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SUR QUELQUES APPELS
A L’INTUITION GEOMETRIQUE
DANS L’ENSEIGNEMENT DE L’ANALYSE

PAR

Cristobal de Losapa v Puca (Lima, Pérou).

Méme les plus rigoristes des arithmétisants, qui n’accordent
a Pintuition aucun droit comme élément de démonstration, et
qui se méfient d’elle, seront préts, je crois, & ’accepter au moins
comme un élément auxiliaire d’explication, partmuheremenb
saisissable et clair.

Je me propose d’exposer icl quelques ressources de ce genre
que j’emploie volontiers dans mes cours de la Universidad Mayor
de San Marcos de Lima (qui est I’Université d’Etat, la plus vieille
de tout le continent ameéricain), et de la Universidad Catolica
del Peru (qui est, au contraire, une des Universités les plus jeunes
du monde). '

I. — INFINIMENT PETITS. DES DIVERS ORDRES.

Quoique les infiniments petits soient un peu en disgrace, je
crois qu’ils rendent encore de bons services, peut-étre faute de
mieux, surtout dans ’enseignement. Aux exemples classiques,
je désire ajouter le suivant:

-Soit ’angle AOB (fig. 1). Prenons sur ses cotés les longueurs OM

et ON égales a 'unité, et divisons-les en m parties égales « = ;7—12

par les points G, D, E, ..; H, J, K, ... S1 nous faisons croitre m
indéfiniment, la longueur « de chaque partie deviendra un infi-




52 CR. DE LOSADA Y PUGA

niment petit (du premier ordre). Menons la droite MH qui passe -
‘par M et par le premier point de division H de ON. Tirons par C,
premier point de division de OM, la paralléle CP & MH; nous
aurons |

- OP _OH
OC ~ OM

d’ou
OC - OH oo

F— — — 2
OoP OM 1 -OC )

¢’est-a-dire un infiniment petit du second, ordre.
Joignons P avec M par la droite MP et menons, par G, la
parallele CQ & MP; nous aurons

0Q _ Op
oC ~ OM°
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dou .
OoC . OP o - o2
0Q = oM 1

= ad,
c¢’est-a-dire un infiniment petit du troisiéme ordre. ;,
-Nous pouvons tirer la droite MQ, mener la paralléle par C &

cette droite et obtenir un infiniment petit du quatriéme ordre,
et ainsi de suite.

II. — RELATIONS DIFFERENTIELLES DANS LE TRIANGLE.

Soit le triangle ABC (fig. 2), dans lequel

b — g sin B
~ Tsin (B + C)

B - @ — oda ¢
fig 2

B Siondonne aux éléments supposés connus de petites variations
W da, dB, dC que nous supposerons positives (c¢’est-a-dire qui font
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augmenter la valeur de ces éléments), I’élément inconnu b
recevra aussi une petite variation et au lieu de la longueur CA,
nous obtiendrons la longueur C'A"”, dont lexces sur CA sera
donné par la formule

sinB sin (B + C) cosB — sinB - cos (B + Q)

db = da + a sin? (B + C)

sin (B 4 Q) 4B

sinB - cos (B + C) .
- sin? (B + C) ol =

o sinB sin C sinB - cos (B C)
== g B+0 T %meB gt T (B + Q)

qui s’obtient par différentiation de I’équation (1), et qui peut
étre retrouvée géométriquement comme nous allons le voir.
La petite variation da ou CC’ subie par la longueur du ¢oté a,
change le triangle ABC en A’BC’. Menons par A la paralléle AS
a BC, et nous aurons SC’ = AC, de sorte que A'S = d,b est
lexces de AC’ sur AC. Mais le triangle A’AS, semblable au
triangle ABC, nous donne

sin B .
sin (B + C)

o dyb = da——=
La petite variation dB dans la valeur de I’angle B change le
triangle, transformé déja en A'BC’ par la petite variation de la
longueur de la base, en A"BC’, ce qui ajoute a la longueur de
b = A’C le petit accroissement A"A’ = d,b. Le triangle A”A’
nous donne

A’A’  A'B_ A'B 2’
dB ~ sinBA”’C’  sin(B + C)°

parce que
BA’C’ = n—B —dB—C,

ou nous pouvons négliger le terme dB.
De méme, le triangle A’'BC’ nous donne, en négligeant les
infiniment petits, \
A'B a

SnC  smBF Q- 3)
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En multipliant membre a4 membre les équations (2) et (3),
et en supprimant le facteur A'B dans les deux membres, on.
obtient

Cdb = A’AY = S0C up

sin? (B 4 C)

Si maintenant nous considérons la petite variation dC qui
modifie la valeur de I'angle C, le triangle ABC, premiérément
changé en A'BC’ par la variation da, et aprés en A"BC’ par la
variation dB, sera finalement changé en A’’BC’. Calculons
I'excés dsb de la valeur finale, A"’C’, du ¢6té b sur sa deuxiéme
valeur intermédiaire A”C’. Du point C’ comme centre, avec A”'C’
comme rayon, décrivons Parc de circonférence A"H, dont la
longueur est, & d’infiniment petits prés,

” sin B
A"H = b-dCzasi—n—(—B—_{_'—C)dC.

Mais, I’'arc A"H étant infiniment petit, le triangle A”’A”H peut
étre oon51dere comme un triangle rectiligne, rectangle en H, et
on aura, & d’infiniment petits d’ordre supérieur prés,

sinB - COS (B + C)
sin2 (B 4 Q)

dyb = A"H = A”H cotang A”A”H = — ¢ dc |

¢ar on a
cotang A”A"H = — cotang (B 4- dB + C 4 dC) .

La somme des trois valeurs dib, dyb, dsb, nous donne finalement
Pexpression cherchée de db.

I1I. — DERIVEES PARTIELLES D’ORDRE SUPERIEUR.

Il s’agit de falre voir par des considérations géométriques
(ceci étant déja démontré analytiquement), que dans le calcul
des dérivées partielles d’ordre supérieur d'une fonction de
plusieurs variables, on peut intervertir ’ordre des derlvatlons

Soit une fonctlon de deux variables

oz = f(z,y) . | Y
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et A un point quelconque de la surface représentative de cette

. fonction, dont 'ordonnée z est AP (fig. 3). Si nous donnons & z
un accroissement dr = PQ, nous aurons un nouveau point B
de la surface et une nouvelle ordonnée BQ. Or, BB’, différence
des deux ordonnées, provenant d’avoir donné un accroissement
a x seulement, sera |

0
BB’=z'—z=a—zxdx=dxz. : (2)
Z .
Y.
C o A
— B’
J/
¥ o8 ,
Z
» Z s
, Z yA x
p dx '\ 0
Y ay

A s F}yu"

Partons encore une fois du point P, donnons seulement a y
un accroissement infiniment petit dy = PR, et nous aurons un
nouveau point C de la surface, auquel correspondra une ordonnée
z" = CR. La différence des ordonnées z et z” sera de maniére

analogue

CC’:Z”—ez=g—z§y;——dyz. (3)

-Finalement, a partir du point R (z, ¥ -+ dy), donnons & z un
accroissement dz; nous obtiendrons ainsi un nouveau point E
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de la surface avec une ordonnee ES = z"". Comparons z""" avec z”
et avec z” ‘

' 'EJ.'——- ESeBQ:g%dy=‘dyz.' ‘ (&)

Les équations .(3) et (4) montrent que CC’ et EJ sont deux
valeurs consécutives de ——-dy, correspondantes a des valeurs de
z qui différent entre elles de dz; donc leur différence sera:

: , 0 [/3z _ 02z ‘
De méme,
EH—-ES—CR:O—{dx:dz.‘ (6)

Les équations (2) et ( ) font voir que BB’ et EH sont deux

valeurs consécutives de Echx correspondantes & des valeurs de y

qui différent de dy; ainsi leur différence sera

’ r 0 0z L 625

Dong, l'ordre des différentiations successives sera indifférent
s1 3
EJ — CC’ = EH — BB’ ,

égalité qui devient une identité évidente si nous y remplagons EJ
par son égal EE’" — BB’, et EH par son égal EE’ — C('.

IV. — EXPLICATION GEOMETRIQUE
DE LA METHODE D’INTEGRATION PAR PARTIES.

I

Il's’égit de la formule classique

N N

fudv == (uv)ﬂ‘——;[odu ) ("1)

M M
Considérons une fonction de deux variables

flu, p) =0 " : (2)
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qui peut étre représentée graphiquement par une courbe telle
" que AB (fig. 4). Soient deux points, M (uy, ¢o) et N (uy, ¢4), sur
cette courbe. Nous . voulons calculer P’aire comprise entre la
portion MN de la courbe, les ordonnées MP et NQ correspon-

A ’
U

1//0’5/‘ .
A
UI/Q]U'
A
ol »~ @ e

Fig 4

dantes aux points extrémes et la portion PQ de 'axe des abscisses.
Pour cela, il faut résoudre 1’équation (2) par rapport & u, expri-
mant sa valeur en fonction de ¢, et trouver la valeur de 'intégrale

e ]

J udy

entre les limites M et N. Mais il y a des cas dans lesquels il n’est
pas facile de réaliser cette intégration, et en revanche il serait
facile d’intégrer P’expression. |

fvdu ,

ou il faudra expﬁmer ¢ en fonction de u, en tirant sa valeur de
‘Péquation (2). Dans ces cas, il ne sera pas facile de calculer |
I’'aire MNPQ, qui est

o
aire MNPQ = f il
M




APPELS A I’INTUITION GE’OMETRIQUE 59

(intégrale Que nous supposons difficile) mais il sera aisé de
trouver ’aire MNRS, parce que ’

. N
aire MNRS = ( odu
4

(intégrale que nous supposons facile). o

D’autre part, les aires des rectangles SNOQ et RMOP se
déterminent facilement: elles sont égales respectivement a u, ¢,
et a.u,; vy ~ _
- Or, connaissant les aires SNOQ, RMOP et MNRS, nous
pouvons en déduire I'aire MNPQ, car |

aire MNPQ = aire SNOQ — aire RMOP — aire MNRS

¢’est-a-dire
N

= | .
fudv = Uy 9; — Uy, -——fvdu )

qui est précisément la formule (1).

V. — SIGNIFICATION GEOMETRIQUE DE LA CONSTANTE D’EULER.

La constante d’Euler,

R P R S 1 irs
;C—[1+2‘+§+Z"{‘---+;’“—10gnepn]

- N—> o

‘ m=n s
A .. 1
qui établit une relation simple entre >\ — et log nép n quand
, m=1"" .
n— o, a sa raison d’étre dans cette circonstance que le terme
général de la série est 1/m tandis que la dérivée de log nép =z
est 1/x. Construisons, comme le montre la figure 5, une succession.
de rectangles de base égale & 1'unité, et de hauteurs égales. &
1 1 1 1 | : -
1, T T L B o Ces rectangles seront compris entre les ordon-

nées successives tirées par les points d’abscisses égales a 1, 2, 3,
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%,...L’ensemble de ces rectangles formera la figure labedeuzhijk...
et son aire aura pour valeur
m=n

1 1 1 1 1
TTgtgtgt oty =2X

1
m
m=1

D%
, a b
/:'{95 |

sl m c_d

75+ . n £ A

# 1 ¢ 4 Az ¥
.;jf:: T X

X

7 7 2 3 4 & 6 7

Pour plus de commodité, on a pris dans la figure I’échelle des
abscisses beaucoup moindre que celle des ordonnées, de maniére
que 'unité d’aire soit la surface du rectangle 1ab2. Construisons
aussi ’hyperbole équilatére |

_1
¥y= 7z

Cette hyperbole enferme, avec l'axe des abscisses et deux |
~ ordonnées extrémes correspondantes aux abscisses 1 et n, une |
aire
' n
d$ 2 '
[ — = lognép n .
11 X
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Si nous considérons que tant les rectangles définis ci-dessus
que I’hyperbole équilatére se prolongent indéfiniment vers les
abscisses croissantes, nous verrons que I’aire de la partie hachuree
de la figure est -

' m=n
lim[> ——-—-lognepn] =GC.
N<

m=1

La constante d’Euler est égale, donc, 4 la somme des aires
des triangles mixtilignes (employons encore cet adjectif démodé)
abc, cde, -euz, zhi, ...: telle est sa signification géométrique
extrémement simple.

Considérons maintenant ’ensemble des triangles non hachurés
qul restent au-dessous de I'hyperbole: les triangles ame, cne, etz,

zst, ... et appelons C’ la somme de ses aires. Nous aurons
nd m=n 1 o
N T _f . '
=1 m=1 -In->o

La somme de ces grandeurs, qui est P'aire de I’ensemble des
rectangles abme, cdne, eutz, zhsi, ... sera

m= o

o+e= 3 fr—a] = 3 ate

m=1

Leur différence, soit, la somme des aires des triangles hachurés
moins les aires des triangles non hachurés, vaudra:

m=o 1 ' m-l-id m—H —
r . v L —
C*C—Ei[ﬁ“/*— m+1J“‘
m= .

En conséquence, ,
¢ =1—C et G Q" =1

et, en comparant avec I’équation (1), on voit que
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On vérifie immédiatement sur la figure I'exactitude de la
formule (2), parce que la somme des rectangles abme, cdne,
eutz, ... est ‘équivalente au rectangle 1ab2.

Faisons encore une remarque. L’hyperbole équilatére divise
chacun des rectangles abme, cdne, eutz, ... en deux parties qui,
en raison de la convexité de la courbe par rapport a ’axe des
abscisses, sont inégales. La partie qui reste au-dessous de la
courbe (triangles non hachurés) est moindre que celle qui reste
au-dessus (triangles hachurés). Et ainsi, la constante d’Euler

est plus grande que %(C = 0.57721...) tandis que la constante C’
est moindre que 3 (C' = 0.42278...).

Mais les rectangles seront divisés par leurs diagonales ac, ce,
. , 1
ez, ... en deux triangles égaux, dont les sommes vaudront 5 -

En conséquence, entre ’hyperbole équilatere et ces diagonales,
qui sont des cordes de la courbe, seront compris un ensemble de

segments ou lunules, dont les aires auront pour somme G -—% ,
soit 0.07721... En calculant analytiquement la somme des aires
de ces segments ou lunules, on obtient identiquement C —%:

leur considération ne présente, donc, .aucune utilité pour le
calcul de C.

VI. — SERIE DOUBLE DONT LA SOMME EST EGALE
: A LA CONSTANTE D’'EULER.

A propos de la constante d’Euler, je vais mentionner une
série double dont la somme est égale a la valeur de la constante;
quoique ce sujet ne représente pas « un appel a Pintuition géo-
métrique », je crois qu’il n’est pas trop déplacé ici.

Posons le développement de log nép n en série de Taylor a
partir du développement de log nép (n — 1)

log népn = lognép (n — 1) +

1 1 1 (—1)t

n——l‘—2’(n——,1)2+ — e

K 3(n —1)3 s(n——i)s.
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Cette formule générale nous donne successivement:

ognpa =1Ll 1ot 1, _
logngpa — LA L L1 1,

+';‘y"‘2122+3.123 4124{’
lognépéz’%-—%_]_é___i__;_

N s

+%’ 2132+3.1.3-3 4134+’

Nous pouvons exprimer ainsi log' nép n par la somme de
n—1 séries, dont la premiére est convergente et les n — 2
autres sont absolument convergentes. Nous aurons, donec,
lexpressmn générale
' n=k—1 m=o (—1) n+1

lognepk = 2 2

m=1 m - n

Si nous faisons tendre n vers Pinfini, cette somme de serles
devient une série double que nous appelerons A.

»A:-1.111;2-112+-3-113 4-114+5-115
+1/121 2122+3123 4-1§4+5f125
+1131 2-132+3»-133 4.134+5135~
»+1141 2142+3.14? 4144+5?45.—

1151 2152+3.-153 4154+5~155_
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Mais cette série double n’est pas convergente, car si nous
- faisons la somme par colonnes, nous aurons |

& = %——2 m"’ 42

La premiére de ces sommes correspond & une série divergente
et les autres a4 des séries convergentes; done, la série double est
divergente, ce qu’on pouvait attendre, car

lognépn — o quand n — %

.. o 1
Mais si nous formons la différence X — — A nous aurons

m=n ’

1 ,
[S‘ ——lognepn:I ==
m=1 n—> o«

1 | 1 1 1

B Ty D Py U ST Tl Pr U
+2-122—3.12‘3+4.124"‘5-125+*"'
+2-132_3-133+4-134—5-135+ a
+2-142—’3-143+4.144_5-145+
P

Nous avons ainsi la constante d’Euler et de Mascheroni
~exprimée par une série double |

b= 1)P

p=2q—1P qp

Les séries obtenues en sommant par colonnes sont conver-
gentes, et leur sommes, dont la valeur diminue progressivement,
sont alternativement positives et négatives; la série double est
donc convergente. '

1
1
|
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VII. — DEDUCTION GEOMETRIQUE DE LA FORMULE DE STIRLING.

On connait la déduction analytique, assez pénible, de la
formule asymptotique de Stirling, d’un emploi fréquent dans le
Calecul des Probabilités, formule qui s’écrit sous forme loga-
rithmique:

. | 1
lognépn! = nlognépn —n -+ %log nép 2w + —2—lognépn .

Mais, dans beaucoup d’applications, surtout dans la Méca-
nique statistique, on emploie la formule, moins approchée mais
plus simple,

log nép nl = nlognépn —n . | (1)

Un physicien autrichien bien connu, M. Arthur Haas, donne_
une démonstration géométrique trés intéressante de cette formule
raccourcie dans son Einfihrung in die theoretische Phystk.
Je crois avoir amélioré et précisé la démonstration de M. Haas,
dans DParticle Mecdnica Estadistica que j’ai écrit pour la Enci-
| clopedia Universal Ilustrada ou Enciclopedia Espasa, qui est la
meilleure encyclopédie parue en espagnol, et peut-8tre la plus
compléte et la plus monumentale du monde. Je prends la liberté
d’insérer ici un extrait de cette démonstration.

Sur I'axe des abscisses d’un systéme cartésien (fig. 6), pre-
nons les points dont les abscisses sont les nombres naturels
1,2, 3, 4, 5, ..., n et construisons un ensemble de rectangles de
base 1 et dont les hauteurs soient égales aux logarithmes népé-
riens des nombres naturels. Nous aurons ainsi le rectangle 52
dont la hiauteur est log nép 1 = 0; le rectangle 2cd3 dont la
hauteur est log nép 2; le rectangle 3ef4 dont la hauteur est
log nép 3; et ainsi de suite jusqu’au rectangle dont la hauteur
est log nép n. Ces rectangles ayant leur base égale & 1, leurs
aires s’expriment par les mémes nombres que leurs hauteurs,
soit par les logarithmes népériens des nombres naturels, de sorte

L’Enseignement mathém., 37me année, 1938. ‘ 5
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que I'aire de la ﬁgure b2cdefghijkmopgrsnb formé par l’ensemble
" des n premiers rectangles aura pour expression

lognép 1 + log nép 2 + lognép3 R
+ ‘l/ognépn = lognép1.2.3.4 ... n = lognépn! .

Y
34+
2 ; K 0 F
/77
F r_¢ <&
— SN\
Vo) X
) 7 2 S 4 5 /|
_./..
-21
Fig 6
Mais remarquons que la courbe
'y = lognépz , . (2)

qui passe par.les sommets supérieurs gauches des rectangles
enferme une aire

n .
A =J log nép z dz - (3)
1

égale a la somme des aires des rectangles, plus la somme © des
aires des triangles hachurés bc2, ced, egf, gih, ... Ainsi,

lognépn! = lognépn — v - flognépxdx : (&)
1

ou figure le terme log nép n, valeur de I'aire du rectangle ngrs,
~car celui-ci est compris dans ’ensemble des rectangles, tandis -
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que Dintégrale s etend seulement jusqu’a Pordonnée gn. Or,
remarquons que si nous menons des paralléles aux cotés des
triangles hachurés pour former des rectangles, comme on I’a
fait en bBc et en cre, chaque triangle hachuré sera un peu plus

grand que la moitié de son rectangle correspondant, par la B

concavité de la courbe. D’autre part, il est aisé & voir que la
somme des rectangles tels que bBc2, cved, ... (les autres n’ appa-
raissent pas dans la figure, pour ne pas la surcharger de lignes),
est égale & 'aire du rectarigle ngrs ou a log nép n; c’est ainsi que
Tnous commettrons une petite erreur en remplagant dans I’équa-
tion (4) = par 1/2 log nép n, avec lequel nous aurons la formule
approchée »

log népn! = %log nép n + ( lognépzdr . (5)
En effectuant Vintégration, nous aurons
lognépn! = %log nép n + nlognépn — n + 1 8 - (6)

Si dans cette formule nous neghgeons Punité a l’egard de n,
et ——Iog nép n a I'égard de n log nép n, nous obtiendrons finale-
ment la formule (1) qu’il fallait établir. '
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