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62 CR. DE LOSADA Y PU G A

On vérifie immédiatement sur la figure l'exactitude de la
formule (2), parce que la somme des rectangles abmc, cdne,
eutz, est équivalente au rectangle la&2.

Faisons encore une remarque. L'hyperbole équilatère divise
chacun des rectangles abmc, cdne, cute, en deux parties qui,
en raison de la convexité de la courbe par rapport à l'axe des

abscisses, sont inégales. La partie qui reste au-dessous de la
courbe (triangles non hachurés) est moindre que celle qui reste
au-dessus (triangles hachurés). Et ainsi, la constante d'Euler

\est plus grande que — (G 0.57721...) tandis que la constante G'

est moindre que y (C' 0.42278...).

Mais les rectangles seront divisés par leurs diagonales ac, ce,

ez, en deux triangles égaux, dont les sommes vaudront ^ •

En conséquence, entre l'hyperbole équilatère et ces diagonales,
qui sont des cordes de la courbe, seront compris un ensemble de

segments ou lunules, dont les aires auront pour somme G — ^,
soit 0.07721... En calculant analytiquement la somme des aires

de ces segments ou lunules, on obtient identiquement G — ^ :

leur considération ne présente, donc, aucune utilité pour le
calcul de C.

VI. — Série double dont la somme est égale
A LA CONSTANTE d'EÜLER.

A propos de la constante d'Euler, je vais mentionner une
série double dont la somme est égale à la valeur de la constante;
quoique ce sujet ne représente pas « un appel à l'intuition
géométrique », je crois qu'il n'est pas trop déplacé ici.

Posons le développement de log nép n en série de Taylor à

partir du développement de log nép (n — 1)

log nép n log" nép (n — 1) +

_j i | i (-ir1
"•"n —1 2(» —l)*"1" 3(n —1)»
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Cette formule générale nous donne successivement :
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Nous pouvons exprimer ainsi log' nép n par la somme de
n 1 séries, dont la première est convergente et les n — 2
autres sont absolument convergentes. Nous aurons, donc,
l'expression générale

log nép A 2 2'-* NT"n=l

Si nous faisons tendre n vers l'infini, cette somme de séries
devient une série double que nous appelerons A.

A + i_, 1

l-l1 2 • l2 3 • l3 4 • l4 5 1« ' ' '

+ -i — + ^L_ + _J__ _1 • 2l 2 • 22 3 • 23 4 • 24 5 • 25

+ ^ L_+ 1„ 1
1 • 31 2 • 32 3 • 33 4 • 34 5 • 36 " "

+ J_, 1
1 • 41 2 • 42 3 • 43 4 • 44 + 5T4Ï ~ • • •

+ -1
1-51 2 • 52 3 • 53 4T54 + 5T5Ï — •

+ •••
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Mais cette série double n'est pas convergente, car si nous
faisons la somme par colonnes, nous aurons

a vi 1 y _L + Iy i 1 y — +2^m2 3^m3 4 Z-i m4

La première de ces sommes correspond à une série divergente
et les autres à des séries convergentes; donc, la série double est

divergente, ce qu'on pouvait attendre, car

log nép n —> oo quand n —> oo

1
Mais si nous formons la différence S — — A nous aurons

m=n 1 ~|

£ lognép«
_m—1 —' c»

C JL__^ + _1 ^ +
2 • I2 3 • l3 4 • I4 5 • I5

I t L_ 4_
^ ^

_L
2 • 22 3 • 23 4 • 24 5 25 ' * '

i _A \ i - -—p^ 2 • 32 3 • 33 4 • 34 5 • 35

i
^ ' __i 1 - — 1-

2 • 42 3 • 43 4 • 44 5 • 45

+

Nous avons ainsi la constante d'Euler et de Mascheroni

exprimée par une série double

P=oo q=QO

p 2 q=i P $

Les séries obtenues en sommant par colonnes sont convergentes,

et leur sommes, dont la valeur diminue progressivement,
sont alternativement positives et négatives ; la série double est

donc convergente.
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