Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 37 (1938)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: UNE APPLICATION DE LA FORMULE DE SALMON

Autor: Humbert, Pierre

DOI: https://doi.org/10.5169/seals-28586

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

UNE APPLICATION DE LA FORMULE DE SALMON

PAR

Pierre Humbert (Montpellier).

Proposons-nous de résoudre le problème suivant :

Soient, dans un plan, deux courbes algébriques C_1 et C_2 , de degrés respectifs m_1 et m_2 , et un point fixe O. Une sécante mobile, passant par O, rencontre C_1 en A_1 et C_2 en A_2 . Quel est le degré de la courbe K décrite par le point M partageant dans un rapport constant le segment A_1 A_2 ?

La solution de ce problème peut s'obtenir d'une façon très simple en utilisant l'artifice qui suit.

Le point O et la courbe C_1 restant fixes dans leur plan (que nous nous appellerons P_1), faisons subir à la courbe C_2 une translation perpendiculaire à P_1 , d'amplitude quelconque, l'amenant en C_2 dans un plan P_2 parallèle à P_1 . Soit Δ la perpendiculaire commune à ces deux plans, passant par O. Considérons à présent la surface réglée Σ dont les génératrices s'appuient sur les trois directrices C_1 , C_2 et Δ . On voit immédiatement que si l'on coupe cette surface par un plan P_1 , parallèle à P_1 et P_2 , et convenablement choisi, la projection sur P_1 de l'intersection de P_1 avec une génératrice quelconque sera précisément le point P_1 de l'intersection de P_2 par P_1 le degré de cette courbe est donc le degré de la surface P_2 .

Or, la formule bien connue, dite de Salmon, donne aisément ce degré: on sait qu'elle indique que ce degré D est, dans le cas général

$${\bf D} \, = \, 2 \, m_1 \, m_2 \, m_3 \, - \, \Sigma \, \lambda_{12} \, m_3 \ ,$$

 m_1 , m_2 et m_3 étant les degrés respectifs des trois directrices, λ_{12} le nombre des points d'intersection des directrices 1 et 2. N'oublions pas, d'ailleurs, que cette formule (qui souffre parfois des exceptions) est toujours exacte quand une des directrices est une droite, ce qui est ici le cas.

Nous avons donc, en l'occurrence, $m_3=1$. Quelles sont les valeurs des λ ?

- 1. Points d'intersection de C_1 et de C_2 . Les deux courbes, étant dans des plans parallèles, ne pourront avoir de points communs qu'à l'infini, et nous sommes ainsi amenés à envisager les points à l'infini communs à C_1 et à C_2 . Supposons qu'un tel point existe, et soit d'ordre μ_1 pour C_1 et μ_2 pour C_2 : nous devrons introduire dans la formule le terme $\mu_1 \mu_2$, ainsi que les termes analogues pour les autres points de même nature.
- 2. Points d'intersection de C_1 avec Δ . Ceci nous conduit à considérer le cas où O serait sur C_1 : nous appellerons h_1 son ordre de multiplicité éventuel sur cette courbe. Le terme à introduire sera alors h_1 m_2 . De même la valeur du coefficient λ_{23} sera h_2 , ordre de multiplicité éventuel de O sur C_2 .

Finalement, nous obtenons le résultat suivant pour le degré cherché:

$${\bf D} \, = \, 2 \, m_1 \, m_2 \, - \, \Sigma \, \mu_1 \, \mu_2 \, - \, h_1 \, m_2 \, - \, h_2 \, m_1 \ , \label{eq:defD}$$

où la somme Σ est étendue à tous les points à l'infini communs à C_1 et à C_2 , où μ_1 et μ_2 sont les ordres respectifs de multiplicité de ces points sur C_1 et sur C_2 , où h_1 et h_2 sont les ordres respectifs de multiplicité de C_1 et sur C_2 .

On voit avec quelle facilité la formule de Salmon donne la solution demandée, que d'autres méthodes auraient sans doute établie moins aisément.

Une application très intéressante est la suivante. Supposons que la courbe C_2 soit un cercle de centre O. On établira alors très simplement que la courbe K est une conchoïde de la courbe C_1 . D'où le résultat: le degré de la conchoïde d'une courbe algébrique C de degré m par rapport à un pôle O est donné par la formule

$$D = 4m - 2\mu - 2h ,$$

où μ est l'ordre de multiplicité éventuel des points cycliques sur C_1 et h l'ordre de multiplicité éventuel du pôle sur C.

Ainsi, si C est un cercle et O un point de ce cercle, on trouve

$$D = 8 - 2 - 2$$
;

c'est bien le degré du limaçon de Pascal, courbe d'ordre 4.