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de la surface, avec une ordonnée ES z"'.Comparons z"'avec
et avec z" :

EJ ES - BQ dyz (4)

Les équations (3) et (4) montrent que CC' et EJ sont deux
valeurs consécutives dQ^dy, correspondantes à des valeurs de

x qui diffèrent entre elles de dx\ donc leur différence sera:

: Ei-œ=U^)d"i'=^kd»d' |s)

De même,

EH ES — CR ^dx dxz (6)

Les équations (2) et (6) font voir que BB' et EH sont deux
valeurs consécutives de dx correspondantes à des valeurs de y
qui diffèrent do dy, ainsi leur différence sera

P)

Donc, l'ordre des différentiations successives sera indifférent
si

EJ — CC EH — BB'

égalité qui devient une identité évidente si nous y remplaçons E J
par son égal EE' — BB', et EH par son égal EE' — CC.

IV. — Explication géométrique
BE LA MÉTHOBE D'INTÉGRATION PAR PARTIES.

Il s'agit de la formule classique I

N N

j udv (uv)^ —vdu (1)
M M

Considérons une fonction de deux variables

f(u, v)0 (2)
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qui peut être représentée graphiquement par une courbe telle

que AB (fig. 4). Soient deux points, M(w0, c0) et N (%, cx), sur

cette courbe. Nous voulons calculer l'aire comprise entre la

portion MN de la courbe, les ordonnées MP et NQ correspon-

U

^ *
dantes aux points extrêmes et la portion PQ de l'axe des abscisses.

Pour cela, il faut résoudre l'équation (2) par rapport à u, exprimant

sa valeur en fonction de ç, et trouver la valeur de l'intégrale

J udv

entre les limites M et N. Mais il y a des cas dans lesquels il n'est

pas facile de réaliser cette intégration, et en revanche il serait

facile d'intégrer l'expression

^ vdu

où il faudra exprimer y en fonction de n, en tirant sa valeur de

l'équation (2). Dans ces cas, il ne sera pas facile de calculer

l'aire MNPQ, qui est
N

aire MNPQ J udv

M
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(intégrale que nous supposons difficile) mais il sera aisé de

trouver l'aire MNRS, parce que
N

aire MNRS — J vdu
M

(intégrale que nous supposons facile).
D'autre part, les aires des rectangles SNOQ et RMOP se

déterminent facilement : elles sont égales respectivement à u0 v0

et à, %
Or, connaissant les aires SNOQ, RMOP et MNRS, nous

pouvons en déduire l'aire MNPQ, car

aire MNPQ aire SNOQ — aire RMOP — aire MNRS

c'est-à-dire
'

N N
"

*

J udv u1v1 — — H vdu ;

M M

qui est précisément la formule (1).

V. — Signification géométrique de la constante d'Euler.

La constante d'Euler,

G " + Y + 1 + +
n ~ log nép n1

oo

m=n
qui établit une relation simple entre 2 — et log nép n quand

vn.= 1 m

n—reo'," a sa raison d'être dans cette circonstance que lé terme
général de la série est 1 jmtandisque la dérivée de log nép x
est l/x. Construisons, comme le montre la figure 5, une succession
de rectangles de base égale à l'unité, et de hauteurs égales- à1111¥' ¥' 4' 5"' •" ^es rectangles seront compris entre les ordonnées

successives tirées par les points d'abscisses égales à 1, 2, 3,
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