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FORMULES DU TÉTRAÈDRE

PAR

M. Paul Delens (Le Havre).

Des recherches récentes, exposées en particulier dans Mathesis

(Sur la géométrie du tétraèdre, LI, 1937, p. 119-127 et 444-456;

LU, 1938, p. 62-79), m'ont conduit à l'introduction, pour le

tétraèdre, d'un système fondamental (surabondant) de sept

angles, liés par deux relations identiques. Ceci permet d'établir,
à partir d'une grandeur de base, des formules heptagonométriques

du tétraèdre, suffisamment analogues aux formules trigono-
métriques du triangle, qui semblent susceptibles de rendre les

mêmes services — au moins quand il s'agit de propriétés en

rapport avec la géométrie anallagmatique ; mais les relations

connues relatives aux propriétés projectives, affines et purement
métriques du tétraèdre s'exprimènt simplement aussi avec les

angles en question.
Les démonstrations nécessaires ayant déjà été publiées

(loc. cit.), je me contente ici — à part quelques rappels de

relations intermédiaires et quelques adjonctions — de donner

un tableau des formules explicites, relatives aux principaux
éléments, qui en découlent; tableau qu'on prolongera sans peine
en tenant compte de mes Notes précitées et des résultats
classiques.

1. Définitions et notations. — Soient % ABCD le tétraèdre
de base, Y son volume, R le rayon de sa sphère circonscrite 0,
l et sin la corde et le sinus du tétraèdre. Les longueurs des arêtes
sont BC - a. CA b. AB - c, DA a'. DB b\ DC - c'
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et je pose j a, è, c, /' a!, è', c'. Les angles dièdres de © sont

ÖL, dî, C, c= <9L\ d3', C, respectivement opposés aux
arêtes /, /'.

Je désigne par J A, B, C, D les sommets de % et les angles
des faces opposées avec la sphère (2. L'indice J est affecté aux
éléments relatifs aux sommets et aux faces opposées; les angles
des faces sont ainsi BA, CA, DA; CB, DB, AB ; etc. De même

szi Rj? Tj) hauteurs de ©, aires des faces, rayons des cercles
circonscrits à ces faces, angles trièdres de ©; sin tj? sinus de
Vangle trièdre

Vj ^Rjsj àb'c', bc'a', ca'b', abc (J A, B, C, D)

L'indice i 1, 2, 3 est relatif aux paires d'arêtes opposées
DA et BC, DB et CA, DC et AB; associé aussi aux couples de
lettres /, j' et y ; ht et sont les bihauteurs de © et les angles
des arêtes opposées

^ (DA, BC) (DB CA) (DC AB) (,* 1,2,3).
Je désigne par 0 un triangle associé à ©, ses angles, S sa

surface, dl, dl0, les rayons des cercles circonscrit, inscrit,
exinscrits. Les éléments du triangle associé 0S de von Staudt,
de côtés

ji aa', bb', ce' (i 1,2,3)

reçoivent en général l'indice 5 ($s, dtg, dt0g, dlj, et ceux du
triangle associé réduit (de von Staudt) 0° de côtés j\ /$/2R,
l'indice supérieur 0; plus généralement cet indice affectera les
éléments réduits, obtenus en divisant par 2R les quantités
homogènes à des longueurs.

Le système d'angles fondamentaux est celui des y et J, en
relation étroite avec celui des grandeurs fi et v3. La grandeur
de base choisie dans la suite est 2R.

Abréviations:

CTi> 0i> Xi pour sin J-, cos J-, tg J •, cotg Jf,
aj ' Tj > öj ' Xj P°ur sin J cos J tg J cotg J

P — 0"i a2 O3 > ; S ai + a2 -f~ <*3 î

QiW Vc + Va • ^A + ' +
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pour quatre quantités arbitraires xs, et

as.OiQiW 2PK> •

175

Pour les Xji 3e Pose

Q.(x Q. P (Xj) p (identité fondamentale), P,(Xj) Pj •

Remarques. — Dans les formules qui suivent, les mesures

d'angles sont prises en valeur absolue (de 0 à 2*); je ne reviens

pas sur les conventions d'orientation que nécessite en particulier

la comparaison de divers tétraèdres. Gomme en trigonopie rie,

les formules introduiront pour certaines quantités des eva ua-

tions algébriques. Enfin ces formules seront, suivant les cas,

écrites avec des lettres ou indices courants (J, •••)^ou

particularisés — les formules semblables à celle donnée s obte-

nant alors par permutation circulaire.

2. Relations préliminaires. — Les identités angulaires fonda-

mentales sont

SJ4 it P (^2P Sx,p, ' pj ô^j) • (1)

La première entraîne de nombreuses identités trigonomé-

triques connues du triangle 0. Je détaille pour la seconde les

deux systèmes de relations inverses.

PÀ — ' CTsXB + "+ 0iXD

j PB xA • + CTiXc + >

| Pc °2XA + °iXB • +

PD SiXa + °2XB + asXc ' '
• (2)

/ 2PXA PA + Ï3PB + Ï2PC + Ï1 PB

J 2PXb r3pA — PB + TlPc+ ?«P»

j 2PXC Ï2Pa + flPB PC + ^3Pd

2Px„ YlPA + Y2PB + Ï3PG — PD
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D'après l'identité Sai y, 2P de ©,- on peut encore donner
à (1)2 une des formes

s<Mïi — Qi) P ou Sdi(2Qi— Tj) 0 (1')

En posant

ni Qi(pj> PBPC + PdPa PcPA + PDPB PAPB + PDPC',

on déduit de (2) les relations des types

^ ni (Sci)Qi + 2CT1UaQ2 + 2<Ji Q3 + 02^3 (^Xj) »

| 4P2Qi (l + Sy')IIi + 2 (Yx Yz — Ta) n2

\ + 2(tit3 — T2>n3 + (Y2T3 — ri) (spj) ;

d'où, en tenant compte de crj + ^ — CTi 2ff2ff3Ïi 2P/i,

(Txnx P{So- + Sx! —2(o2Q2 + OsQslXi}

s8n3- Oxg2
ï3 Qa _ ï2 q2 _ p (X3 _ X2,

Finalement; d'après l'identité P(x3 — X2) — T*— Ta de 0,
on obtient

TatQs - Ts) - T2(Qa - T2) • (3)

3. Formules usuelles. — Les relations essentielles utilisées ici
étant

1D 2^1 P1
6V h,P '

(4)

h h h h
1 -~6V> (5>

2S =6V-2R ou 6V • 2R (6)

Il aa' 2dlsa1 /1/2/3 (2dts)«P Vvxvbvc<'i,

PKPA ,2 PBP0
a 2

/a/3 72/3

(7)
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on obtient
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2R, - 2^ K 2RP/,

6Y
(2RP)3

P P P P '
A B G

A D

2 5a _ od (2RPj2
p p p > A p p p >
(2 RP)2

A BCD

a 2R\/^?>V' "2R\/p,jv h (2R)2
VP.

p«/
(d

ApBpcpD

2 OL (2 R)2 2 2R (2RP)^

VPAPBPCPB PAPBPCPB '

Z 2RPaAoBac<7D

Ajoutons encore à ces formules

+ a'»' (2R)2p40#V
I^A-I-Tixp nA B C D

3 Dg <?2 11 >C« + c'2 (62 + &'2) _2aa' 2a1vrvj7pcpii
sin -m

2RP2
(ii)

^VPAPBPCPX>

le deuxième est l'expression de cos tandis que les quantités

^ sin sont les hauteurs du triangle 0°

4. Autres formules. — On utilisera ici en particulier les

relations 1

sin Ct 6Y sin et ®B°C

2sb -2s' a 2<
/ 2 R sin © h3 sin Tj

sin D.
sm xr,

sin (B sin £2R

(8)

(9)

(10).
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Les principales formules relatives aux angles sont

^ l /PDPAal ,n, t /PB PC ®1
sinCt y - aBac sinCl' y p oDaA

\/PAPBPCPD
sinCt sin cl' — aAoBo0orD(j1

A/PB PC ®2 2 psin OisinC ^ aAaBacPB

cos et — yb Tc + aBaßy1 cos cl' — yD YA + <J„ ®A Ti (HI)

cos a cos Cf ya yB Yc Td + ^b'c^d Yi(ïi — Qi) '

sin © P <ta <tb 0c od

P
sm td aAaB <rc PB sm DA

VPb Pc «a®s

s Ha ®9. IL
COS 7)!

\ ^iVPaPBPCPB

On trouvera, en tenant compte de 0X + 02 + 03 0X 02 63,

une expression symétrique simple

Söi cos 3 cosy yAyByGyD 0i0203 + ^a^b^^P • (41)

Pour les angles r\{ on a l'identité connue Ejq cos 0 ou

Zöi cos Y]f 0, résultant encore d'une autre identité intéressante;

en effet, d'après (III) et (3),

cos C cos £' — cos 6b cos Ob' GA gb Gc aD { y3 y3 — Q3) — y2 (y2 — Q2) }

CTglIg CT2 II2 A/PaPbPcPd
— aA aB Gc 2p — aA ^B °D P

C0S %

cos C cos C — cos 6b cos 6b' — sin CX sin 6i' cos % (12)

5. Coordonnées tétraédriques. Angles de Brocard. — Rappelons,

au risque d'une banalité, que la recherche des relations de

position doit précéder l'établissement des formules numériques,

qui les traduisent de façon fragmentaire. A l'origine de nos

formules sont les relations du tétraèdre © avec son tétraèdre

tangentiel et des systèmes desmiques de tétraèdres reposant sur
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un point remarquable, le deuxièmepoint de Lemoine L, et ses

points associés. Nous devrions compléter nos tableaux de

formules par des tableaux de coordonnées de points et autres

éléments. Les relations en cause nous ont en particulier conduit

à l'introduction, à.côté des coordonnées tétraédriques bary-

centriques et normales, d'un nouveau système de coordonnées,

dites principales,dont L est le point-unité. Les coordonnées

barycentriques, normales et principales absolues d un point,

désignées par (y,, d3, ®jr sont liées par les relations

d3 h _ 2R • 6V
i m. - h - —-— E*3

J J (13)

lavec Su, 2^=1, Sp,©, 2R • 6V 2V
La comparaison avec (13) donne aussi

SP,®, 2RP (13')
J

donc on passe d'un système de coordonnées barycentriques ou

normales homogènes à un système de coordonnées principales

homogènes en divisant respectivement les premières par les

quantités Gj, les secondes par les quantités Pj. Aux divers systèmes

de coordonnées tétraédriques se rattachent, comme on sait, les

transformations dites inversions tétraédriques (barycentrique,

normale, principale1, ...)• Tirons-en quelques conséquences.

Les Xj sont des coordonnées principales homogènes du centre 0
de la sphère O ; quels sont les points ayant pour coordonnées

principales homogènes les ou les Pj L'inverse tétraédrique

principal du premier a ses coordonnées normales égales, donc

est le centre I de la sphère inscrite à ©; celui du second a ses

coordonnées barycentriques égales, donc est le centre de gravité
G. Ce qui définit bien ces deux points I* et G*.

Je rappelle que la correspondance entre coordonnées

barycentriques et principales absolues donne

P2(a2txBtxc + a'2 ;

1 L'inversion principale conserve la sphère O.

\
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la forme polaire de cette forme quadratique est construite avec
les quantités

QlK> ^(®»®c + ®C®B +.®„®1 + ®A®d) i "*»

et aux coordonnées barycentriques Vj ptj — p* d'un vecteur
v correspondent les coordonnées principales (absolues)

_ 2 RP / *\ \ir-K-®,) •

j

Ceci étant, le produit scalaire de deux vecteurs et la puissance
d'un point pour la sphère 0 sont, en coordonnées principales
absolues, traduits par

ç. v (Xj Xj) p — Scj^Q^QJj) (14)

d'où le calcul facile de nombreuses expressions métriques.
Je reviens enfin sur l'introduction des angles de Brocard,

U principal, ^ auxiliaire ou normal (ainsi que leurs associés Uj,
Uj, <J^, ^j), conduisant au cercle et à l'ellipsoïde de Brocard,
à la sphère de Lemoine, aux sphères équibrocardiennes, etc.
(loc. cit.)

^Xj cotgU Y*v3 — 12Vcotg^ (15)

La relation (15)2 s'écrit encore, par (4),

SPj 2 P cotg ^ (15')

et la comparaison des angles U et <J>, soit

cotg (R- S

revient à SPj S 2xj> comme cela résulte de (2); je rappelle les

inégalités
cotg ^ ^ 2 cotg U cotg U cot ^ ^ 4 (16)

(Pour les angles U; et on a cotgU?/cotg ^ — Ä4/Öl.)
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6. Tétraèdres particuliers. Jdndique brièvement

^simplifications apportées dans les formules pour un tetraedr: rso-

dynamique, ou équifacial, ou régulier (isodynamique et eqm-

facial), ou orthocentrique.

s tiynamiqm: - On sait que les triangles assoo.es © sont

équilatéraux, ou m' bb' ce'. On a donc

ji |, e,= Vr. x,-^.
p

3 V3
^

g 4p
3 -f cotg tJi 2 cotg U (17)

8

Pj==^(cotgU-x,). SPj ^cotgU.

© équifacial. — Les trois égalités

correspondent à A B C D et les symétries de ce tetrar

èdre entraînent de nombreuses simplifications, basées sur

*r=l/5' »'Si»9. •

donc v ^ - J (aussi =* j) »

/ — / ôq -P+.2S:yi;
N/PTH'- 8'=.VPTB;- COS £ *7 cos ^ "T+2T '

/S^ 2S
sin#- sin#' — y -y •

p + 2s '

PS
2Pj \/Ç i VP,PbPOPB

Q. 2X2, | n, 2Pj PS

© régulier. — D'après (17) et (18), en particulier

cotg U V2" ' cotg t]i 2 \/2~ >

2 Vi
ï ' Uj — 3

3 V® i~>
1

TT —
16

2 V2-
1

0j cos# cos#' I sin # sin y - g

3 V6 Q _ 1 TT. — '^ ' ^1 L i 1 fi
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© orthocentrique. — Ce tétraèdre est caractérisé par les

relations équivalentes

a2 + a'2 62 + ft'2 c2 + c'2

COS 7)! COS 7)2 COS 7)3 0

cos (3. cos cos Oicos03' cos £ cos <2'

comme cela résulte de (II), (III) et (12). Il s'ensuit encore
l'équivalence de ces relations et de

aini 52n! °3n3 ou Yi(ïi — Qi) Y2(y2 —Qa) Ts(Ys — Qs) •

(20)

On en tire facilement

Qi Ti — Y2 r3 Qa Y2 — Ys Yi Qs Ys — Yi Ys

cos -J cos y YaYb.YcYd + Yi Ys Ys
(21)

«ini p(4 + - s°i) ^
sans qu'il en résulte des simplifications pour l'ensemble des
formules données, moins intéressantes pour les propriétés ici
en jeu. Mais cet exemple même suffit à marquer la distinction
des divers groupes de propriétés du tétraèdre.
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