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SUR LES CERCLES FOCAUX DES CONIQUES

PAR

M. Henri Lebesgue, Membre de l'Institut (Paris).

1. —' Introbuction.

Sur un pareil sujet on ne saurait prétendre dire quoi que ce

soit de réellement nouveau, j'ai seulement voulu écrire un exposé

élémentaire et complet des premiers faits de la théorie. C'est

qu'en effet aucun exposé de ce genre n'existe à ma connaissance.

La question ne faisant pas partie des programmes officiels et

le point de départ de la théorie se présentant facilement, on se

contente souvent d'indiquer ce point de départ, renvoyant les

développements aux exercices. C'est ainsi que les exercices 840

et suivants de la Géométrie de M. J. Hadamard (Paris, Arm.

Colin) ou 345 et suivants de la Géométrie de MM. G. Iliovici
et P. Robert (Paris, Léon Eyrolles) constitueraient d'excellents

exposés. Mais il arrive que, n'ayant pas traité ces exercices,

connaissant la théorie des cercles focaux coûime question de

géométrie analytique, certains s'imaginent que l'étude- élémentaire

serait longue, difficile, compliquée de discussions pénibles

et ils hésitent à faire telle remarque, ils ne sont pas préparés à

proposer tel exercice, qui feraient mieux comprendre une

propriété en la généralisant, ou montreraient mieux la puissance

d'un raisonnement.
Il ne s'agit pas du tout d'enfler des programmes déjà trop

lourds; je voudrais, au contraire, aider les jeunes professeurs à

soulager leurs élèves en devinant parfois le mot à dire, celui qui
ferait mieux comprendre. A cet effet, rien ne vaut les généralisa-
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tions et les rapprochements d'autant que, dans la question
actuelle, le rôle mystérieux des foyers n'a été compris des
mathématiciens eux-mêmes que lorsque le raisonnement de Dandelin,
la définition de Plücker ont fait des foyers des cercles focaux
particuliers.

Deux articles, l'un de M. Ch. Bioche, l'autre de M. H. Mirabel,
destinés à de jeunes élèves (Les Sciences au Baccalauréat, oct.
1937 — Paris, A. Hattier) montrent bien comment des maîtres
avertis peuvent utiliser élémentairement la théorie des cercles
focaux. Ces articles m'ont donné l'idée de présenter sous une
forme moins concise et plus accessible une Note que j'avais
publiée jadis (Nom. Ann. de Math.; juin 1923); l'exposé qui
en résulte est d'ailleurs en étroite parenté avec ceux constitués

par les exercices cités ou avec la Note de M. Bioche.

2. — Rappel de propriétés des faisceaux de
CIRCONFÉRENCES.

L'étude de l'axe radical A de deux circonférences T et T1 de

centres Q et conduit à la relation

dans laquelle le symbole ®(M, T), par exemple, représente la
puissance d'un point M par rapport à T et le symbole MA le

vecteur perpendiculaire à A dont l'origine est M et dont l'extrémité

est sur A.
Si r2 est une autre circonférence du faisceau P, Tl7 et dont le

centre est Q2, on a:

D'où, par l'élimination de MA,

n7n2^(M, r) + E£ü2(M, rx) + ûq^m, r2) o ; (3)

relation qui lie les trois puissances d'un point quelconque M par
rapport à trois cercles d'un faisceau.

Si M est tel que la somme des deux premiers termes soit nulle,

m (M, T) — 2 (M, rj + 2 ÛÛ± • MA 0 (1)

2(M, r) — 3(M, r2) + 2QQ2 ' MA 0. (2)
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il en est de même du troisième et inversement; donc lieu des

points M tels que, \ étant uneconstante donnée,

®(M, r) x®(M, rx)

lequel est la droite A pour X 1, pour X ^ 1, circonférence

r2 du faisceau V,I\dont le centre Oa est tel que

x (5)

Ce lieu n'existe donc que si cette circonférence existe. Plaçons-

nous dans le càs où, Tayantle rayon R, I\ est un cercle point.

A est alors la parallèle à la polaire de par rapport a qui

est équidistante de cette polaire et de Q1? c'est-à-dire la media-

trice de a Oi ; O; étant tel que

nïîi • nâi R2 ;

Oi est le second cercle point du faisceau. Le rayon R2 de P2 est

donné de même par
£^2^1 • Ci2Oi R2 »

il n'est donc réel que pour 02 en dehors de Or, le rapport

1

fi2fi + oûi _ QQi

na2

varie de l'infini à

1 1 R2

on, R2 —

sans passer par la valeur zéro, quand 02 se déplace de Ox à O,.

Donc le lieu existe, sauf si l'on a:

X (R2 — ÎÏQi) > R2 • '6)

Si les deux membres étaient égaux, le lieu se réduirait au

point O^.
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3. — Enoncé du problème; conditions d'existence
DU LIEU.

Etant données une circonférence y, une droite d, une
constante non nulle k, étudions le lieu G des points M tels que Von
ait :

£(M, y) k Md (7)

La famille des courbes G contient les coniques.
Si ce lieu existe, il admettra pour axe de symétrie la

perpendiculaire iùx abaissée du centre co de y sur d.
Soit A une droite faisant l'angle 9 avec (ùx et rencontrant

d au point K; pour M sur A, Md, c'est-à-dire la longueur de Md,
égale MK cos 9, donc les points d'intersection de A et de G
sont ceux où A coupe la courbe définie par la relation

2(M, y) k cos2 9 ME* (8)

Cette courbe est un cercle Z du faisceau y, K, ou exceptionnellement

l'axe de ce faisceau.
Les points cherchés existeront si cette circonférence auxiliaire

Z existe et coupe A. Pour le cas où A passe par co l'existence
de Z est seule en question.

Or, d'après (6), elle existe sauf si l'on a :

2

k (r2 cos2 9 — cod > r2

r étant le rayon de y.
Quant à <3, elle existera sauf si l'inégalité précédente était

vérifiée quel que soit 9. Or, la parenthèse devenant négative

pour 9 assez voisin de —il faudrait k < 0 et ceci exigerait alors

que la parenthèse soit toujours négative, d'où

cùd longueur de ad > r

Enfin, comme la plus petite valeur du premier membre est
atteinte pour 9 0, le lieu G existe sauf si Von a à la fois:

2

ad > r k (ad — r2) -f r2 < 0 (9)
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Pour (ùdrlaseconde inégalité ne peut être vérifiée; pour

od > r et k & - r2) + i* 0, G se réduirait à un point,

au pôle H de d par rapport à y. Il était donc légitime d ecarter

comme nous l'avons fait le cas où les inégalités se transformeraient

en égalités.

4. _ Construction par points et par tangentes.

Pour construire £on prendra une droite A que l'on fera

varier continûment. Choisissons cp 0, donc prenons une

droite D parallèle à orx et dont nous ferons varier le pied H

sur d. La relation (8) devient:

<T(M, y) kMR • (10)

Pour k—1, cette relation définit une droite T, d'où un

point M sur D. Ainsi, pour k 1, <3 admet un point et Un seul

sur toute droite D parallèle à wi; nous dirons que est

parabolique.

Pour ky± 1, la relation (10) définit une circonférence P dont

le centre est le point Q de Hw tel que

(il
ÖH

Donc, quand H varie sur d, Q décrit la perpendiculaire 0
à Ocox qui est l'homothétique de d par rapport à co et dans le

rapport

— T (12)
c,ii i

Les deux points M et M' de £ situés sur D sont, quand ils

existent, symétriques l'un de l'autre par rapport à Oy, ainsi,

pour k ^ 1, la courbe £ a un centre 0 et deux axes de symétrie

rectangulaires Ocox, Oy.

Reprenons une droite A quelconque ; ses points de rencontre

avec £ sont sur la circonférence IL définie par (8). Mais tous les

points communs à £et à Z, vérifiant (7) et (8), sont tels que
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Md MK cos 9; donc ce sont les points communs à Z et à A
ou à la droite A' symétrique de A par rapport à

Faisons tendre A vers D, donc K. vers H et 9vers zéro;
Z tend vers T. Les deux sécantes communes à Z et tendent
vers D, les quatre points communs à ces deux courbes tendent
deux à deux vers les points M et M' de rencontre de T et de

On devine ainsi que ces deux courbes sont tangentes en M
et M'; pour le démontrer, précisons. Soit M0 un point de
choisissons A passant par M et par le symétrique de M0 par
rapport à d, A' passe donc par M0. Si l'on fait tendre M0 vers M,
A tend vers D, Z vers T; les deux rayons de Z aboutissant en M
et M0, tendent tous deux vers DM ainsi que la bissectrice
intérieure de leur angle. Donc MM0, qui est perpendiculaire à cette
bissectrice, a une position limite, c'est-à-dire que a une
tangente, et cette tangente est la perpendiculaire à QM.

Donc, en chaque point M de Cilexiste une tangente qui est
la droite Tayant fourni M, si T est une et qui dans le cas
général, la tangente en M au cercle T ayant fourni ce point.

Soit MT cette tangente, T étant sur d. La circonférence de
diamètre MT étant orthogonale en M à T et passant par H
est orthogonale à toutes les circonférences du faisceau H, T,
donc à y. Ainsi: la portion de tangente M.T comprise entre un
point M de C etla droite d est le diamètre d'une circonférence
orthogonale à T. Cette propriété, quand T est un cercle point,
est bien connue: la portion de tangente à une conique comprise
entre le point de. contact et une directrice est vue du foyer
correspondant sous un angle droit; nous la retrouverons.

Les constructions diverses de la tangente se déduisent facilement

de cette propriété qu'on pourra démontrer aussi en recherchant

une droite A tangente à la circonférence Z qui lui est
associée.

La construction des tangentes peut aussi se déduire de celle
des normales. Pour k1, Test l'axe radical de y et de H, donc
est perpendiculaire à wH, la normale en M est parallèle à coH

et, si n est le point de rencontre de cette normale et de ox,
nM et coH sont équipollents. Donc, dans une courbe C parabolique,
la sous-normale (projection de nM sur oyx) est constante et égale
à cod.
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Pour k1,on a, d'après (11),

M n_H (o _ ^ _j_ -i=- 1 — k ;

.Mfl HQ Hü

donc, lesdeux axes Ox, Oy d'une courbe G déterminent

sur toute normale à cette courbe deux segments Mre, MO te

rapport est constant et égal à 1 — k.

5, __ Cercles bitangents, cercles focaux.

Soit k=Al;à toute parallèle D à cox, coupant n H, nous

associons un cercle T grâce à la relation (10), toutes les fois du

moins que cette relation donne un lieu ou un point. Ce cercle

qui peut donc être un cercle point1, est appelé un focal,

dont D est dite la droite directrice. Dans les cas où D et se

coupent, P est un cercle bitangent à G.

Soit Mx un point quelconque, comme (11) et (12) donnent:

OH ÏTS> uQ
-j; k— 1 — k

la relation (3) appliquée aux trois cercles y, T, H d'un meme

faisceau s'écrit :

S (Mi Y) + (k-1) • «(Mi r) - ft® (M1( H) 0

ou, exprimant ®(MX, H) à l'aide de M^d et M^D,

[®(Ma, y) - ftSM2] + (ft - 1) [«(Ml, T) - j^qMxD2] 0

Donc, lacourbe G est susceptible d'être définie à partir de

chaque couple T, D par la relation

danslaquelle on a posé :

i On pourrait même sans grande difficulté parler ici de cercles imaginaires à centres

réels.
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Le passage d'un cercle V de centre £2 et d'une droite D de
pied H à un cercle I\ de centre et à une droite D1 de pied Hj
est immédiat, que ce soit Qj ou Hx qui soit donné. En effet, £2H
et Ü1H1 passant par co, on a:

üco k

hh; ~ ln> k—i K ;

d'autre part, l'axe radical A de T et I\ est parallèle à wx et
passe par le point de rencontre des axes radicaux de T avec y
et de I\ avec y. Mais ceux-ci sont aussi les axes radicaux de y
avec H et de y avec H1? donc A est l'axe radical de H avec H1?
c'est-à-dire la médiatrice de HH1.

Faisons jouer maintenant à T, D, K les rôles que jouaient
tout d'abord y, d, ket cherchons l'intersection de C et de d.
Il nous faudra construire la circonférence définie par

S (M, r) KMH2 (10')

Or, comme l'on a, d'après (3),

ÜH (M, y) + H<Ô®(M, T) + &Tü MH2 0

OU

5H2(M, Y) + H(ô[®(M, r) — KMl2] 0

la circonférence à construire est donc y.
Ainsi le procédé qui, de d, y, k, nous a permis de passer à

D, T, K, permet aussi de revenir des circonférences T à une
famille de circonférences centrées sur Ox et dont y fait partie.

En résumé: toute courbe C à centre est susceptible d'une double
infinité de définitions comme lieu des points dont le quotient de lu
puissance par rapport à un cercle focal par le carré de la distance
à une droite directrice est constant. Les centres des cercles focaux
sont sur les deux axes de (L auxquels les droites directrices sont
respectivement perpendiculaires. A tous les cercles ayant leurs
centres sur Ox correspond la même constante k, à tous ceux ayant
leurs centres sur Oy correspond la même constante K
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On passe d'un cercle focal, soit y de centre « sur à un

cercle jide1(1 même série en remarq1a'au déplacement mwi

du centre correspond ledéplacement ddx de la droite directrice,

tel que _kddi cocùj t14'

et que l'axe radical de y et Tl est la droite équidistante de d et de dr
On passe aux cercles focaux de Vautre série en considérant les

cercles définis par
3>(M, y) kMM ; (10)

H étant un point quelconque de la droite directrice d du cercle y.

6. — Nature des courbes C, lorsque k est différent de 1.

Il sera démontré que (3 est une conique à centre si nous trouvons

un cercle focal de rayon nul.
T sera de rayon nul, si cette circonférence est réduite à son

centre, c'est-à-dire est le second cercle point du faisceau y, H,
donc si l'on af

coli • ço H r2

Ainsi, Q devra être à la rencontre de 0y et du cercle S inverse

de d, y étant le cercle d'inversion. Si S coupe Oy, leurs points

de rencontre sont des centres de cercles T de rayon nul; £ est

une conique d'axe focal Oy.

Or S a pour diamètre
r2

cdd

et, d'après (12),
coO Kcùd

donc (3 est une conique d'axe focal Oy si Von a:

K > 0 r2 > KcdcZ ; (15)

(3 est une conique d'axe focal Ox si I'on a :

k > 0 R2 > /cÔD2 (16)
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Si k est négatif, K est, d'après (13), compris entre 0 et 1* la

première inégalité (15) est remplie, la seconde s'écrit encore
1 — kétant positif,

(1 — k) r2>— k.Si elle n'était pas vérifiée, on aurait

r2 + k (Uli —<0 ;

ce qui exigerait, puisque k est négatif,

<od > r et k(côd2 — < 0

c'est-à-dire les deux inégalités (9), lesquelles ne sauraient être
vérifiées à la fois, C étant réelle.

Donc, pour k < 0, C est une ellipse d'axe focal Oy, et l'on a
une conclusion analogue pour K < 0.

Sik et K sont tous deux positifs, il n'y a plus lieu de tenir
compte des conditions (9), qui ne peuvent être vérifiées
simultanément que pour k < 0. D'après (13), on a alors k 1, K > 1.

Ecrivons la relation (3) pour les trois cercles y, T et H, et
en prenant M au point H, il vient

Hfl(ïn;2 — r2) +êùH(Hfl2 — R2) o

où, d'après (11), (12), (13),

K(Hcù —/•-'} + k(ÏÏTi — R2) 0

Les relations entre longueurs

HG>2 (ad2+ OD2 Hfl2 AD2 + 2

_
HGi (ad OD- Hfl ~ ~ AD '

transforment l'égalité précédente en

K[Kg>(22 — r2] + AD2 — R2] o

ce qui prouve que les deux quantités entre crochets sont de
signes contraires. Donc l'un ou l'autre des systèmes d'inégalités
(15) ou (16) est vérifiée; C est une hyperbole.
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Un cas particulier vaut d'être signalé; c'est celui où les deux

crochets seraient nuls. Alors le cercle S serait tangent àO?/en 0;
pour D confondu avec Ox, T se réduirait au point 0 et la relation
MO2 KMD2 montre que £ est une hyperbole réduite à ses

asymptotes. On laissera de côté ce cas limite dans la suite.

7. — Nature des courbes £ lorsque k égale 1.

Pour éviter des complications de rédaction, on a supposé

k^- 1 depuis le § 5; pourtant l'étude des courbes <3 paraboliques

peut être faite par les procédés des deux paragraphes précédents,
seulement la lettre T désignera maintenant l'axe radical du

faisceau H, y. Il suffira donc de montrer que la marche de l'étude

pour k 1 pourrait être parallèle à celle de l'étude déjà faite.
La relation (1) donne pour tout point Mx du plan

c?(Ml5 y) — $(Mlt H) + 2coH • M^T 0

ce qui s'écrit encore:

(M*, y) — Wd M^D2 — 2côH • Mff

Or £ est le lieu des points M1 pour lequel le premier membre
est nul, donc £ est aussi le lieu des points Mx tels que Von ait:

M^D2— 2^H • M^f 0 ; (17)

ou si l'on veut:
sin 4 • SÜD* — 2 ÏTd M^î 0 (17')

4 étant l'angle de F et de cùx.

Réciproquement, on déduira de l'équation (17) des cercles

focaux ayant leurs centres sur cax; y est l'un d'eux. Les relations
entre la série des droites T et celle des cercles focaux sont les

mêmes que précédemment, seulement la relation (14) s'est

simplifiée; devenue

coco! dd-L (14')

elle exprime la propriété déjà énoncée: la sous-normale est
constante.
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Quant au fait que deux droites T et ri se coupent sur la
médiatrice de HH1? c'est une propriété bien connue des
diamètres de la parabole.

Pour démontrer que nos courbes £ sont effectivement des para-
botes, on pourrait procéder comme au paragraphe précédent, on
ne rencontrerait que des simplifications; mais il suffira de noter
qu'en prenant D confondue avec auquel cas la tangente au
point M de £ situé sur cùx est perpendiculaire à cùx, nous avons
1 équation de £ en coordonnées rectangulaires par la formule (17') ;
cùd est le paramètre de notre parabole.

8. Les deux familles de cercles focaux des coniques

J ai maintenant achevé ce que je m'étais proposé de faire
quant à la théorie générale. Sans doute cette étude pourrait
être, comme toute étude, poussée plus loin, mais je me bornerai
à donner encore quelques indications que les professeurs
pourraient utiliser pour la construction d'exercices. A cet égard, la
caractérisation des familles de cercles focaux est essentielle. Elle
peut être faite de bien des manières; j'indique de nouvelles
formes de cette caractérisation dans le cas des coniques à centre.

Reprenons la relation, qui nous a servi dans le § 5, entre les
puissances d'un point M par rapport à y, T et H, et prenons
pour M le point cù; nous avons:

A CENTRE.

— r2 + (k — 1) [con — R2] — ZlCùH — 0

OU

— r2 — (k — 1) R2 -f co
O2 j^/c — J =0

Simplifions en multipliant par k. =» — K on a:
A 1 '

Kr2 + AR2 — Ü 0 (18)

Cette relation, qui aurait permis une recherche facile des
foyers, s'écrit, en supposant que a>x soit l'axe focal, en conservant
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aux lettres a, b, cleur sens ordinaire, et en posant B +Jr
pour l'ellipse, B —b2pourl'hyperbole, d'où k ^,

D'ailleurs, dans les cercles F il y a toujours celui pour lequel û

est en 0 et R a, ceci donne la valeur constante du rapport

du premier crochet à a2,d'où, pour remplacer (18),

Ces formules donnent les caractérisations suivantes: si Von

modifie dans le rapport ~ les rayons des cercles focaux ayant leurs

centres sur Vaxe non focal, on a le faisceau <ï> des cercles passant

par les foyers;

si Von modifie dans le rapport ^==g
les raUons des cerc^es

focaux ayant leurs centres sur Vaxe focal, on a le faisceau

orthogonal au faisceau ®.

Le rapport
* n'est réel que pour l'hyperbole, il égale

V — B
c

alors j. Pour l'ellipse il faut dire : si Von modifie dans le rapport

les rayons des cercles focaux ayant leurs centres sur l axe focal, on

a les circonférences qui sont coupées diamétralement par celles du

faisceau <E>.

Suivant la nature de la conique et la famille de cercles focaux

envisagés, ces énoncés peuvent être mis sous diverses formes

géométriques. Les plus élégantes ne sont d'ailleurs pas celles

que suggèrent immédiatement les formules (19). Ainsi, considérons

une hyperbole de cercle principal F0, de foyer b, de directrice

correspondante d, d'asymptote s'OsT ; s' et s étant sur T0,

5 sur d, T sur la droite directrice D, parallèle à Ox, d'un cercle

focal T dont le centre fî est sur Oy; D et d se coupent en H, le

pied de d sur Ox est d0.

L'Enseignement niathém., 37me année, 1938. 2.

B [c2 R2 — a2 O ß2] a2 [c2 r2 + B 0 w ]

(19)
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Le cercle de diamètre MT considéré au § 4 se réduit pour le cas
de l'asymptote, M étant à l'infini, à la perpendiculaire en T
à OT. Comme ce cercle est orthogonal à T, cette perpendiculaire
est OT. (Si l'on remarque que les pieds des normales abaissées
de O sur l'hyperbole sont les points de rencontre de cette hyperbole

et de D, on reconnaît là une propriété connue que nous
démontrons incidemment.)

L'axe radical A de T et F0 étant équidistant des droites directrices

D et Ox coupe l'asymptote au milieu À0 de OT. Donc les
symétriques S et S' de 5 et s' par rapport à A0 sont sur T et
nous avons cet énoncé, dû à M. H. Mirabel (loc. cit.) : les cercles
focaux d'une hyperbole ayant leurs centres sur Faxe non focal
découpent sur les asymptotes des segments de longueur 2a.

Le cercle F appartient au faisceau défini par H et par le
cercle y réduit au point F ; H et F sont les deux cercles points
de ce faisceau, donc sont deux points inverses par rapport à V
et le rayon R de celui-ci est donné par:

R2 ÛH • ÛF ÖF2 • ^ OF2 • — OF2
Or op2 c2

Ainsi, les cercles focaux considérés sont vus du foyer sous un
angle constant,égal au supplément de Vangle des asymptotes.
Cette seconde forme, qui découle tout de suite des formules (19),
permettrait d'obtenir autrement l'énoncé de M. Mirabel.

9. — Propriétés diverses.

Il est clair que des énoncés comme ceux du numéro précédent
permettent de construire des problèmes intéressants; on a vu
aussi qu'en étudiant les cercles focaux on rencontrait de
nouvelles démonstrations des propriétés classiques. Il resterait à

indiquer des généralisations des propriétés des foyers aux
cercles focaux assez simples pour qu'elles puissent servir à mieux
faire comprendre ces propriétés et leurs démonstrations; il me
semble que, si l'on veut rester vraiment élémentaire, le choix
est bien plus limité.
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Naturellement, de la propriété exprimée par (7), résultent les

généralisations de la formulé ± MF ± MF7 2a, à deux ou

plus de deux cercles focaux de la même série; je n insiste pas

et je passe aux propriétés angulaires.

Soit une droite A coupant la conique £ en M et M7 et en K
la droite directrice d associée au cercle y de centre cù. Le cercle

auxiliaire Z du § 3 qui passe par M et M7, appartenant au

faisceau K, y, admet pour polaire de K la polaire de K par rapport
à y, c'est-à-dire la perpendiculaire à oR au point k inverse de K

par rapport à y. Cette perpendiculaire JÏP coupant MM7 au point

conjugué harmonique de K, la droite cokK est Vune des bissectrices

de Vangle des droites kM, kM7 joignant aux points M et M7 où la

droite A coupe <3, Vinverse k par rapport à y du point K où A

coupe la droite directrice d.

Par K, faisons passer une autre sécante X coupant £ en m et m7,

kP passera aussi par le conjugué harmonique de K par rapport
à m et m'\ donc kP contient le point de rencontre de mm7 et

de MM7. Soit P ce point. Faisons tendre maintenant X vers A:
Si MM7 coupe la droite directrice à. de y en K, et si k est

Vinverse de K par rapport à y, les deux bissectrices de Vangle MkM7

sont la droite wkK et la droite kP, P étant le point de rencontre des

tangentes à £ en M et M'.
C'est une généralisation du premier théorème de Poncelet.

Si, au contraire, nous avions fait varier A de façon que M reste

fixe et que M7 tende vers M, nous aurions obtenu une nouvelle
démonstration de l'existence de la tangente en M et prouvé que
cette tangente MT est telle que, du point t inverse par rapport à y
du point T de cette tangente située sur d, on voie MT sous un angle
droit.

En d'autres termes, T est le pôle par rapport à y delà droite pM
joignant M au pôle p de A. par rapport à y; c'est une autre forme
de la propriété déjà obtenue pour la tangente.

On construira donc MT en prenant le point T où la polaire
de M par rapport à y coupe d. Le pied m de cette polaire sur
coM est tel que :

/\Mm • M co cl (M y) et Mm MT cos TM
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d'où, puisque

MT — y/îiM'cos 9 y k cos 9

M to • cos TM co /7—
./ V Ä COS 9V|2(M,Y)| Vl v

Si M est extérieur à y, & > 0, est le cosinus du7 Mco

demi-angle sous lequel de M on voit y; soit cos a (M, y).

Si M est intérieur à y, k <0,est la tangente
du dêmi-angle sous lequel de w on voit la corde de y dont M
est le milieu; soit tg ß(M, y). On a donc:

(20)

7 - n COS TM CO />Ä<0' tg ß (M, y) =V-Acos9.

Lefait que le premier membre des formules (20) pour M
fixe sur (3, le même pour tous les cercles focaux d'une même série
est la généralisation à deux tels cercles de la propriété classique:
la tangente bissecte les rayons vecteurs.

„ cosTMto /—« > 0 r y cos çcos a (M y) v y

10. — Autres méthodes.
Cercles focaux des ovales de Descartes.

Ces exemples suffiront à montrer les exercices de généralisation

que l'on peut envisager; bien que nos énoncés ne constituent
pas les seules généralisations possibles, les cas où l'on obtiendrait
des résultats élégants et assez simples. pour être utiles à de
jeunes élèves paraissent peu nombreux. Il faut noter d'ailleurs
que l'exposé actuel se prête mal à la généralisation des pro-,
priétés les plus élémentaires des coniques lesquelles résultent,
non de la définition que nous avons généralisée par la
formule (7), mais de celle-ci: une conique est le lieu du centre M
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d'un cercle 3XL qui passe par un point fixe et est tangent à un

cercle fixe. Essayons de généraliser cette définition.

Nous attacherons tout naturellement à chaque point M un

cercle 3TL de centre M et orthogonal à y. Alors (7) montre que OÏL

coupe la droite directrice d sous un angle constant, réel ou non,

et (1) montre ensuite que OTi coupe aussi sous un angle constant

V chaque cercle du faisceau y, d. En recherchant les cercles du

faisceau pour lesquels cos V ± 1, on aura deux cercles, réels

ou imaginaires, enveloppes des cercles M et dont les centres

sont les foyers, réels ou imaginaires, de la même série de. cercles

focaux que y.
On aperçoit dans ces considérations une méthode connue pour

l'étude des cercles focaux, basée elle aussi sur les propriétés
des systèmes de cercles, et qui généraliserait l'un des procédés

classiques pour passer des définitions de de La Hire à la
définition des coniques par foyer et directrice. Elle consiste
essentiellement en ceci: ayant un premier cercle focal y (par exemple

un foyer ou le cercle principal), de chaque point M défini par (7)

comme centre, on trace la circonférence OTi0 obtenue en augmentant

(ou diminuant) d'une quantité constante le rayon de la
circonférence concentrique OTi orthogonale à y. Alors les Jll0
coupent toutes les circonférences d'un faisceau sous des angles

V0 constants; une d'entre elles donne V0 c'es"k un cercle

focal, la droite directrice correspondante est l'axe radical du
faisceau.

Il est clair que ce procédé, ou tout autre, présente autant
d'intérêt que celui exposé. Je me contente de rappeler celui qui
résulte du raisonnement de Dandelin pour les cercles ayant
leurs centres sur l'axe focal et, pour l'autre série de cercles

focaux d'une ellipse, celui qui consiste à regarder cette ellipse
comme la projection d'une section plane d'une sphère.

Ce dernier procédé peut se généraliser à une conique quelconque
et à n'importe laquelle des séries de cercles focaux; seulement,
si l'on veut rester élémentaire, cela entraîne à des longueurs et
à des artifices qui enlèvent tout intérêt à la méthode; mais son
véritable avantage est qu'il s'applique aussi aux ovales de

Descartes. C'est pour ce cas seulement que je vais l'indiquer et
en faisant franchement appel à la théorie des quadriques.
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Considérons deux quadriques de révolution Qx, Q2 à axes
parallèles, disons verticaux. Toute quadrique Q passant par
leur intersection est une quadrique de révolution à axe vertical ;

tous les axes sont dans un même plan. Il faut noter pourtant
que la quadrique Q0 dont l'axe est la droite de l'infini du plan
des axes n'est pas vraiment de révolution: Q0 est le cylindre
parabolique projetant l'intersection sur le plan des axes.

Dans les quadriques Q il y a, en général, quatre cônes dont
l'un se réduit au cylindre Q0. J'écarte le cas où Qx, Q2 seraient
homothétiques, cas qui conduirait à l'étude des coniques et non
des ovales; il y a alors trois cônes en plus de Q0. Soient Sx,
S2, S3 leurs sommets; Fx, F2, F3 les projections de ces sommets
sur le plan horizontal de projection; Ax, A2, hs les cotes de ces
sommets au dessus du plan horizontal; 0X, 02, 03 les demi-
angles aux sommets des cônes.

Si M est un point du plan horizontal, les cotes des points des

trois cônes qui se projettent en M sont :

K ± MFX tg 0J h2 ± MF2 tg 02 h3 ± MF3 tg 03

D'où, pour définir la projection de l'intersection, l'une
quelconque des trois relations:

hx ± MFX tg 0X h2 ± MF2 tg 02 h3 ± MF3 tg 03 (21)

Donc la projection envisagée est un ovale de Descartes de

foyers, réels ou imaginaires, Fx, F2, F3. Bien entendu tout
ovale peut inversement être considéré comme une telle
projection, d'où l'existence du troisième foyer de l'ovale. Mais on
peut aller plus loin: soient Hx et H2 les cotes des plans des

centres de deux, Qx et Q2, de nos quadriques, soient yx et y2
leurs contours apparents en projection horizontale. Qx, par
exemple, sera définie par une relation de la forme

(z-B^ Kx c? (M, Tl)

où M est la projection d'un point et z sa cote. La projection
de l'intersection de Qx et Q2 est donc définie par la relation:

H, ± VKx«(M, Yi) H2 ± VK.«(M Yi) ; (22)

généralisation exacte des relations (21).
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Les cercles yl7 y2 jouent donc le rôle des foyers; ce sont les

cercles focaux de l'ovale. Et, puisque la projection d'une courbe

tracée sur une quadrique est tangente au contour apparent en

projection aux points où elle lé rencontre, ces cercles focaux

sont ceux des cercles bitangents à l'ovale dont les centres sont

sur l'axe de symétrie F1F2F3 de la courbe.

L'étude des ovales est donc à recommander aux aspirants

professeurs; en particulier, les définitions des coniques, à 1 aide

de deux foyers ou d'un foyer et d'une directrice, leur apparaîtront

alors comme deux cas particuliers de la définition d'un ovale

par la relation (22).

SUR LA THÉORIE DE L'ORDRE DES FIGURES

RÉELLES

ET LES TRAVAUX DE M. HAUPT

PAR

M. Linsman (Liège).

1. — Dans un très intéressant article « Sur la géométrie finie

et les travaux de M. C. Juel » [51]1, M. Montel a donné un

exposé d'ensemble des travaux de ce géomètre et des recherches

qu'ils ont suscitées chez d'autres auteurs.
Sans vouloir fixer des limites bien nettes à la géométrie finie,

nous pouvons dire qu'elle considère ordinairement ce que Juel
a appelé des figures élémentaires. Celles-ci sont toujours réelles,

mais elles atteignent à un grand degré de généralité.

La notion capitale intervenant dans leur définition et dans

leur étude est la notion d'ordre.
Considérons un ensemble ponctuel E plan (ou spatial), et

supposons qu'il possèdo un nombre borné de points sur toute

i Les nombres en caractères gras renvoient à la bibliographie placée à la fin de cet
article.
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