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SUR QUELQUES APPELS

A L'INTUITION GÉOMÉTRIQUE

DANS L'ENSEIGNEMENT DE L'ANALYSE

PAR

Cristobal de Losada y Puga (Lima, Pérou).

Même les plus rigoristes des arithmétisants, qui n'accordent
à l'intuition aucun droit comme élément de démonstration, et

qui se méfient d'elle, seront prêts, je crois, à l'accepter au moins

comme un élément auxiliaire d'explication, particulièrement
saisissable et clair.

Je me propose d'exposer ici quelques ressources de ce genre
que j'emploie volontiers dans mes cours de la Universidad Mayor
de San Marcos de Lima (qui est l'Université d'Etat, la plus vieille
de tout le continent américain), et de la Universidad Catôlica
del Perü (qui est, au contraire, une des Universités les plus jeunes
du monde).

I. — Infiniment petits des divers ordres.

Quoique les infmiments petits soient un peu en disgrâce, je
crois qu'ils rendent encore de bons services, peut-être faute de

mieux, surtout dans l'enseignement. Aux exemples classiques,
je désire ajouter le suivant:

Soit l'angle AOB (fig. 1). Prenons sur ses côtés les longueurs OM

et ON égales à l'unité, et divisons-les en m parties égales oc '=* —

par les points C, D, E, ...; H, J, K, Si nous faisons croître m
indéfiniment, la longueur oc de chaque partie deviendra un infi-
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niment petit (du premier ordre). Menons la droite MH qui passe

par M et par le premier point de division H de ON. Tirons par G,

premier point de division de OM, la parallèle GP à MH; nous
aurons

OP _ OH
OC ~T~ OM '

Fig t
d'où

OP
OC • OH

OM

c'est-à-dire un infiniment petit du second ordre.

Joignons P avec M par la droite MP et menons, par G, la

parallèle CQ à MP ; nous aurons

OQ OP
OG OM '
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d'Où

OQ
OC • OP a • a2

OM

c'est-à-dire un infiniment petit du troisième ordre.
Nous pouvons tirer la droite MQ, mener la parallèle par C à

cette droite et obtenir un infiniment petit du quatrième ordre,
et ainsi de suite.

II. — Relations différentielles dans le triangle.

Soit le triangle ABC (fig. 2), dans lequel

b a —
sinB

sin (B + C)

\djjb

A>

"dC

Qda c'

Fig
Si on donne aux éléments supposés connus de petites variations

da, dB, dC que nous supposerons positives (c'est-à-dire qui font
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augmenter la valeur de ces éléments), l'élément inconnu b
recevra aussi une petite variation et au lieu de la longueur GA,
nous obtiendrons la longueur C'A'", dont l'excès sur GA sera
donné par la formule

db da
sinB sin(B + C)cosB— sin B • cos (B + G)

sin (ETC) + a sin2 (B + C)
—

sin B • cos (B + G)
a „ ^ dC

— da —
sin B

+ & -r

sin2 (B + G)

sin G

sin (B + G)
1

sin2 (B + G)
-dB

sin B • cos (B -f G)
a sin2 (B + C) '

qui s'obtient par difïérentiation de l'équation (1), et qui peut
être retrouvée géométriquement comme nous allons le voir.

La petite variation da ou CC' subie par la longueur du côté a,
change le triangle ABC en A'BC'. Menons par A la parallèle AS
à BC, et nous aurons SC' AC, de sorte que A'S d-J) est
l'excès de AC' sur AC. Mais le triangle A'AS, semblable au
triangle ABC, nous donne

7 7 _ sin B
d1b da-—•sin B + G

La petite variation dB dans la valeur de l'angle B change le

triangle, transformé déjà en A'BC' par la petite variation de la
longueur de la base, en A"BC', ce qui ajoute à la longueur de
b A'C le petit accroissement A"A' d2b. Le triangle A"A'B
nous donne

A" A' _ A'B A'B
dB sinBA'C' sin (B + C) '

parce que
BA" Cr tt — B — dB — C

où nous pouvons négliger le terme dB.
De même, le triangle A'BC' nous donne, en négligeant les

infiniment petits,
A'B a
sin G sin (B 4- G)

(3)
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En multipliant membre à membre les équations (2) et (3),
et en supprimant le facteur A'B dans les deux membres, on,
obtient

*6 A"A'--iii1^n5i-,B' ;

Si maintenant nous considérons la petite variation dC qui
modifie la valeur de l'angle C, le triangle ABC, premièrement
changé en A'BC' par la variation da,.et après en A"BC' par la
variation dB, sera finalement changé en A"'BG'. Calculons
l'excès dsb de la valeur finale, A'"C', du côté b sur sa deuxième
valeur intermédiaire A"C'. Du point C' comme centre, avec A"C'
comme rayon, décrivons l'arc de circonférence A"H, dont la
longueur est, à d'infiniment petits près,

A" H bdC
sin (B + G)

Mais, l'arc A"H étant infiniment petit, le triangle A"'A"H peut
être considéré comme un triangle rectiligne, rectangle en H, et
on aura, à d'infiniment petits d'ordre supérieur près,

d3b A'"H A"H cotang A"A'"H - qSinB (B +
sin2 (B + C) '

car on a

cotang A"A'" H — cotang (B + C +

La somme des trois valeurs dxb, d2b, d3b, nous donne finalement
l'expression cherchée de db.

III. — Dérivées partielles d'ordre supérieur.

Il s agit de faire voir par des considérations géométriques
(ceci étant déjà démontré analytiquement), que dans le calcul
des dérivées partielles d'ordre supérieur d'une fonction de
plusieurs variables, on peut intervertir l'ordre des dérivations.

Soit une fonction de deux variables

z /(», y) (i)
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et A un point quelconque de la surface représentative de cette
fonction, dont l'ordonnée 2 est AP (fig. 3). Si nous donnons à x
un accroissement dx PQ, nous aurons un nouveau point B
de la surface et une nouvelle ordonnée BQ. Or, BB', différence
des deux ordonnées, provenant d'avoir donné un accroissement
à x seulement, sera

BB' z'— z ^dx dxz (2)

Partons encore une fois du point P, donnons seulement à y
un accroissement infiniment petit dy PR, et nous aurons un
nouveau point G de la surface, auquel correspondra une ordonnée
z" CR. La différence des ordonnées z et z" sera de manière
analogue

CC =*"-* ^jdy dyz.(3)

Finalement, à partir du point R (#, y + dy), donnons à x un
accroissement dx; nous obtiendrons ainsi un nouveau point E
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de la surface, avec une ordonnée ES z"'.Comparons z"'avec
et avec z" :

EJ ES - BQ dyz (4)

Les équations (3) et (4) montrent que CC' et EJ sont deux
valeurs consécutives dQ^dy, correspondantes à des valeurs de

x qui diffèrent entre elles de dx\ donc leur différence sera:

: Ei-œ=U^)d"i'=^kd»d' |s)

De même,

EH ES — CR ^dx dxz (6)

Les équations (2) et (6) font voir que BB' et EH sont deux
valeurs consécutives de dx correspondantes à des valeurs de y
qui diffèrent do dy, ainsi leur différence sera

P)

Donc, l'ordre des différentiations successives sera indifférent
si

EJ — CC EH — BB'

égalité qui devient une identité évidente si nous y remplaçons E J
par son égal EE' — BB', et EH par son égal EE' — CC.

IV. — Explication géométrique
BE LA MÉTHOBE D'INTÉGRATION PAR PARTIES.

Il s'agit de la formule classique I

N N

j udv (uv)^ —vdu (1)
M M

Considérons une fonction de deux variables

f(u, v)0 (2)
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qui peut être représentée graphiquement par une courbe telle

que AB (fig. 4). Soient deux points, M(w0, c0) et N (%, cx), sur

cette courbe. Nous voulons calculer l'aire comprise entre la

portion MN de la courbe, les ordonnées MP et NQ correspon-

U

^ *
dantes aux points extrêmes et la portion PQ de l'axe des abscisses.

Pour cela, il faut résoudre l'équation (2) par rapport à u, exprimant

sa valeur en fonction de ç, et trouver la valeur de l'intégrale

J udv

entre les limites M et N. Mais il y a des cas dans lesquels il n'est

pas facile de réaliser cette intégration, et en revanche il serait

facile d'intégrer l'expression

^ vdu

où il faudra exprimer y en fonction de n, en tirant sa valeur de

l'équation (2). Dans ces cas, il ne sera pas facile de calculer

l'aire MNPQ, qui est
N

aire MNPQ J udv

M
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(intégrale que nous supposons difficile) mais il sera aisé de

trouver l'aire MNRS, parce que
N

aire MNRS — J vdu
M

(intégrale que nous supposons facile).
D'autre part, les aires des rectangles SNOQ et RMOP se

déterminent facilement : elles sont égales respectivement à u0 v0

et à, %
Or, connaissant les aires SNOQ, RMOP et MNRS, nous

pouvons en déduire l'aire MNPQ, car

aire MNPQ aire SNOQ — aire RMOP — aire MNRS

c'est-à-dire
'

N N
"

*

J udv u1v1 — — H vdu ;

M M

qui est précisément la formule (1).

V. — Signification géométrique de la constante d'Euler.

La constante d'Euler,

G " + Y + 1 + +
n ~ log nép n1

oo

m=n
qui établit une relation simple entre 2 — et log nép n quand

vn.= 1 m

n—reo'," a sa raison d'être dans cette circonstance que lé terme
général de la série est 1 jmtandisque la dérivée de log nép x
est l/x. Construisons, comme le montre la figure 5, une succession
de rectangles de base égale à l'unité, et de hauteurs égales- à1111¥' ¥' 4' 5"' •" ^es rectangles seront compris entre les ordonnées

successives tirées par les points d'abscisses égales à 1, 2, 3,
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4,... L'ensemble de ces rectangles formera la figure labcdeuzhijk...
et son aire aura pour valeur

1111 1 m=ni
T + ¥ + ^+î+ ••• 2112 3 4 ra m

m= 1

Pour plus de commodité, on a pris dans la figure l'échelle des
abscisses beaucoup moindre que celle des ordonnées, de manière
que l'unité d'aire soit la surface du rectangle iab2. Construisons
aussi l'hyperbole équilatère

ly — •

X

Cette hyperbole enferme, avec l'axe des abscisses et deux
ordonnées extrêmes correspondantes aux abscisses 1 et w, une
aire

loSnéP n •

1
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Si nous considérons que tant les rectangles définis ci-déssus
que l'hyperbole équilatère se prolongent indéfiniment vers les
abscisses croissantes, nous verrons que l'aire de la partie hachurée
de la figure est

lim
m=n 1 -jS m

— tognépw C
m=l -Jn«-»

La constante d'Euler est égale, donc, à la somme des aires
des triangles mixtilignes (employons encore cet adjectif démodé)

abc, cde, euz,zhi, telle est sa signification géométrique
extrêmement simple.

Considérons maintenant l'ensemble des triangles non hachurés
qui restent au-dessous de l'hyperbole : les triangles amc, cne, etz,
zsi, et appelons C' la somme de ses aires. Nous aurons

C' lim /f- S
m=n

m= 1
m + 1

n-> oo

La somme de ces grandeurs, qui est l'aire de l'ensemble des
rectangles ahme, cdne, eutz, zhsi, sera

m= oo m=oc
c + c y [-1 -

1 ] y^ Lm m + 1J Zj
1

m 1 m =1
m [m + 1)

Leur différence, soit la somme des aires des triangles hachurés
moms les aires des triangles non hachurés, vaudra:

m= oo r m+î m+t

:-c=s [£-/ f-/m — \ m rn

+ 772+1

Wh +1
dx
x

m—co r— m-|

—* + s M-*/m=lL m
En conséquence,

G' 1 — G et g + G' 1

et, en comparant avec l'équation (1), on voit que

1

• 1 + 2G

S
m 1

772 (772 '+ 1)
1
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On vérifie immédiatement sur la figure l'exactitude de la
formule (2), parce que la somme des rectangles abmc, cdne,
eutz, est équivalente au rectangle la&2.

Faisons encore une remarque. L'hyperbole équilatère divise
chacun des rectangles abmc, cdne, cute, en deux parties qui,
en raison de la convexité de la courbe par rapport à l'axe des

abscisses, sont inégales. La partie qui reste au-dessous de la
courbe (triangles non hachurés) est moindre que celle qui reste
au-dessus (triangles hachurés). Et ainsi, la constante d'Euler

\est plus grande que — (G 0.57721...) tandis que la constante G'

est moindre que y (C' 0.42278...).

Mais les rectangles seront divisés par leurs diagonales ac, ce,

ez, en deux triangles égaux, dont les sommes vaudront ^ •

En conséquence, entre l'hyperbole équilatère et ces diagonales,
qui sont des cordes de la courbe, seront compris un ensemble de

segments ou lunules, dont les aires auront pour somme G — ^,
soit 0.07721... En calculant analytiquement la somme des aires

de ces segments ou lunules, on obtient identiquement G — ^ :

leur considération ne présente, donc, aucune utilité pour le
calcul de C.

VI. — Série double dont la somme est égale
A LA CONSTANTE d'EÜLER.

A propos de la constante d'Euler, je vais mentionner une
série double dont la somme est égale à la valeur de la constante;
quoique ce sujet ne représente pas « un appel à l'intuition
géométrique », je crois qu'il n'est pas trop déplacé ici.

Posons le développement de log nép n en série de Taylor à

partir du développement de log nép (n — 1)

log nép n log" nép (n — 1) +

_j i | i (-ir1
"•"n —1 2(» —l)*"1" 3(n —1)»
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Cette formule générale nous donne successivement :

2 • 22 + 3 • 23 4 • 24

-~| +
1

J -T + ••

1
_L

1 1

2 • 22 r 3 • 23 4 24

1

9 ••• 0 2 +
1

0 03
1

log nëp 2 -jj- — — — — + — — —6 F 1 2 3 4 5 6

log nép 3 \- — ^-+ — — — + — — — +r 1 2 3 4 5 6

+ i — + ^?- +2 9 92 1

O _ 03 /. 04. ' • • •

log nép 4 —

+ — 1
" i

2 9 92 1

O _ Q3 T. OA I • • •

+ 1
1 i_

3 9 02 1

O OS I od T • • •

Nous pouvons exprimer ainsi log' nép n par la somme de
n 1 séries, dont la première est convergente et les n — 2
autres sont absolument convergentes. Nous aurons, donc,
l'expression générale

log nép A 2 2'-* NT"n=l

Si nous faisons tendre n vers l'infini, cette somme de séries
devient une série double que nous appelerons A.

A + i_, 1

l-l1 2 • l2 3 • l3 4 • l4 5 1« ' ' '

+ -i — + ^L_ + _J__ _1 • 2l 2 • 22 3 • 23 4 • 24 5 • 25

+ ^ L_+ 1„ 1
1 • 31 2 • 32 3 • 33 4 • 34 5 • 36 " "

+ J_, 1
1 • 41 2 • 42 3 • 43 4 • 44 + 5T4Ï ~ • • •

+ -1
1-51 2 • 52 3 • 53 4T54 + 5T5Ï — •

+ •••
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Mais cette série double n'est pas convergente, car si nous
faisons la somme par colonnes, nous aurons

a vi 1 y _L + Iy i 1 y — +2^m2 3^m3 4 Z-i m4

La première de ces sommes correspond à une série divergente
et les autres à des séries convergentes; donc, la série double est

divergente, ce qu'on pouvait attendre, car

log nép n —> oo quand n —> oo

1
Mais si nous formons la différence S — — A nous aurons

m=n 1 ~|

£ lognép«
_m—1 —' c»

C JL__^ + _1 ^ +
2 • I2 3 • l3 4 • I4 5 • I5

I t L_ 4_
^ ^

_L
2 • 22 3 • 23 4 • 24 5 25 ' * '

i _A \ i - -—p^ 2 • 32 3 • 33 4 • 34 5 • 35

i
^ ' __i 1 - — 1-

2 • 42 3 • 43 4 • 44 5 • 45

+

Nous avons ainsi la constante d'Euler et de Mascheroni

exprimée par une série double

P=oo q=QO

p 2 q=i P $

Les séries obtenues en sommant par colonnes sont convergentes,

et leur sommes, dont la valeur diminue progressivement,
sont alternativement positives et négatives ; la série double est

donc convergente.
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VII. — Déduction géométrique de la formule de Stirling.

On connaît la déduction analytique, assez pénible,, de la

formule asymptotique de Stirling, d'un emploi fréquent dans le

Calcul des Probabilités, formule qui s'écrit sous forme

logarithmique :

1 1

log nép n!nlognép n— n+ log nép 2 rc + — log nép

Mais, dans beaucoup d'applications, surtout dans la Mécanique

statistique, on emploie la formule, moins approchée mais

plus simple,
log nép ni nlog nép n — n (1)

Un physicien autrichien bien connu, M. Arthur Haas, donne

une démonstration géométrique très intéressante de cette formule

raccourcie dans son Einführung in die theoretische Physik.
Je crois avoir amélioré et précisé la démonstration de M. Haas,

dans l'article Mecdnica Estadistica que j'ai écrit pour la Enci-

clopedia Universal Ilustrada ou Enciclopedia Espasa, qui est la

meilleure encyclopédie parue en espagnol, et peut-être la plus

complète et la plus monumentale du monde. Je prends la liberté
d'insérer ici un extrait de cette démonstration.

Sur l'axe des abscisses d'un système cartésien (fig. 6),

prenons les points dont les abscisses sont les nombres naturels
1, 2, 3, 4, 5, n et construisons un ensemble de rectangles de

base 1 et dont les hauteurs soient égales, aux logarithmes népé-

I
riens des nombres naturels. Nous aurons ainsi le rectangle
dont la hauteur est log nép 1 0; le rectangle dont la
hauteur est log nép 2; le rectangle 3e/4 dont la hauteur est

log nép 3; et ainsi de suite jusqu'au rectangle dont la hauteur
est log nép n.Cesrectangles ayant leur base égale à 1, leurs
aires s'expriment par les mêmes nombres que leurs hauteurs,
soit par les logarithmes népériens des nombres naturels, de sorte

L'Enseignement mathém., 37me année, 1938. 5
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que l'aire de la figure b2cdefghijkmopqrsnb formé par l'ensemble
des n premiers rectangles aura pour expression

log nép 1 + log nép 2 + log nép 3 + +
+ log nép n log nép 1.2.3.4 n — log nép n

-Z

Fg 6

Mais remarquons que la courbe

y log nép x (2)

qui passe par.les sommets supérieurs gauches des rectangles,
enferme une aire

n

A J log nép x dx (3)

égale à la somme des aires des rectangles, plus la somme t des
aires des triangles hachurés bc2, ced, egf, Ainsi,

n

log nép n log nép n —t + J* log nép x (4)

où figure le terme log nép n, valeur de l'aire du rectangle nqrst
car celui-ci est compris dans l'ensemble des rectangles, tandis
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que l'intégrale s'étend seulement jusqu'à l'ordonnée Or,
remarquons que si nous menons des parallèles aux côtés dés
triangles hachurés pour former des rectangles, comme on l'a
fait en b[ic et en eye, chaque triangle hachuré sera un peu plus
grand que la moitié de son rectangle correspondant, par la
concavité de la courbe. D'autre part, il est aisé à voir que la
somme des rectangles tels que f»ßc2, eyed, (les autres n'apparaissent

pas dans la figure, pour ne pas la surcharger de lignes),
est égale à l'aire du rectangle nqrsouà log nép n; c'est ainsi que
nous commettrons une petite erreur en remplaçant dans l'équation

(4) t par 1/2 log népn,avec lequel nous aurons la formule
approchée

i 71

log népre -lognépre -f j" log nép a: cfo (5)
1 -

En effectuant l'intégration, nous aurons

log nép n^log nép n -f log nép n —n + 1 (6)

Si dans cette formule nous négligeons l'unité à l'égard de n,
1°% n®P n ^ 1 égard de n log nép re, nous obtiendrons finalement

la formule (1) qu'il fallait établir.
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