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62 CR. DE LOSADA Y PUGA

On vérifie immédiatement sur la figure I'exactitude de la
formule (2), parce que la somme des rectangles abme, cdne,
eutz, ... est ‘équivalente au rectangle 1ab2.

Faisons encore une remarque. L’hyperbole équilatére divise
chacun des rectangles abme, cdne, eutz, ... en deux parties qui,
en raison de la convexité de la courbe par rapport a ’axe des
abscisses, sont inégales. La partie qui reste au-dessous de la
courbe (triangles non hachurés) est moindre que celle qui reste
au-dessus (triangles hachurés). Et ainsi, la constante d’Euler

est plus grande que %(C = 0.57721...) tandis que la constante C’
est moindre que 3 (C' = 0.42278...).

Mais les rectangles seront divisés par leurs diagonales ac, ce,
. , 1
ez, ... en deux triangles égaux, dont les sommes vaudront 5 -

En conséquence, entre ’hyperbole équilatere et ces diagonales,
qui sont des cordes de la courbe, seront compris un ensemble de

segments ou lunules, dont les aires auront pour somme G -—% ,
soit 0.07721... En calculant analytiquement la somme des aires
de ces segments ou lunules, on obtient identiquement C —%:

leur considération ne présente, donc, .aucune utilité pour le
calcul de C.

VI. — SERIE DOUBLE DONT LA SOMME EST EGALE
: A LA CONSTANTE D’'EULER.

A propos de la constante d’Euler, je vais mentionner une
série double dont la somme est égale a la valeur de la constante;
quoique ce sujet ne représente pas « un appel a Pintuition géo-
métrique », je crois qu’il n’est pas trop déplacé ici.

Posons le développement de log nép n en série de Taylor a
partir du développement de log nép (n — 1)

log népn = lognép (n — 1) +

1 1 1 (—1)t

n——l‘—2’(n——,1)2+ — e

K 3(n —1)3 s(n——i)s.
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Cette formule générale nous donne successivement:

ognpa =1Ll 1ot 1, _
logngpa — LA L L1 1,

+';‘y"‘2122+3.123 4124{’
lognépéz’%-—%_]_é___i__;_

N s

+%’ 2132+3.1.3-3 4134+’

Nous pouvons exprimer ainsi log' nép n par la somme de
n—1 séries, dont la premiére est convergente et les n — 2
autres sont absolument convergentes. Nous aurons, donec,
lexpressmn générale
' n=k—1 m=o (—1) n+1

lognepk = 2 2

m=1 m - n

Si nous faisons tendre n vers Pinfini, cette somme de serles
devient une série double que nous appelerons A.

»A:-1.111;2-112+-3-113 4-114+5-115
+1/121 2122+3123 4-1§4+5f125
+1131 2-132+3»-133 4.134+5135~
»+1141 2142+3.14? 4144+5?45.—

1151 2152+3.-153 4154+5~155_
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Mais cette série double n’est pas convergente, car si nous
- faisons la somme par colonnes, nous aurons |

& = %——2 m"’ 42

La premiére de ces sommes correspond & une série divergente
et les autres a4 des séries convergentes; done, la série double est
divergente, ce qu’on pouvait attendre, car

lognépn — o quand n — %

.. o 1
Mais si nous formons la différence X — — A nous aurons

m=n ’

1 ,
[S‘ ——lognepn:I ==
m=1 n—> o«

1 | 1 1 1

B Ty D Py U ST Tl Pr U
+2-122—3.12‘3+4.124"‘5-125+*"'
+2-132_3-133+4-134—5-135+ a
+2-142—’3-143+4.144_5-145+
P

Nous avons ainsi la constante d’Euler et de Mascheroni
~exprimée par une série double |

b= 1)P

p=2q—1P qp

Les séries obtenues en sommant par colonnes sont conver-
gentes, et leur sommes, dont la valeur diminue progressivement,
sont alternativement positives et négatives; la série double est
donc convergente. '

1
1
|
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