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En multipliant membre a4 membre les équations (2) et (3),
et en supprimant le facteur A'B dans les deux membres, on.
obtient

Cdb = A’AY = S0C up

sin? (B 4 C)

Si maintenant nous considérons la petite variation dC qui
modifie la valeur de I'angle C, le triangle ABC, premiérément
changé en A'BC’ par la variation da, et aprés en A"BC’ par la
variation dB, sera finalement changé en A’’BC’. Calculons
I'excés dsb de la valeur finale, A"’C’, du ¢6té b sur sa deuxiéme
valeur intermédiaire A”C’. Du point C’ comme centre, avec A”'C’
comme rayon, décrivons Parc de circonférence A"H, dont la
longueur est, & d’infiniment petits prés,

” sin B
A"H = b-dCzasi—n—(—B—_{_'—C)dC.

Mais, I’'arc A"H étant infiniment petit, le triangle A”’A”H peut
étre oon51dere comme un triangle rectiligne, rectangle en H, et
on aura, & d’infiniment petits d’ordre supérieur prés,

sinB - COS (B + C)
sin2 (B 4 Q)

dyb = A"H = A”H cotang A”A”H = — ¢ dc |

¢ar on a
cotang A”A"H = — cotang (B 4- dB + C 4 dC) .

La somme des trois valeurs dib, dyb, dsb, nous donne finalement
Pexpression cherchée de db.

I1I. — DERIVEES PARTIELLES D’ORDRE SUPERIEUR.

Il s’agit de falre voir par des considérations géométriques
(ceci étant déja démontré analytiquement), que dans le calcul
des dérivées partielles d’ordre supérieur d'une fonction de
plusieurs variables, on peut intervertir ’ordre des derlvatlons

Soit une fonctlon de deux variables

oz = f(z,y) . | Y
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et A un point quelconque de la surface représentative de cette

. fonction, dont 'ordonnée z est AP (fig. 3). Si nous donnons & z
un accroissement dr = PQ, nous aurons un nouveau point B
de la surface et une nouvelle ordonnée BQ. Or, BB’, différence
des deux ordonnées, provenant d’avoir donné un accroissement
a x seulement, sera |

0
BB’=z'—z=a—zxdx=dxz. : (2)
Z .
Y.
C o A
— B’
J/
¥ o8 ,
Z
» Z s
, Z yA x
p dx '\ 0
Y ay

A s F}yu"

Partons encore une fois du point P, donnons seulement a y
un accroissement infiniment petit dy = PR, et nous aurons un
nouveau point C de la surface, auquel correspondra une ordonnée
z" = CR. La différence des ordonnées z et z” sera de maniére

analogue

CC’:Z”—ez=g—z§y;——dyz. (3)

-Finalement, a partir du point R (z, ¥ -+ dy), donnons & z un
accroissement dz; nous obtiendrons ainsi un nouveau point E
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de la surface avec une ordonnee ES = z"". Comparons z""" avec z”
et avec z” ‘

' 'EJ.'——- ESeBQ:g%dy=‘dyz.' ‘ (&)

Les équations .(3) et (4) montrent que CC’ et EJ sont deux
valeurs consécutives de ——-dy, correspondantes a des valeurs de
z qui différent entre elles de dz; donc leur différence sera:

: , 0 [/3z _ 02z ‘
De méme,
EH—-ES—CR:O—{dx:dz.‘ (6)

Les équations (2) et ( ) font voir que BB’ et EH sont deux

valeurs consécutives de Echx correspondantes & des valeurs de y

qui différent de dy; ainsi leur différence sera

’ r 0 0z L 625

Dong, l'ordre des différentiations successives sera indifférent
s1 3
EJ — CC’ = EH — BB’ ,

égalité qui devient une identité évidente si nous y remplagons EJ
par son égal EE’" — BB’, et EH par son égal EE’ — C('.

IV. — EXPLICATION GEOMETRIQUE
DE LA METHODE D’INTEGRATION PAR PARTIES.

I

Il's’égit de la formule classique

N N

fudv == (uv)ﬂ‘——;[odu ) ("1)

M M
Considérons une fonction de deux variables

flu, p) =0 " : (2)
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