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SUR LES CUBIQUES DE LUCAS 131

elle rencontre à nouveau la courbe en un point de coordonnées

barycentriques

l tgA(tg2B + tg2C — tg2A) etc.

Voici la distribution de quelques points remarquables de la
première cubique, d'après les points de concours des tangentes
et avec l'indication des arguments respectifs dans la représentation

elliptique:

1er groupe. Points de contact des tangentes à la cubique
issues de l'orthocentre H(c).

A B G $
COx C02 0>3 0

2me groupe. Point? de contact des tangentes issues du point
<D(0).

G G' G" G'" '

v vvv2 2+ "l 2+ + 03 •

3me groupe. Points de contact des tangentes issues du point
v):

H <ï>' <DW

p c + cox c + <o2 v + co3

sont les projections de Hx sur les côtés BG, CA, ÀB.
Les hauteurs de G'G'G'" sont précisément les droites G'<D',
G" <E>" et G"'®'".

La condition d'alignement de trois points sur la cubique est:

ux -h u2 + uz 9

La seconde cubique de Lucas.

9. — En coordonnées normales, l'équation de la seconde
cubique est :

2(cosB cos C —• cosA).x(y2—'z2) 0 ;



132 E. TURRIÈRE
mais cömme les coordonnées xx, y1, z1 du point M1 (symétrique

de H par rapport à 0) sont précisément

xx cos B cos G — cos A etc.

cette équation
?*x1x {y2 — z2) — 0

«î Vi
x y

I I
a y

montre que la seconde cubique est une cubique circonscrite à
ABC, invariante dans la transformation isogonale, identique au
lieu de points inverses dans la transformation isogonale alignés
sur H1.

En coordonnées barycentriques, la seconde cubique a pour
équation

2 ßy — 1 2ya — 1

ß + Y T + a

Cette cubique admet 0 comme centre de symétrie et point
d'inflexion. La tangente inflexionnelle en 0:

cos2 B — cos2 G r^ sin^Â 5 0

est la droite OK joignant 0 et le point K de Lemoine.
Les asymptotes sont les médiatrices du triangle.
La seconde cubique passe par les points A, B, C, 0, H, les

points I, I', I* et V" (centres des cercles tritangents), le pivot
Hj et son homologue H, dans la transformation isogonale, les
milieux A', B', C' des côtés du triangle; les points a, ß, y à
l'infini sur les hauteurs, les points Alt B1( diamétralement,
opposés à A, By G sur la circonférence circonscrite.

2 aß — 1

X

a + ß
X

0
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La tangente en H à la seconde cubique, tangente dont l'équation

est:
cos2 A (cos2 B — cos2 G) A

^ 5 7
~~ c »

sin2 A

passe aussi par le point K de Lemoine.

La condition d'alignement de trois points d'arguments m1?

et étant
+ U% "l- Uq P

les points remarquables de la cubique se classent ainsi:

2er groupe. Quatre points dont les tangentes concourent en

H,»:
A B G

O)! co2 co3 O

2me groupe. Tangentes concourantes en Hx(0):

1 v V V"

ce, P v
2" 2

1 ' 2 + 02 ' ¥ + "3 *

3me groupe. Tangentes concourantes en 0 (centre de la courbe
et asymptotes):

O a ß y

p p 9 9

3 "3 1 3 + "2 3^ 3 '

4me groupe. Tangentes concourantes en (—c):

H/ AG B' G'

9 9 + C0X 9 + C02 P + <03

/ p
5me groupe. Tangentes concourantes en un point ——

qui est symétrique de Hi par rapport à 0 :

H Ax Bt Gx

2 p 2 p • 2 p 2 p

Y T + 0)1 T. "2 Y + 0)3 •
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10. — La seconde cubique de Lucas est une solution du

problème suivant :

Déterminer une cubique circonscrite du type

X2 y2

[C) Ix my nz 0

1 1 1

passant par le centre 0 du cercle circonscrit et admettant ce point
pour point d'inflexion.

La hessienne de la cubique a pour équation

H EE

my — nz

mx —- ly

Iz — nx

iy

Ix

ny — mz

mx

nz

Iz — nx

ny — mz

Ix— my

0

soient (x, y, z) les coordonnées du point d'inflexion M imposé
d'une manière générale et dans l'un ou l'autre mode de
coordonnées. Pour satisfaire à l'équation (G), il suffit de poser

l X
yz
0

xy
0 '

0 étant inconnu. En portant dans l'équation de la hessienne,
on obtient

03 — 0(x2 + y2 + z2) — 2xyz 0

[Sous la condition (x2 — y2) (y2 — z2) (z2 0 qui exclut
les points situés sur les droites invariantes de la transformation
quadratique et auxquels correspondent des cubiques décompo-
sables.]

En coordonnées trilinéaires normales, le centre 0 du cercle
circonscrit a pour coordonnées

Posons
x — cos A y cos B z cos G

cos A • cos B • cos G W ;

l'équation cubique devient alors

03 — 0(1 — 2W) — 0
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A la racine 0 1, correspondent les expressions suivantes:

l cos A— cosB cos G etc.

de l, .m, ri; c'est-à-dire précisément la seconde cubique.
Pour un triangle réel, cette solution est simple (elle serait

double pour les triangles imaginaires a2 +A2 + c2 0 et la
solution simple serait 0 — 2).

L'équation en 0 a deux autres solutions, celles de l'équation
quadratique

62 + 0 + 2® 0

Elles sont réelles, le produit cos A • cos B • cos G étant toujours
linférieur à
-g-. Si R est le rayon du cercle circonscrit, OH la

distance du centre 0 de ce cercle à l'orthocentre H, les racines
ont pour expressions:

R ± OH
^

- 2R ' '

on a effet, pour le triangle quelconque:

ÖH2 9R2 — (a2 + b2 + c2)

A -D n p2 — (2B + r)2
cos A • cos B • cos G — -4R2

Ces deux dernières racines sont distinctes, sauf pour le triangle
équilatéral (w

D'ailleurs l'équation générale

03 — 0 (x2 + y2 + z2) — 2 xyz 0

a pour discriminant A (notations des fonctions elliptiques)

A 64[ic6 + + 3x2y2z2 + 3Xx2(y2 — z2)2] > 0

Les résultats de substitution pour —oo —x, —y, —z, o, x,
y, z go montrent aussi que l'équation en 0 a toujours ses racines
réelles.

On peut la mettre enfin sous la forme

vz w 1
Qx + yz Qy + zx Qz + xy '

qui se prête mieux à la discussion.
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