 0 \\ a_{4i} & 0 & 0 & 0 \end{pmatrix}.$$

Les conditions nécessaires et suffisantes pour que les cas particuliers aient lieu sont dans:

le cas 10: $a_{41} \neq a_{14}$, $a_{32} \neq \pm a_{23}$; le cas 20: $a_{41} = a_{14}$, $a_{32} \neq \pm a_{23}$; le cas 90: $a_{41} = -a_{14}$, $a_{32} \neq \pm a_{23}$; le cas 100: $a_{41} = -a_{14}$, $a_{32} = -a_{23}$.

Démonstration: Le choix du système des coordonnées dans les cas 1° et 2° est le suivant: Le tétraèdre fondamental est donné par les points $o_1 \equiv l_1$, $o_2 \equiv l_2$, $o_3 \equiv l_3$, $o_4 \equiv l_4$.

Dans les cas 9° et 10° nous choisissons $o_1 \equiv a$, $o_4 \equiv b$; les points o_2 et o_3 sont arbitraires sur la droite $(\alpha \times \beta)$. Les plans ${}^2\eta \equiv (a_{14}y_4:0:0:a_{41}y_1), {}^1\eta \equiv (a_{41}y_1:0:0:a_{14}y_1)$ qui correspondent au point arbitraire $(y_1:0:0:y_4)$ situé sur $o_1o_4 \equiv (\alpha \times \beta)$ doivent coïncider. (Voir le cas 9°.) On en déduit la relation: $a_{14}^2 = a_{41}^2$.

Appendice à la démonstration du théorème 23: Il n'est pas possible, dans le cas général, que tous les points des droites $o_1 o_4$, $o_2 o_3$ appartiennent aux couples involutifs. Si ce cas se présentait nous pourrions en déduire: $a_{14} = a_{41}$, $a_{23} = a_{32}$. D'après le théorème 7 la polarité a lieu.

Тне́окѐме 28. — La matrice des corrélations du deuxième groupe est la suivante:

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & 0 & a_{14} \\ 0 & 0 & a_{23} & 0 \\ 0 & a_{32} & 0 & 0 \\ a_{41} & 0 & 0 & 0 \end{pmatrix}, \quad \text{où} \quad a_{11} \neq 0.$$

Le cas 5º se présente quand et uniquement quand

$$a_{41} \neq \pm a_{14}$$
, $a_{23} \neq \pm a_{32}$;

pour le cas 60 il est nécessaire et il suffit que:

$$a_{41} = -a_{14}$$
, $a_{32} \neq \pm a_{23}$;

pour le cas 7º que:

$$a_{41} = -a_{14}$$
, $a_{32} = a_{23}$;

pour le cas 120 que:

$$a_{41} = -a_{14}$$
, $a_{32} = -a_{23}$.

Démonstration: Le choix du système de coordonnées est le suivant: Dans le cas 5° : $o_{4} \equiv l_{4}$, le plan $\lambda_{4} \equiv (L_{1}, L_{2})$ a l'équation $x_{1} = 0$; o_{2} est un point sur L_{2} , $(o_{2} \not\equiv o_{4})$, o_{3} est un point sur L_{1} , $(o_{3} \not\equiv o_{4})$. Le plan $x_{3} = 0$ correspond au point o_{2} en A et $x_{2} = 0$ correspond au point o_{3} . Enfin o_{1} est le point d'intersection des droites de la surface K_{2} qui sont situées dans les plans $x_{2} = 0$, $x_{3} = 0$.

Nous obtenons, en tenant compte de la caractéristique de la corrélation A, $a_{14} \neq -a_{41}$, $a_{23} \neq -a_{32}$.

Les cas 6°, 7°: $o_4 \equiv v$, $o_2 \equiv l_1$, $o_1 \equiv l_2$, les plans λ_1 , λ_2 ont les équations $x_3 = 0$ respectivement $x_2 = 0$.

Le cas 12° : $o_4 \equiv a$, le plan α a l'équation $x_1 = 0$. Les points o_2 , o_3 sont les points arbitraires dans le plan α , mais ils ne sont pas situés sur une droite qui passe par a. Les plans $x_2 = 0$, $x_3 = 0$ correspondent respectivement aux points choisis o_3 , o_2 . Le coefficient a_{11} est différent de zéro afin que les cas du premier groupe n'aient pas lieu. Nous ferons la distinction des cas 5° , 6° , 7° , par analogie avec celle que nous avons faite dans les cas 1° et 2° .

Théorème 29. — La matrice des corrélations du troisième groupe peut être écrite de la manière suivante:

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & a_{14} \\ a_{21} & 0 & a_{23} & 0 \\ 0 & a_{32} & 0 & 0 \\ a_{41} & 0 & 0 & 0 \end{pmatrix}, \quad \text{où} \quad a_{21} \neq 0 .$$

Le cas 3º va se présenter quand et uniquement quand

$$a_{41} \not\equiv -a_{14} , \quad a_{32} \not\equiv -a_{23}$$

 $a_{14} a_{23} - a_{41} a_{32} \not\equiv 0 .$

Le cas 4°:

Le cas 11º:

$$a_{41} = -a_{14} , \quad a_{32} = -a_{23} .$$

Démonstration: Dans les cas 3° et 4° nous choisissons le système des coordonnées suivant: $o_3 \equiv l_3$, $o_4 \equiv l_4$, le point o_2 est situé sur L_2 et correspond au plan $x_3 = 0$. Le point o_1 est le point d'intersection du plan $x_3 = 0$ avec la droite L_1 . Le choix du tétraèdre fondamental dans le dernier cas 11° du troisième groupe est le suivant: $o_4 \equiv a$, $o_3 \equiv b$; les plans $x_1 = 0$, $x_2 = 0$ sont les plans α (resp. β). Enfin le point o_1 se trouve sur la droite d'intersection des plans $x_3 = 0$, β . Nous déduirons la relation $a_{21} \neq 0$ en exprimant que la droite $o_4 o_2$ ne contient que le point o_4 , considéré comme l'élément d'un couple involutif.

Enfin nous allons différencier les cas 3° et 4° (l'un et l'autre) à l'aide de la méthode mentionnée dans les cas 1° et 2°.

Théorème 30. — Les corrélations du quatrième groupe sont:

$$\mathbf{A} = egin{pmatrix} 0 & 0 & 0 & a_{14} \\ 0 & a_{22} & a_{23} & 0 \\ a_{31} & -a_{23} & 0 & 0 \\ -a_{14} & 0 & 0 & 0 \end{pmatrix}, \quad \text{ où } \ a_{22}
eq 0 \ , \quad a_{31}
eq 0 \ .$$

Démonstration: Le choix du système fondamental des coordonnées est le suivant: $o_4 \equiv v$; le plan α a l'équation $x_1 = 0$; o_3 est situé sur L, le plan $x_3 = 0$ correspond à o_3 dans A. Le plan $x_4 = 0$ contient la seconde tangente (par o_3) de la conique K et le point o_1 correspond à $x_4 = 0$ dans A. Enfin o_2 est le point commun aux plans $x_1 = 0$, $x_4 = 0$ et au plan qui correspond à o_1 dans \overline{A} . Le cône K_1 a le sommet $v \equiv o_4$ et il est tangent au plan $x_1 = 0$ le long de la droite $\overline{o_4o_3}$. On en déduit $a_{23} = -a_{32}$, $a_{41} = -a_{14}$. Le cône K_1 n'est pas irréductible. Or, $a_{22} \neq 0$, $a_{21} \neq 0$.

Тне́овѐме 31. — La matrice de la corrélation polaire (de la polarité) peut être écrite des manières suivantes:

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & a_{14} \\ 0 & 0 & a_{23} & 0 \\ 0 & a_{23} & 0 & 0 \\ a_{14} & 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{pmatrix}.$$

Ces formules correspondent aux deux équations bien connues des quadriques irréductibles.

Тне́овѐме 32. — La matrice de la corrélation nulle (du système nul) peut être écrite:

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & a_{14} \\ 0 & 0 & a_{23} & 0 \\ 0 & -a_{23} & 0 & 0 \\ -a_{14} & 0 & 0 & 0 \end{pmatrix}.$$

Le choix du tétraèdre fondamental des coordonnées y est suivant: Un point de l'espace soit o_4 ; le plan qui lui correspond dans A soit $x_1 = 0$. Soient o_2 , o_3 deux points arbitraires de ce plan. Que les plans correspondants à ces points dans A soient $x_3 = 0$ respectivement $x_2 = 0$ et enfin soit o_1 un point de la droite d'intersection des plans $x_2 = 0$, $x_3 = 0$. Or, le tétraèdre fondamental est choisi.