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SUR QUELQUES PROPRIETES DES NOMBRES
DE LA FORME a™ + p™

PAR

A. Kurakorr (Moscou).

Dans mon travail: Sur quelques propriéiés des groupes finis?
j’ai démontré le théoréme suivant: soit p un nombre premier
impair, et o un nombre entier tel que ocp = 1 (mod k). Alors une
congruence linéaire de la forme:

(' — )z =t —1 (modk), (1<i<p—2)

admet nécessairement une solution.
C’est en essayant de généraliser ce théoréme que je suis arrivé
aux résultats du présent article.

§ 1. — Soient a et b deux nombres entiers positifs, premiers
entre eux, et tels que ab == 1. Nous allons démontrer que le plus
grand commun d1v1seur d des nombres a™ 4 ™ et o 4 b7
divise I'un au moins des nombres ad + b% et o5 — b3, ou

= (m, n).

Soit m = n. Si m est divisible par n, le théoréme est évidem-
ment vrai.

Supposons maintenant que

m = vn + o (1 =0, < n)

n=o1m +0; (0=0,<o0y

1 Recueil mathématique (nouvelle série),'t. 1, fasc. 2, p. 253 (1936).
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Il est clair que d divise le nombre
a™ 1 By (g - BN = @ (a™T — pmmy

Or d est premier & a", puisque d est un diviseur de a" + b*,
done d divise ™™ — b ™.
Il en résulte que d divise aussi le nombre

aMm™m __ pm T pm—2n (a™ + b = a™ (am—2n an bm—?n) ,

et par suite le nombre ™" + " ",

En continuant ainsi, nous démontrerons que d divise I'un au
moins des nombres aSt -+ b% et a1 -— b%. Si donc o, = 0, le
théoréme est démontré. Si o, > 0, d divise 'un des nombres
aSz + bo: et a®z — bOa. :

En répétant au besoin ces raisonnements, nous établirons
complétement notre théoreme.

On obtient des résultats analogues pour les nombres a™ -+ o™
et @™ — b", ainsi que pour les nombres a™ — b™ et a™ + b".

Considérons & présent le cas des nombres a™ — b™ et o™ — b".
En suivant la marche qui a été indiquée plus haut, on démon-
trera que d divise a® — b%. Mais d est en méme temps divisible
par a® — b3, puisque § divise chacun des nombres m et n, donc
d = a® — bo.

Etudions encore le cas ou m est un nombre impair, et
(m, n) = 1. Alors d = (a™ — b™, a® 4 b") divise 2.

En effet, dans ce cas d divise I'un au moins des nombres
a - b et a —b. Mais (™ — b™,-a + b) divise 2. On déduit cela
de ce fait que méme d' = (a™ — b™, a™ 4 b™) divise 2, puisque
d’ divise o

(@™ + ™) + (a™ — b)) = 24™ ,

et (@™ — b™, 2a™) divise 2. A |
On démontrera de méme que (a" + b", a — b) divise 2. Notre
théoréme est donc établi.
En particulier, si I'un des nombres a et b est pair et I'autre
impair, alors (g™ — b™, a® 4 b") = 1. ” | |
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Admettons & présent que m = p soit un nombre premier
impair. Alors chacun des nombres

(%Z—?—O , ‘\'ap‘i.-—--b'l”'i> o li=12 )
divise p.
En effet, comme (p, p — 1) = 1, 0on a
(a? — bP | a,p“i—fbp_i) =a—25b,

d’ou il suit, en vertu d’un théoréme connu?, que
4P — BD . . al _ pp " )
“ p=i __ gp—i) _ (& 97 L
( w3 @ b > ( 5 @ b
divise p. |

En se servant des résultats précédents, on obtiendra sans

B peine le théoréme suivant: Si (a, b) = 1, a — b = 0 (mod. 2) et
. b__pP qP __ 1P
B dailleurs (H, a ~—b> — 1, alors 2 b

a—>b
chacun des nombres.

est premier d

aP~t __pp=t o gpR -2 , a? — b2 |
ainst qu’'d chacun des nombres

ap+bp, aP~t 4 pr-1 ., a4 bR,

§ 2. — Nous allons indiquer maintenant quelques apphca—
tions des théorémes précédents. f ﬁ
Soit (a, b) = 1 et ab >~ 1. Alors on peut démontrer le théoréme
suivant. Pour qu’un nombre p soit premier, il faut et il suffit que le
plus grand commun diviseur des nombres aP — b et al — bl

@=1,2,. o P — 1) soit égal @ a —b. |

Cette condltlon est nécessaire, d’apres le théoreme sur le plus
grand commun diviseur des nombres a® — b et a™— b
établi dans le § 1.

Elle est aussi sufﬁsante En effet, si p = tu(t > 1, u > 1),
alors (a®? — b7, a* — b") 7= @ — b, puisque - |

al —_ pp = at __ plu — (a% — p¥ )(au@t 1) + a¥(t=2) pu + ...

est divisible par a* — b™ > a — b.

1 Voir par exemple E. Lucas, Théorie des nombres, t. 1, p. 341.
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Considérons & présent une congruence linéaire de la forme :
(@ —8)e=d—>b (modk), [(i,u) =0 uw=1], (1)

ou (a, b) = 1, ab = 1 et d’ailleurs a* = b+ (mod. k).
Cette congruence admet une solution.
En effet, comme (i, p) = (j, ) = 1, nous avons:

|

(@t — b, al—b) = (@ — b, o —b) —a—b.

Si done (k, @ — b) = 3§, on a aussi (k, a* — b*) = (k, ¥ — b) = 3.
Par conséquent, la congruence (1) est équivalente a la sui-
vante: :
Az = B (mod &') ,
ol
al — b ~ al — bl

"_k
S ) B = S et k——g-

Comme A et %’ sont premiers entre eux, notre théoréme est
démontré. , ‘
~ En posant b = 1,j = i — 1 et p. = p, nous retrouvons le
théoréme qui a été établi par I'auteur dans l'article cité plus
haut. ,, . |
Mais ce dernier résultat n’est pas nouveau !, puisqu’il découle

« m ——
immédiatement de ce-fait connu que les nombres —— et
Tt —1 o . fageg Wy i
—— » Ou « est.un nombre entier positif distinct de 1, sont

premiers entre eux, toutes les fois que m et n le sont 2.

A son tour, ce théoréme se laisse généraliser de la maniere
suivante: Les nombres ——— et ——=-, ol (a,b)=(m,n) =1

et ab £ 1, sont premiers enire eux. Ce résultat parait étre nouveau.

1 J’ai appris cela quelque temps aprés la publication de mon travail.
2 Voir: H. C. PockLINGTON, The divisors of certain arithmetical forms, etc., Pro-
ceedings. Cambr. Philosoph. Soc., v. 16, p. 7 (1911). ’ .
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