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APPELS A LINTUITION GEOMETRIQUE 65

VII. — DEDUCTION GEOMETRIQUE DE LA FORMULE DE STIRLING.

On connait la déduction analytique, assez pénible, de la
formule asymptotique de Stirling, d’un emploi fréquent dans le
Calecul des Probabilités, formule qui s’écrit sous forme loga-
rithmique:

. | 1
lognépn! = nlognépn —n -+ %log nép 2w + —2—lognépn .

Mais, dans beaucoup d’applications, surtout dans la Méca-
nique statistique, on emploie la formule, moins approchée mais
plus simple,

log nép nl = nlognépn —n . | (1)

Un physicien autrichien bien connu, M. Arthur Haas, donne_
une démonstration géométrique trés intéressante de cette formule
raccourcie dans son Einfihrung in die theoretische Phystk.
Je crois avoir amélioré et précisé la démonstration de M. Haas,
dans DParticle Mecdnica Estadistica que j’ai écrit pour la Enci-
| clopedia Universal Ilustrada ou Enciclopedia Espasa, qui est la
meilleure encyclopédie parue en espagnol, et peut-8tre la plus
compléte et la plus monumentale du monde. Je prends la liberté
d’insérer ici un extrait de cette démonstration.

Sur I'axe des abscisses d’un systéme cartésien (fig. 6), pre-
nons les points dont les abscisses sont les nombres naturels
1,2, 3, 4, 5, ..., n et construisons un ensemble de rectangles de
base 1 et dont les hauteurs soient égales aux logarithmes népé-
riens des nombres naturels. Nous aurons ainsi le rectangle 52
dont la hiauteur est log nép 1 = 0; le rectangle 2cd3 dont la
hauteur est log nép 2; le rectangle 3ef4 dont la hauteur est
log nép 3; et ainsi de suite jusqu’au rectangle dont la hauteur
est log nép n. Ces rectangles ayant leur base égale & 1, leurs
aires s’expriment par les mémes nombres que leurs hauteurs,
soit par les logarithmes népériens des nombres naturels, de sorte
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que I'aire de la ﬁgure b2cdefghijkmopgrsnb formé par l’ensemble
" des n premiers rectangles aura pour expression

lognép 1 + log nép 2 + lognép3 R
+ ‘l/ognépn = lognép1.2.3.4 ... n = lognépn! .
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Fig 6
Mais remarquons que la courbe
'y = lognépz , . (2)

qui passe par.les sommets supérieurs gauches des rectangles
enferme une aire

n .
A =J log nép z dz - (3)
1

égale a la somme des aires des rectangles, plus la somme © des
aires des triangles hachurés bc2, ced, egf, gih, ... Ainsi,

lognépn! = lognépn — v - flognépxdx : (&)
1

ou figure le terme log nép n, valeur de I'aire du rectangle ngrs,
~car celui-ci est compris dans ’ensemble des rectangles, tandis -
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que Dintégrale s etend seulement jusqu’a Pordonnée gn. Or,
remarquons que si nous menons des paralléles aux cotés des
triangles hachurés pour former des rectangles, comme on I’a
fait en bBc et en cre, chaque triangle hachuré sera un peu plus

grand que la moitié de son rectangle correspondant, par la B

concavité de la courbe. D’autre part, il est aisé & voir que la
somme des rectangles tels que bBc2, cved, ... (les autres n’ appa-
raissent pas dans la figure, pour ne pas la surcharger de lignes),
est égale & 'aire du rectarigle ngrs ou a log nép n; c’est ainsi que
Tnous commettrons une petite erreur en remplagant dans I’équa-
tion (4) = par 1/2 log nép n, avec lequel nous aurons la formule
approchée »

log népn! = %log nép n + ( lognépzdr . (5)
En effectuant Vintégration, nous aurons
lognépn! = %log nép n + nlognépn — n + 1 8 - (6)

Si dans cette formule nous neghgeons Punité a l’egard de n,
et ——Iog nép n a I'égard de n log nép n, nous obtiendrons finale-
ment la formule (1) qu’il fallait établir. '
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