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SUR QUELQUES PROPRIÉTÉS DES NOMBRES

DE LA FORME am + bm

PAR

A. Kulakoff (Moscou).

Dans mon travail: Sur quelques propriétés des groupes finis1
j'ai démontré le théorème suivant: soit p un nombre premier
impair, et oc un nombre entier tel que oP 1 (mod k). Alors une
congruence linéaire de la forme:

(aï+1 — l)x cé — 1 (mod k) (1 ^ i ^ p — 2)

admet nécessairement une solution.
C'est en essayant de généraliser ce théorème que je suis arrivé

aux résultats du présent article.

§ 1. — Soient a et b deux nombres entiers positifs, premiers
entre eux, et tels que ab ^ 1. Nous allons démontrer que le plus
grand commun diviseur d des nombres am + bm et an + bn
divise l'un au moins des nombres a* + b% et a^~—b^, où
S (m, n).

Soit m > n. Si m est divisible par n, le théorème est évidemment

vrai.
Supposons maintenant que

m vn -f ai (1 ^ 0-i < ^
n cj^ + a2 (0 aa < cyj

1 Recueil mathématique (nouvelle série), t. 1, fasc. 2, p. 253 (1936).
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Il est clair que ddivise le nombre

am+ bm_frm-n^n + _ (am-n _ jm-n^ _

Or d est premier à an, puisque d est un diviseur de an + bn,

donc d divise am~n — bm~n.

Il en résulte que d divise aussi le nombre

am-n _ bm-n + bm-2n^an + bn+ bm~2n)

et par suite le nombre am'2n + ém_2n.

En continuant ainsi, nous démontrerons que d divise l'un au

moins des nombres a?i+ bai et a°i — 1. Si donc a., 0, le

théorème est démontré. Si cr3 > 0, d divise l'un des nombres

aP2 -)- ba2 et a?i — bc2.En répétant au besoin ces raisonnements, nous établirons

complètement notre théorème.
On obtient des résultats analogues pour les nombres am + bm

et an — bn,ainsi que pour les nombres am — bm et an + bn.

Considérons à présent le cas des nombres am — b et an — bn.

En suivant la marche qui a été indiquée plus haut, on démontrera

que d divise a8— b8. Mais d est en même temps divisible

par a8 — b8, puisque S divise chacun des nombres m et n, donc

d a8— b8.

Etudions encore le cas où m est un nombre impair, et

(m, ri) 1. Alors d (am— bm, an + bn) divise 2.

En effet, dans ce cas d divise l'un au moins des nombres

a _|_ b et a —b.Mais(am — bm, a+ b) divise 2. On déduit cela

de ce fait que même d' (am — b"\ am + bm) divise 2, puisque
d' divise

lam+ bm) + (am — bm) 2

et (am — bm, 2 am)divise2.

On démontrera de même que (an + — b) divise 2. Notre

théorème est donc établi.
En particulier, si l'un des nombres et est pair et l'autre

impair, alors (am — bm, an + bn) 1.
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Admettons à présent que m — p soit un. nombre premier
impair. Alors chacun des nombres

divise p.
En effet, comme (/?, p — i) ="1, on a

(aP __ bV oP~l — bV-i) a — b

d'où il suit, en vertu d'un théorème connu1, que

divise p.
En se servant des résultats précédents, on obtiendra sans

peine le théorème suivant: Si (a, b) 1, a — b ^ 0 (mod. 2) et

d'ailleurs a — bj 1, alors
__

est premier à

chacun des nombres.

§ 2. — Nous allons indiquer maintenant quelques applications

des théorèmes précédents.
Soit (a, b) — 1 et ab ^ 1. Alors on peut démontrer le théorème

suivant. Pour qu'un nombre p soit premier, il faut et il suffit que le
plus grand commun diviseur des nombres ap — bp et a1—b1
(i 1, 2, p — 1) soit égal da — b.

Cette condition est nécessaire, d'après le théorème sur le plus
grand commun diviseur des nombres am — bm et an — bn
établi dans le § 1.

Elle est aussi suffisante. En effet, si p — tu (t > 1, u > 1),
alors (av — èp, au — bv) a — è, puisque -

oP —bv atu — btu (au — bu) bu +
est divisible par au — b'1 > a — b.

1 Voir par exemple E. Lucas, Théorie des nombres. t. 'l, p. 341

ap-l __ hv-A
^

ap-2 __ bp-2 _ a? — b\

ainsi qu'à chacun des nombres

aP + b» aP-1 + b?-1 a2 -P b2
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Considérons à présent une congruence linéaire de la forme :

(a1—bl)x a?—(mod k) [(i, p,) (/, fx) l] (1)

où (a, b) 1, ab ^ 1 et d'ailleurs aV- bv- (mod. k).
Cette congruence admet une solution.
En effet, comme (ï, p) (/, p.) 1, nous avons:

(a* — b!X a} — Û) (a* — b* aß — W) a b

Si donc (/c, a — b) — 8, on a aussi (Zc, a1 — b{) (A, a? — bj) 8.

Par conséquent, la congruence (1) est équivalente à la
suivante:

Ax B (mod k')

OÙ

A_^, B=î^' e,

Comme A et k' sont premiers entre eux, notre théorème est

démontré.
En posant b — 1, / i — 1 et p, p, nous retrouvons le

théorème qui a été établi par l'auteur dans l'article cité plus
haut.

Mais ce dernier résultat n'est pas nouveau \ puisqu'il découle
Xm - 1

immédiatement de ce'fait connu que les nombres
x__ ^

gçA j
— J où x est-un nombre entier positif distinct de 1, sont

premiers entre eux, toutes les fois que m et n le sont2.
A son tour, ce théorème se laisse généraliser de la manière

am bm a11 bn
suivante : Les nombres

__ b
et

__ b
- où (a, b) (m, n) 1

et ab ^ 1, sont premiers entre eux. Ce résultat paraît être nouveau.

1 J'ai appris cela quelque temps après la publication de- mon travail.
2 Voir: H. C. Pocklington, The divisors of certain arithmetical forms, etc.

Proceedings. Cambr. Philosoph. Soc., v. 16, p. 7 (1911).
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