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de la surface avec une ordonnee ES = z"". Comparons z""" avec z”
et avec z” ‘

' 'EJ.'——- ESeBQ:g%dy=‘dyz.' ‘ (&)

Les équations .(3) et (4) montrent que CC’ et EJ sont deux
valeurs consécutives de ——-dy, correspondantes a des valeurs de
z qui différent entre elles de dz; donc leur différence sera:

: , 0 [/3z _ 02z ‘
De méme,
EH—-ES—CR:O—{dx:dz.‘ (6)

Les équations (2) et ( ) font voir que BB’ et EH sont deux

valeurs consécutives de Echx correspondantes & des valeurs de y

qui différent de dy; ainsi leur différence sera

’ r 0 0z L 625

Dong, l'ordre des différentiations successives sera indifférent
s1 3
EJ — CC’ = EH — BB’ ,

égalité qui devient une identité évidente si nous y remplagons EJ
par son égal EE’" — BB’, et EH par son égal EE’ — C('.

IV. — EXPLICATION GEOMETRIQUE
DE LA METHODE D’INTEGRATION PAR PARTIES.

I

Il's’égit de la formule classique

N N

fudv == (uv)ﬂ‘——;[odu ) ("1)

M M
Considérons une fonction de deux variables

flu, p) =0 " : (2)
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qui peut étre représentée graphiquement par une courbe telle
" que AB (fig. 4). Soient deux points, M (uy, ¢o) et N (uy, ¢4), sur
cette courbe. Nous . voulons calculer P’aire comprise entre la
portion MN de la courbe, les ordonnées MP et NQ correspon-

A ’
U

1//0’5/‘ .
A
UI/Q]U'
A
ol »~ @ e

Fig 4

dantes aux points extrémes et la portion PQ de 'axe des abscisses.
Pour cela, il faut résoudre 1’équation (2) par rapport & u, expri-
mant sa valeur en fonction de ¢, et trouver la valeur de 'intégrale

e ]

J udy

entre les limites M et N. Mais il y a des cas dans lesquels il n’est
pas facile de réaliser cette intégration, et en revanche il serait
facile d’intégrer P’expression. |

fvdu ,

ou il faudra expﬁmer ¢ en fonction de u, en tirant sa valeur de
‘Péquation (2). Dans ces cas, il ne sera pas facile de calculer |
I’'aire MNPQ, qui est

o
aire MNPQ = f il
M
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(intégrale Que nous supposons difficile) mais il sera aisé de
trouver ’aire MNRS, parce que ’

. N
aire MNRS = ( odu
4

(intégrale que nous supposons facile). o

D’autre part, les aires des rectangles SNOQ et RMOP se
déterminent facilement: elles sont égales respectivement a u, ¢,
et a.u,; vy ~ _
- Or, connaissant les aires SNOQ, RMOP et MNRS, nous
pouvons en déduire I'aire MNPQ, car |

aire MNPQ = aire SNOQ — aire RMOP — aire MNRS

¢’est-a-dire
N

= | .
fudv = Uy 9; — Uy, -——fvdu )

qui est précisément la formule (1).

V. — SIGNIFICATION GEOMETRIQUE DE LA CONSTANTE D’EULER.

La constante d’Euler,

R P R S 1 irs
;C—[1+2‘+§+Z"{‘---+;’“—10gnepn]

- N—> o

‘ m=n s
A .. 1
qui établit une relation simple entre >\ — et log nép n quand
, m=1"" .
n— o, a sa raison d’étre dans cette circonstance que le terme
général de la série est 1/m tandis que la dérivée de log nép =z
est 1/x. Construisons, comme le montre la figure 5, une succession.
de rectangles de base égale & 1'unité, et de hauteurs égales. &
1 1 1 1 | : -
1, T T L B o Ces rectangles seront compris entre les ordon-

nées successives tirées par les points d’abscisses égales a 1, 2, 3,




	IV. — Explication géométrique DE LA MÉTHODE D'INTÉGRATION PAR PARTIES.

