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Les cercles vq, Y2 jouent donc le role des foyers; ce sont les
cercles focaux de Iovale. Et, puisque la projection d'une courbe
tracée sur une quadrique est tangente au contour apparent en
projection aux poihts ot elle le rencontre, ces cercles focaux
sont ceux des cercles bitangents & I'ovale dont les centres sont
sur 'axe de symétrie FF,F; de la courbe. o

I’étude des ovales est donc & recommander aux aspirants
professeurs; en particulier, les définitions des coniques, & I'aide
de deux foyers oud’un foyer et d’une directrice, leur apparaitront
alors comme deux cas particuliers de la définition d’un ovale
par la relation (22).

SUR LA THEORIE DE L’ORDRE DES FIGURES
‘ REELLES
ET LES TRAVAUX DE M. HAUPT

PAR

M. Linsman (Liége).

1. — Dans un trés intéressant article « Sur la géométrie finie
et les travaux de M. C. Juel» [51]', M. MonNTEL a donné un
exposé d’ensemble des travaux de ce géomeétre et des recherches
qu’ils ont suscitées chez d’autres auteurs. ,

Sans vouloir fixer des limites bien nettes & la géométrie finie,
nous pouvons dire qu’eile considére ordinairement ce que JUEL
a appelé des figures élémentaires. Celles-ci sont toujours réelles,
mais elles atteignent & un grand degré de généralite. |

‘La notion capitale intervenant dans leur définition et dans
" leur étude est la notion d’ordre.

Considérons un ensemble ponctuel E plan (ou spatial), et
supposons qu’il posséde un nombre borné de points sur toute

;. Ifes nombres en caractéres gras renvoient ala bibliographie placée & la fin de cet
article. ' ;
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droite de son plan (ou dans tout plan de Pespace). Le maximum
de ce nombre sera dit I’ordre, ou plus exactement I’ordre linéaire
de E. ‘

Les courbes élémentaires planes sont alors des courbes fermées
au sens projectif, admettant en chaque point une tangente
variant d’une maniére continue avec le point de contact, et qui,
en outre, sont la réunion d’un nombre fini d’arcs d’ordre deux,
c¢’est-d-dire d’arcs convexes, placés bout & bout.

Les courbes élémentaires gauches sont des courbes fermées
au sens projectif, possédent en chaque point une tangente et
un plan osculateur répartis d’une facon continue et sont la
réunion d’un nombre fini d’arcs gauches d’ordre trois placés
bout & bout. |

Ces courbes apparaissent dans les travaux de JUEL en générali-
sation des courbes algébriques. Leur ordre est analogue au degré
de ces derniéres. Toutefois, ordre d’une courbe algébrique n’est
pas nécessairement égal a son degré: il peut lui étre inférieur.

Si lanotion d’ordre est indispensable dans ’étude des courbes
élémentaires, elle est également appelée a jouer un réle de toute
premiére importance dans la considération d’ensembles ponctuels
plus généraux tels les arcs simples, les arcs de Jordan et méme
les continus.

Dans ces recherches, il y aura lieu de faire preuve d’esprit
critique. On. écartera autant que possible toute hypothése
accessoire. L’enchainement des propriétés qui conduisent & une
proposition donnée et le role de chaque hypothese ressortiront
alors nettement.

Un des premiers travaux ou les hypothéses faites sur 'ordre
d’un ensemble apparaissent comme les principales responsables
de certaines propriétés de cet ensemble est 'important mémoire
de M. MarcHAUD «Sur les continus d’ordre bornés » [44].

Juel avait démontré la proposition suivante:

Toute courbe élémentaire plane d’ordre trois, sans point
double et sans point de rebroussement, est la réunion de trois
arcs convexes (au sens projectif) [88]. <

Cette proposition est déja extrémement générale quand on
compare les courbes élémentaires aux courbes algébriques.
Qu’en resterait-il si, & la considération de courbes élémentaires,
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on substituait la considération de continus, la seule hypothése
conservee étant celle relative & 'ordre ? La proposition de Juel
n’en serait pas fonciérement modifiée. C’est ce que montrent
les théorémes suivants établis par M. Marchaud dans son
mémoire:

Tout continu plan, borné, d’ordre trois, est formé de un ou de
deux arcs de Jordan rectifiables. Tout arc d’ordre trois est formé
de deux, lrois ou quaire arcs d’ordre deux placés bout & bout.

La condition imposée au continu d’étre borné n’a rien d’essen-
tiel. On passerait sans peine & une proposition sur les continus
projectifs; le nombre des arcs convexes dont est formé un are
d’ordre trois pourrait peut-étre alors s’élever jusqu’a cing.

On remarquera encore, avec M. Marchaud, que si un continu
plan d’ordre trois possede en chaque point une tangente unique,
celle-ci varie d’une maniére continue avec le point de contact,
puisque cette propriété est vraie pour les arcs convexes..

On ne peut, d’autre part, formuler de propositions semblables
pour les continus d’ordre quatre [14], [44]. '
- Les recherches de M. Marchaud ont également porté sur les
continus gauches. L’orientation que nous voulons donner a
cet exposé ne nous permet pas de nous arréter ici sur ce point.

On constatera cependant, avec M. Marchaud, que certains
des résultats auxquels il est amené sont encore valables s1, dans
la définition de 'ordre, on substitue, & I’ensemble des droites,
un systéme de courbes convenable. C’est ainsi que 1’on considé-
rera ordre cyclique d’un ensemble (intervenant d’ailleurs déja
dans les recherches de Juel et de MukHOPADHYAYA), ¢’est-a-dire
le maximum du nombre des points de cet ensemble situés sur
‘une méme circonférence, et aussi, avec HJELMSLEV [35], 'ordre
par rapport a certains systémes linéaires de courbes algé-
briques. ' |

On peut méme considérer 'ordre par rapport & un systéme
de courbes simples approprié, ce qui confére & la notion d’ordre
un aspect topologique.

Il appartient & M. Haupr, & qui revient cette derniére 1dée,
d’avoir tracé dans ses grandes lignes une théorie de I’ordre extré-
mement geneérale, et d’en avoir commencé activement 1’édifica-
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tion *. Dans cette théorie, M. Haupt considére également P’ordre
d’un ensemble ponctuel plongé dans un espace a plus de deux
dimensions. Cette notion s’entendra ici relativement & certains
systémes d’hypersurfaces, par exemple.

2. — Avec M. Haupt [20], essayons d’abord de dégager, rela-
tivement aux arcs plans, le véritable. caractére de la notion
d’ordre. | |

Soit, dans le plan euclidien, un domaine G, le domaine fonda-
mental, d’un seul tenant, limité par une courbe simple. Consi-
dérons, dans ce domaine, un systéme JK de courbes K, ouvertes
ou fermées, répondant aux conditions suivantes:

10 Ce sont des courbes simples, c’est-a-dire qu’elles sont
I'image continue et biunivoque d’un segment de droite ou d’une
circonférence; .

20 Toute courbe K ouverte a ses deux extremltes situées sur
la frontiére de G; toute courbe K fermée posséde au plus un
point en commun avec cette frontiére.

I résulte de cette seconde condition que G est décomposée
par toute courbe K en deux domaines partiels dont I'un au plus
est doublement connexe;

3° Par k points distincts de G passe une courbe K et une seule.
Ces points sont évidemment supposés distincts des points-base
du systéme K, c’est-a-dire des points communs a toutes les
courbes K; | |

4° Toute courbe K doit varier d’une maniére continue avec
tout groupe de £ points qui la détermine.

D’une fagon plus précise, appelons domaine de rayon v d’un
ensemble le domaine obtenu par la réunion de tous les cercles
ouverts de rayon v centrés en un point de cet ensemble. La
condition de continuité ci-dessus s’énonce alors:

Soit Py, ..., P, un groupe de k points et désignons par K la
courbe K qu’il détermine. A tout nombre v > 0 arbitraire-

1 Les tendances qui semblent animer les recherches de M. HaupT apparaissent
également dans les travaux de MM. MENGER et BouLiganD. Tout en ayant leur principe
propre, celui de Juel convenablement élargi, les recherches de M. Haupt et celles
de ces autres auteurs ont ce lien commun: I’aspiration vers la topologle tres nette dans
I’ceuvre de M.. Haupt




SUR LA THEORIE DE L’ORDRE 27

ment donné, on peut alors associer un mnombre 3 =

3 (m; P, .. ., P,) > 0 tel que:
a) Toute courbe K qm passe dans les cercles de rayon 3 et de

centre respectif Pl, Ph appartient au domaine de rayonn de K;
b) Inversement, K appart1ent au domaine de rayon 7 de K.

¢) Si T est un arc partiel de K, d’extrémités Q et R, il existe,
dans les domaines de rayon 3 de ces points, deux autres points Q
et R qui sont les extrémités d’un arc partiel T de K g’étendant

en entier dans le domaine de rayon v de T.

Considérons enfin un arc de Jordan B, situé dans G, ¢’est-a-dire
I'image continue et univoque sans plus d’un segment de droite,
extrémités comprises.

L’ordre de B sera, par deﬁmtlon le maximum du nombre
des pomts communs 4 B et & une courbe K distincts des points-
base de J{. Si ce maximum n’existe pas, mais que toute courbe K
rencontre cependant B en un nombre fini de points, 'ordre de B
sera dit fini. Dans tous les autres cas, B sera dit d’ordre infini *.
‘Nous supposons d’ailleurs ici, par simple raison de commoditeé,
que B et une courbe K quelconque ne possedent, en commun,
aucun arc partiel.

Quelques préeiéions sont cependant encore nécessaires.

De par sa définition méme, B admet une représentation
paramétrique continue de la forme

Mais un méme point de B peut correspondre a plusieurs valeurs
du paramétre t. Il sera dit posséder la multiplicité r ou infinie
suivant qu’il correspond & r ou & une infinité de valeurs distinctes
de ce paramétre. Dans la détermination de ’ordre de B, chaque
point ‘commun 4 B et & une courbe K peut étre compté soit
comme un point unique, soit avec sa multiplicité. Suivant le
cas, on parlera respectivement de U'ordre faible ou de I'ordre fort
de B [58]. Par la suite, ¢’est toujours de ce dernier qu’il s’agira.

Nous n’aurons pas .4 nous occuper dans cet exposé de la

1 On pourrait préciser davantage et attacher & ’ordre infini une certaine puissance:
le maximum de la puissance de ’ensemble des points communs & B et & une courbe K.
On consultera 4 ce sujet K. MENGER, Kurventheorie (48), pp. 96 et suivantes.
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configuration des points multiples, mais il convient de signaler
Pimportant. mémoire de M. RosENTHAL sur cette question [56].

3. — Afin d’éviter toute confusion, nous appellerons point-
image tout point P. de B quand nous voudrons spécifier qu’il
correspond & une valeur bien déterminée #, du parameétre, et
nous le désignerons par P (z,).

On définira le domaine d’un point-image P (t,) sur B comme
I'ensemble des points de B correspondant aux valeurs de ¢
telles que |

ol J est un nombre positif arbitraire suffisamment petit.

Les expressions domaine & gauche ou a droite de P (¢,) sur
B s’entendent d’elles-mémes. A o

Enfin, on dira que P(f) est un point-image d’appui ou
d’intersection de B sur une courbe K si le domaine de P (t,)
sur B appartient ou non en entier & I'un des deux domaines
déterminés dans G par la courbe K considérée.

Comme on le congoit, ’argument essentiel qui intervient dans
la démonstration des propriétés que nous allons énoncér est
que toute courbe K décompose G en deux domaines partiels,
et que tout arc de B possédant au moins un point dans chacun
de ces domaines doit posséder sur K au moins un point-image
d’intersection. On arrive ainsi aisément aux deux propositions
suivantes: ' |

Soit S(t) un point-timage d’intersection de B sur une courbe K.
A tout domaine arbitrairement petit U = U(S; B) de S(t) sur B,
on peul associer un domaine de rayon v de la courbe K considérée
tel que toute auire courbe K située dans ce domaine posséde au
moins un point d’intersection avec B appartenant ¢ U.

Soit T (t) un point-image d’appui de B sur une courbe K. A tout
domaine arbitrairement petit U = U(T; B) de T (t) sur B, on
peut assocter un domaine de rayon v de la courbe K considérée tel
que, dans ce domaine, il existe d’autres courbes K qui possédent
au moins deux poinis-image d’intersection avec B appartenant a U.

On exprimera ces deux théorémes plus simplement en disant
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que par variation continue de K, les points-image d’inter-.
section se conservent, et que les points-image d’appui peuvent
se transformer en deux points-image d’intersection.

4, — Supposons mam’oenant que B rencontre une certaine
courbe K en % points-image distincts, qui peuvent d’ailleurs étre
indifféremment des points-image d’intersection, des points-
image d’appui, ou étre les deux extrémités de B. Désignons
cette courbe par K.

Par variation continue de K, on peut, d’aprés les théoremes
ci-dessus, transformer un quelconque de ces points- image
d’appuien deux points-image d’intersection, mais nous ne savons
pas s’il est possible de réaliser ce fait en deux points-image
d’appui simultanément. On peut se demander si, par variation
continue de K, on ne pourrait pas obtenir une autre courbe K
ayant avec B au moins % points-image d’intersection. Lia réponse
est affirmative et constitue ce que M. Haupt appelle le théoréme
de réduction: S’il existe une courbe K ayant, avec B, h points-
image en commun, (aucune distinction n’étant d’ailleurs faite
entre les points-image d’intersection, d’appui et les extrémités
de B), il existe alors d’autres courbes K, arbitrairement voisines
de la courbe K considérée qui rencontrent B en au moins h pomts-
image d’interseciion. Toutefois k doit étre supposé = 2.

Dans le cas ou k = 1, le théoréme de réduction n’est pas
valable en général. Il sufﬁt, pour le voir, de considérer un arc
d’ordre cing par rapport & un faisceau de rayons, dont les deux
extrémités sont situées sur un méme rayon, et qui posséde encore
en commun avec ce dernier un point d’appui situé entre deux
points d’intersection.

Nous esquisserons rapidement la demonstratlon du théoreme
de réduction. Nous nous bornerons d’ailleurs au cas ou k = 2.
Dans le cas ou k serait > 2, on pourrait, en effet, toujours
extraire de JC un systéme de courbes K contenant K et pour
lequel on aurait &k = 2 ‘

K détermine dans G deux domaines G* et G—. Suivant que
leur domaine sur B appartient respectivement & G* ou & G,
les points-image d’appui de B sur K seront dits positifs ou
négatifs. Il en sera de méme des extrémités de B situées sur K.
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Soit maintenant 7' un arc de K contenant & son intérieur tout
les points-image communs & B et & cette courbe. Sur 7 un point
quelconque V détermine deux autres arcs partiels T', et T
s’étendant reqpectlvement a gauche et a droite de ce pomt

Désignons par ¢/, ¢, et g5, g7 le nombre des points-image
d’appui positifs et négatifs de B sur K qu’ils contiennent res-
pectivement. Représentons de méme par e, e, et ey, €5 le
nombre des extrémités de B positives et négatives situées res-
pectivement sur ces arcs. Et soit encore s le nombre total des
points-image d’intersection.

On peut alors montrer que, pour une représenta,tio\n paramé-
trique appropriée de B, et pour un choix convenable des expres-
sions gauche et droite, il existe, sur T et en dehors de B, une
position particuliere V, de V telle que

297 + 245 +ef +egFs=h . (1)

Soient maintenant P, et P, deux points de K situés a gauche
de V, sur cette courbe, P, étant & droite de P, et tels que sur X
n’existent entre P, et V, aucun point d’appui ni aucune extrémité
de B. Soit encore P, un point de G~ appartenant au voisinage
de P,, et désignons par K la courbe K passant par les points P,
et L]_S Puisque k£ = 2, cette courbe ne peut rencontrer K qu’en
un seul pomt done en P;. Ce pomt détermine sur K deux arcs
situés en entier respectlvement dans G* et dans G—. K peut

d’ailleurs, avec P2, étre choisie dans un voisinage arbitrairement
petit de K.

On s’apercevra alors aisément que, lorsqu’on substitue K a K,
4 + g7 points-image d’appui de B sur K se transforment
chacun en au moins deux points-image d’intersection, et que
ey + €5 extrémités de B situées sur K se transforment chacune
en au moins un point-image d’intersection. De la relation (1)
résulte alors le théoréme annoncé.

Le théoréme de réduction intervient dans la demonstratmn
de nombreuses propriétés. M. Marchaud en avait d’ailleurs déja
reconnu 'utilité et I’avait établi, dans le cas de 'ordre linéaire,
directement pour les arcs de 'espace & n dimensions [44].
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5. — Dorénavant, comme nous aurons surtout en vue des
théorémes d’existence, nous nous bornerons parfois & la consi--
dération d’arcs simples au sujet desquels nous formulerons
d’ailleurs des hypothéses trés limitatives. Aucune distinction
entre point et point-image ne sera plus alors nécessaire.

Soit donc un arc simple B tel qu'une certaine courbe K
n’ait avec lui que des points d’intersection S, ..., Sy en commun,
et d’ailleurs au moins £ - 1.

Admettons encore que ces points soient disposés sur B et
sur K dans le méme ordre, c¢’est-a-dire qu’ils soient rencontrés
dans le méme ordre quand on parcourt B et K dans un sens
convenable. Fixons & — 1 de ces points et faisons varier la
courbe K d’une maniére continue en imposant & I’'un des points S
restants un déplacement monotone sur B, et d’ailleurs suffisam-
ment restreint. _

11 est alors aisé de voir que deux queloonques des points S
mobiles se déplacent dans le méme sens ou en sens inverse sur B
suivant que le nombre des autres points S mobiles qui les séparent
est pair ou impair. C’est le théoréme de monotonie énoncé pour
la premiere fois par MuknorADHYAYA [53], et que M. Haupt
a d’ailleurs généralisé.

Comme on le verra par la suite les arcs simples auxquels
s’appliquent les conclusions du théoréme de monotonie pré-
sentent un intérét tout spécial. Nous les désignerons par B*.
De tels arcs existent certainement, si nous acceptons toutefois
de nous limiter & la considération d’arcs soumis & des hypotheéses
convenables; nous en rencontrerons des exemples.

6. — Considérons un arc B* d’ordre fini, et seit K une courbe K
qui le rencontre en k -4 1 points d’intersection au moins.
Prélevons parmi ceux-ci un groupe de k -+ 1 points que nous
désignerons par S,, ..., §k+1 et que nous supposerons dlstmbues
sur B dans Pordre de leurs indices.

Supposons que par un moyen quelconque nous puissions
trouver une autre courbe K rencontrant B en certains points
dont k& + 1 au moins, que nous désignerons par S', sont des
points d’intersection appartenant & l'arc S,S,,, de B*. Nous
dirons que le groupe des points S’ peut s’obtenir par une contrac-
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tion du groupe S, ..., S, . On introduit d’une maniére analogue
la notion d’expansion d’un groupe de points: on dira que ’on a
effectué une expansion du groupe S, ..., S, si I’on peut trouver
‘un groupe de k + 1 points d’intersection S, ..., S;,, de B*
avec une autre courbe K tels que les pomts S appartlennent
tous a l’arc S’ Sk+1 de B*.

Puisque l’arc B* satisfait aux conclusions du théoréme de
monotonie, on peut toujours par variation continue de K dans
un sens convenable, rapprocher deux quelconques des points S
I'un de I'autre. Est-il possible de trouver une courbe K rencon-
trant B* en £ + 1 points au moins condensés dans un intervalle
aussl restremt que l'on voudra et situés d’allleurs entre S,
et Sy ?

Nous nous bornerons a énoncer, sans démonstration, le
théoréme de contraction qui répond a cette question:

Soit B* un arc simple auquel s’appliquent les conclusions
du théoréme de monotonie. A partir d'un groupe de k -+ 1
points d’intersection de B* avec une courbe K, on peut toujours,
par une suite de contractions convenables, en engendrer un autre
situé sur un intervalle de B* arbitrairement petit.

Nous sommes ainsi amené a introduire encore une notion
nouvelle qui est une des bases de la théorie de M. Haupt: I’ordre
d’un point.

Considérons, sur un arc de Jordan B, un point-image P (¢,).
Nous dirons que P (¢,) est d’ordre n, d’ordre fini ou d’ordre infini
suivant que tous les voisinages suffisamment restreints de P (i)
sur B sont respectivement de ces ordres. 11 ’agit ici de voisinages
bilatéraux. Si, dans cette définition, on considére, au contraire,
des voisinages latéraux (& gauche ou a droite), on obtient la
notion d’ordre latéral (& gauche ou a droite) d’un point-image.

Exprimé dans.ce nouveau langage, le théoréme de contraction
nous fournit un premier théoréme d’existence, a savoir ’existence -
‘d’au moins un point d’ordre k£ 4- 1 sur tout arc B* d’ordre au
moins égal a & -+ 1.

Un autre théoreme qui constitue comme une remproque au
théoréme de contraction est le suivant:

Soit B* un arc d’ordre k -+ 1 auquel s’appliquent les concluswns
du théoréme de monotonie. Soient I'' et T'" deux groupes de
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k + 1 points de B* situés respectivement sur une méme courbe K,
un point quelconque de IV se trouvant, sur B*, 4 gauche d’un

point quelconque de T'". Soit encore B* un arc partiel de B* conte-
nant @ son mtemeur les deux groupes TV et T. Si P est un point

situé @ gauche ( ou d droite) de B* sur B*, on peut alors par une
suite d’expansions convenables transformer I'' (ou I'") en un groupe
de k + 1 points constitué par P et par k points intérieurs ¢ B*.

Signalons enfin que. ce théoréme d’expansion conduit a un
second théoréme d’existence: ‘

Soit B* un arc répondant aux conditions du théoréme d’expan-
sion, S’ et S” deux points d’ordre k -+ 1 de cet arc. Soit P un point
de B* situé en dehors de U'arc S’ S”". Il existe alors sur cet arc un
point d’ordre k par rapport au systéme des courbes K passant
par P. Le théoréme de contraction et les considérations déve-
loppées dans la démonstration du théoréme d’expansion sont
d’une importance capitale pour I’étude des arcs et des courbes
réels. Ces deux propositions expriment des propriétés abstraites
et concernent, en réalité, des correspondances ponctuelles mo-
notones sur un segment paramétrique. Nous aurons I’occasion
d’en reparler par la suite.

P~

/. — Revenons maintenant & la considération d’arcs de
Jordan absolument généraux. Nous savons la complexité qu’ils
peuvent présenter.

Un des problémes les plus importants auquel la notion
d’ordre apporte une solution adéquate est le probléme de la
structure. 11 consiste & rechercher des modéles simples au moyen
desquels on pourra toujours reconstituer un arc quelconque.
Nous allons voir que ces modeles sont ce que M. Haupt a appelé
des arcs primitifs (ou [69] total ordnungshomogen), c¢’est-a-dire
des arcs dont tous les points possédent le méme ordre et qui en
outre possédent eux-mémes cet ordre. Il est encore équivalent
de dire qu’un arc primitif est un arc dont tous les arcs partiels
possedent le méme ordre.

Supposons, en effet, adopté un certain type d’ordre, déterminé
par un systéme de courbes K. Nous pouvons alors énoncer le
théoréme (approfondi) de répartition — verschirfter Verteilungs-

L’Enseignement mathém., 37me année, 1938. 3
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satz, dit aussi théoréme général de décomposition : Tout arc de

Jordan est formé d’un ensemble dénombrable d’arcs primitifs,
d’arcs de courbe K et de leurs points d’accumulation. |

Cette proposition, établie par M. Haupt, pour la premiére fois
a I'occasion de Pordre linéaire [16], constitue un théoréme formel
plutét qu'un théoréme de géométrie. Par un simple changement
de vocabulaire, on peut I’étendre aux ensembles ponctuels
topologiques, réguliers, avec base dénombrable, pour lesquels
on a défini une certaine notion d’ordre [69].

Vu Iimportance de ce théoréme, nous allons en exposer une
démonstration. Au préalable, il sera utile de faire les quelques
remarques suivantes:

a) Soit B I’arc de Jordan considéré. Il ne peut contenir qu’un
ensemble dénombrable d’arcs de courbe K n’ayant aucun
point en commun, sauf peut-étre des extrémités. Les points
de B non intérieurs & ces arcs se répartissent sur un ensemble
dénombrable d’arcs de Jordan. Il suffira donc de démontrer le
théoréme de décomposition pour ces derniers. Autrement dit,
nous pourrons supposer que B ne contient pas d’arc de courbe K.

b) Tout arc de Jordan d’ordre k est primitif: il ne peut, en
effet, contenir d’arc partiel d’ordre supérieur a k£ et, d’autre
part, un arc quelconque est au moins d’ordre % puisque par k
de ses points passe toujours une courbe K. |

¢) La condition nécessaire et suffisante pour qu’un arc de
Jordan soit la réunion d’un nombre fini d’arcs d’ordre << n est
qu’il ne contienne aucun point-image d’ordre latéral > n. Cest
12 une conséquence immédiate du lemme de Borel- Lebesgue

En particulier, un arc dont tous les points-image sont d’ordre n
est formé d’un nombre fini d’ares primitifs d’ordre .

On peut voir également qu’un arc de Jordan ne contenant que
des points d’ordre borné est la réunion d’un nombre fini d’arcs
d’ordre borné. | |

d) La condition nécessaire et suffisante pour qu’un arc soit
tout au plus d’ordre fini est qu’il ne contienne aucun point

d’ordre infini. La condition, évidemment nécessaire, est aussi

suffisante. Supposons, en effet, 1’arc considéré d’ordre infini.
I1 existe alors une droite le rencontrant en une infinité de points-
image. Les valeurs du paramétre correspondant & ces derniers

e
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admettent un point d’accumulation. Le point-image qui y
correspond est d’ordre infini.

¢) L’ensemble des points-image de B d’ordre = n est felme
il en est de méme de I’ensemble des points-image d’ordre au
moins fini et de celui des points-image d’ordre infini. Cela résulte
de la définition méme de 'ordre d’un point-image. |

On en conclut que si I’ensemble des points-image d’ordre = n
(ou au moins fini, ou infini) est partout dense sur B, tout point-
image de cet arc est au moins d’ordre n (ou fini, ou infini). ‘

f) L’ensemble des points-image d’ordre < n est formé d’un
ensemble dénombrable d’arcs de Jordan et méme, d’apreés c)
d’arcs de Jordan d’ordre < n.

Si, en outre, ’ensemble des points- 1ma,ge d’ordre >~ n n’est
nulle part dense sur B (c’est-a-dire §’il n’existe aucun arc de B
sur lequel ces points-image soient partout denses), I’ensemble
des points-image d’ordre < n est alors partout dense sur B et
celui-ci est la fermeture d’un ensemble dénombrable d’arcs
d’ordre inférieur a n.

Cette derniére remarque se prolonge au cas ou seulement les
points d’ordre au moins fini et au cas ol les points d’ordre infini
ne forment qu'un ensemble nulle part dense sur B.

La demonstratlon du théoréme de décomposition se fera par
récurrence. |

Remarquons d’abord que ce théoréme est exact dans le cas
ou les points-image d’ordre > k ne sont nulle part denses sur B.
En effet, d’aprés f), B est alors la fermeture d’un ensemble
denombrable d’arcs d’ordre %k et nous avons vu que ceux-cl
étaient des arcs primitifs.

Nous allons maintenant démontrer que si le théoréme est
vrai quand les points-image d’ordre >~ n ne forment qu’un
ensemble nulle part dense sur B, il I'est encore quand ce fait
ne se produit que pour les points-image d’ordre >~ n -+ 1.

Dans' ce dernier cas, B est, en vertu de f), la fermeture d’un
ensemble dénombrable d’arcs T, d’ordre = n. Il nous suffira
donc de démontrer I’exactitude du théoreme pour ces arcs.
Celle-ci serait assurée par hypothese si sur T, I'ensemble des
points-image d’ordre n n’était nulle part dense. Il nous reste
donc finalement & considérer le cas ou sur T, existe au moins un
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arc partiel T, sur lequel les points-image d’ordre n forment un
ensemble partout dense. Appelons O, l’ensemble de tous les
arcs T,. On peut toujours le considérer comme la réunion d’un
ensemble dénombrable d’arcs Ty, n’ayant tout au plus en
commun que des extrémités. De ce qu’un arc Ty, est d’ordre 7
et de e) résulte alors que tout point-image de cet arc est d’ordre
n. Tye, et par suite, O, sont donc, d’aprés c), formés d’arcs
primitifs d’ordre n. _ |
Considérons maintenant l’ensemble ouvert R, = T, — O,,

o1 O, représente la fermeture de O,. Il est formé d’un ensemble
dénombrable d’arcs sur lesquels les points-image d’ordre n ne
forment qu’un ensemble nulle part dense. Par hypothése le
théoreme de décomposition est applicable & chacun d’eux.

Il résulte de tout ce qui précéde que le théoreme de décom-
position est exact quand les points d’ordre > n ne forment
qu'un ensemble nulle part dense sur B.

On reprendra ces raisonnements dans le cas ou seulement les
points-image d’ordre au moins fini, puis d’ordre infini ne
forment qu'un ensemble nulle part dense sur B, et on considérera
enfin un arc de Jordan absolument quelconque. On arrivera,
ainsi au théoréme de décomposition dans toute sa généralite.

8. — Le probléme de la structure revient donc a celui de
Pexistence des arcs primitifs. Cette question a été résolue dans
le cas de I’ordre linéaire [16]:

Il ne peut exister d’arc primitif relativement d Uordre linéaire
autre que les arcs primitifs d’ordre deux et les arcs primitifs d’ordre
infint, abstraction faite des segments de droite.

Les premiers sont évidemment bien connus, ce sont les arcs
convexes. Les seconds existent certainement ; les arcs représentés
par des équations de la forme z = ¢ (t), y = ¢ (t) ou ¢ et ¢
n’admettent de dérivée nulle part en fournissent des exemples.

Ainsi les arcs convexes, les arcs d’ordre linéaire infini et

les segments de droite suffisent pour reconstituer un arc de

Jordan quelconque. En particulier, tout arc de Jordan d’ordre
fini ne contenant pas de segment de droite est formé d’un
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“ensemble au plus dénombrable d’arcs convexes et de leurs points
d’accumulation. - A

Ces derniers résultats avaient déja été établis pour certains
arcs simples par J. HierLMsLev [384], et M. ROSENTHAL en avait
donné une premiere généralisation [56].

Soulignons encore la grande généralité des courbes élémen-
taires considérées par Juel puisque, & part la condition d’exis-
tence d’une tangente unique en chaque point, on ne leur
impose que la condition d’étre formée d’un nombre fini d’arcs
convexes:. , _

M. Haupt a également réalisé la recherche des arcs primitifs
dans le cas de ordre cyclique [29], [70]. La méthode qu’il utilise .
semble suffisante pour résoudre le cas k = 3 et peut-étre aussi
le probleme de la structure des arcs plans en toute généralité,
c’est-a-dire pour £ arbitraire, certaines restrictions étant toute-
fols éventuellement imposées aux courbes K. En tous cas, 1l
n’existe pas d’arc primitif d’ordre k& + 1 auquel s’appliquent les
conclusions .du théoréme de monotonie. Ceci découle immeé-
diatement d’un autre théoréme: ' '

Tout arc B*, d’ordre k 4 1 auquel s’appliquent les conclusions
du théoréme de monotonie contient au maximum g, =3 - 2811
points d’ordre k + 1, dont aucun west d’ailleurs d’ordre latéral
k 4 1. On peut voir, en effet, en se basant sur le théoréme de
contraction, qu'un point d’ordre latéral k - 1 est nécessairement
point d’accumulation de points d’ordre % - 1.

On conclut encore de 14 que B* peut &tre considéré comme la
réunion d’un nombre fini d’arcs d’ordre % n’excédant pas 3 - 21,

Rien ne nous permet d’affirmer que cette borne ne puisse encore
étre réduite. |

9. — La notion d’ordre peut servir de principe de classification,
de méme qu’on classe les courbes algébriques d’aprés leur degré.
Mais la classification, ici, sera plus souple. On classera les
courbes d’apres leur ordre linéaire, d’aprés leur ordre cyclique,
ou on considérera simultanément ces différents ordres [37].

Ceux-ci ne sont d’ailleurs pas totalement indépendants. Les
ovales (courbes fermées d’ordre linéaire deux) possédent des
propriétés intéressantes quant a leur ordre cyclique. Rappelons
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& ce sujet la proposition de Mukhopadhyaya suivant laquelle
tout ovale, soumis & des conditions de différentiabilité suffi-
santes, posséde au moins quatre points cycliques (pomts d’ordre
cyclique quatre) [53].

L’ordre par rapport &4 un faisceau est particulicrement utile |

‘a4 considérer. Tout arc d’ordre un par rappert & un faisceau
est, en effet, un arc simple; et cela permet d’obtenir des ren-
seignements sur la décomposition de certains arcs de Jordan
en arcs simples. Nous citerons, par exemple, la proposition
suivante de M. Haupt, qu’il a d’ailleurs généralisée [13]:

Tout arc de Jordan d’ordre linéaire n =< 5 est décomposable
~en un nombre fini d’arcs simples relativement & des faisceaux
de rayons appropriés. D’autre part, il existe, pour tout n > 6,
des arcs d’ordre n qui n’admettent pas une telle décomposition
[12].

10. — 1II nous reste encore, avant de terminer cet exposé
rapide de la théorie de Pordre des figures planes, & parler d’un
nouveau type d’ordre qui a été introduit récemment dans I’étude
des courbes par M. BrascekE [1]: lordre cinématique.

Considérons un arc de Jordan B. L’ordre cinématique de B
est le maximum du nombre des points d’intersection de B avec
tout autre arc qui lui est identique & un déplacement preés.
Lorsqu’on limite ces déplacements & des translations, on obtient
Vordre de translation de B.

Les circonférences sont les seules courbes fermées d’ordre
cinématique deux. Les courbes fermées d’ordre cinématique
quatre sont les ovales & centre possédant quatre points
cycliques [3], [10].

I’ordre de translation et 'ordre linéaire ont certaines rela-
tions entre eux. M. Rosenthal, dans un travail récent [58], a
établi a ce sujet diverses propositions dont nous signalerons
celle-ci: Tout arc d’ordre de translation borné est d’ordre
linéaire borné. Il a montré que les ovales sont les seules courbes
de Jordan fermées d’ordre de translation deux, que les arcs
convexes ne possédant pas deux tangentes paralléles sont les seuls
arcs de Jordan d’ordre de translation un.

I1 est également parvenu & des propriétés générales, notam-
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ment en ce qui concerne les arcs d’ordre de translation borné,
quant a leur structure et & leur rectificabilité.

11. — Remarquons, en passant, que la théorie de la structure
conduit & des problémes de configuration (Gestaltsprobleme)
[83]. Ces derniers traitent des propriétés globales des courbes
en opposition avec le probléme de la structure qui en recherche
les propriétés locales. Ils consistent au fond & répartir les courbes
en difféfentes classes, celles-¢i étant définies essentiellement au
moyen du concept d’un ordre donné. Les courbes d’une méme -
classe sont dites' équivalentes, ou posséder la méme configura-
tion. | ' ' : ,

Dans ces problémes rentrent les problémes du type classique
de Juel (voir entre autres les travaux de MM. Brusorti, JUrL,
Linsman, J. v. SZ.INAGY, SCHERK, SEGRE; cf. MoNTEL [51] et
notre bibliographie). - o

Mais nous ne pouvons insister davantage ici sur les nombreux
travaux qui entrent en ligne de compte.

12. — Nous nous sommes limités Jusqu’a présent & la consi-
dération d’arcs plans. Mais 'on peut définir I'ordre d’un arc
gauche, d’une surface, ou plus généralement d’une variété dans
un espace & n dimensions [32], [T1]. |

L’ordre d’un arc gauche de Jordan, représenté par les équa-
tions paramétriques z = o (f), Yy=9@),z=y@1),0>t>1,
est, par définition, le maximum du nombre des points-image
de cet arc situé sur les surfaces d’un systeme approprié. |

Jusqu’a présent, seuls I’ordre linéaire (par rapport aux plans)
et 'ordre sphérique (par rapport aux sphéres de I’espace) ont
été considérés. - S

La définition de I’ordre d’un point-image et la définition des
arcs primitifs sont les mémes que pour les arcs plans. Le pro-
bleme de la structure des arcs gauches est partiellement résolu
dans le cas de I'ordre linéaire. D’une part, le verschirfte Vertei-
lungssatz, comme nous Pavons d’ailleurs remarqueé, s’applique-
aux arcs gauches. D’autre part, on peut encore'démbntrer, avec
M. Haupt, que tout arc de J ordan tel que les fonctions o, Yety
de la représentation paramétrique admettent des. dérivées
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continues  jusqu’au troisiéme ordre est localement d’ordre
linéaire trois [19]. On est ainsi porté & croire que, par analogie
avec les résultats obtenus pour les arcs plans, les arcs gauches
d’ordre trois sont les seuls arcs primitifs gauches d’ordre fini
(cf. no 8).

Ce sont ces arcs qui, sous I’hypothése d’existence d’une
tangente et d’un plan osculateur uniques en chaque point,
constituent les arcs élémentaires avec lesquels Juel a construit
les courbes élémentaires gauches. Remarquons, en effet, que
" cette hypothése suffit & entrainer la variaticn continue de la
tangente et du plan osculateur avec le point de contact [35], [44].

On trouvera, dans un travail de M SAUTER, une étude appro-
fondie des arcs de ’espace & n dimensions [35], [48]. L’ordre
linéaire est ici défini par rapport aux hyperplans de cet espace.

13. — 11 apparait que la théorie de 'ordre des arcs plans
développée dans toute sa généralité serait susceptible d’apporter
une simplification considérable dans I’étude des arcs gauches.
‘C’est ce que 'on comprendra par ’exemple suivant qui constitue
une des plus belles applications [21] que M. Haupt ait donné
de sa théorie de I'ordre.

Nous avons rappelé, au début de cet exposé, la proposition
suivant laquelle tout continu plan d’ordre linéaire trois pouvait
étre considéré comme la réunion d’au maximum cingq arecs
convexes. Cette proposition g’étend aux arcs gauches d’ordre
(linéaire) quatre. |

Considérons, en effet, un arc gauche C, d’ordre quatre, et
soit P un point ordinaire intérieur a cet arc. Projetons G, de P
sur un plan @ ne passant pas par ce point: nous obtenons un
arc plan d’ordre trois et qui peut ainsi étre considéré comme la
réunion d’au maximum cing arcs convexes.

Nous pouvons done décomposer C, en, au maximum, SiX arcs
partiels B; dont aucun ne posséde P comme point intérieur et
qui se projettent tous & partir de P sur @ suivant des arcs
convexes. Désignons par M; la portion de cone convexe de
sommet P et projetant B;. |

Les plans de ’espace ne passant pas par P découpent sur M;

g
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des courbes que nous appellerons. K. Par trois points de M;
passe un seul plan, done une seule courbe K. :
Un plan, et par suite une courbe K, ne peuvent rencontrer B;
qu’en trois ou tout au plus quatre points; nous pourrons donc
dire que B; est d’ordre trois ou quatre par rapport au systéme
des courbes K. Dans ce qui suit, nous parlerons indifféremment
de Pordre de B; par rapport aux courbes K ou de son ordre
linéaire puisque ces nombres sont égaux. :

Les courbes K sont simples relativement aux génératrices de
M;, c’est-a-dire que toute génératrice de M; ne peut les rencon-
trer qu’en un point au plus. On peut voir qu’il en est de méme
pour B;.

Il en résulte que les points commun & B; et & une courbe K
sont disposés dans le méme ordre sur B; et sur cette courbe K.

Comme M; est topologiquement équivalent & un domaine
plan, le théoréme de monotonie et toutes les conséquences
quil entraine peuvent étre répétés au sujet de P’arc B;. Le
premier théoréme d’existence, en particulier, nous permet
d’affirmer que si B; est d’ordre quatre, il contient au moins un
point intérieur d’ordre quatre. Nous allons voir qu’il ne peut
d’ailleurs en posséder qu’un seul.

Supposons, en effet, que, sur B,, existent deux points S’ et S”
d’ordre quatre, et admettons que, lorsqu’on parcourt C, de la
gauche vers la droite, on rencontre P, S’ et S” dans cet ordre.
On peut alors trouver sur B, deux groupes de quatre points
coplanaires IV = (T, T,, T;, T;) et ' = (T1, Ty, Ty, T%) suffi-
samment voisins de S’ et de S” pour que tout. point T’ soit &
gauche de tout point T” et a droite de P. Supposons encore
les points T et T” disposés de la gauche vers la droite dans
Pordre de leurs indices. On peut voir aisément que les points T’
et T” sont tous des points d’intersection de C, respectivement

avec les- plans de I et de I'”. ‘

S1, sur B;, nous déplacons d’une facon monotone les points
T., T; et Ti vers la droite jusqu’a les amener en coincidence
avec Ty, T, et T;, le quatriéme point d’intersection de leur
plan avec C, se déplacera, en vertu du théoréme de monotonie,
de la droite vers la gauche tant qu’il appartiendra a 1’arc B;.
Il ne peut se perdre en un point intérieur & C4. II doit finalement
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arriver en T;. Il devra donc passer par P. Mais alors par ce
point passerait un plan rencontrant B; en trois points intérieurs,
ce qui est impossible, puisque M; est convexe.

I1 en résulte que si B; est d’ordre quatre, il contient un et un
seul point d’ordre quatre. D’aprés un théoréme precedent il
ne peut contenir de point d’ordre latéral quatre.

On en conclut qu'un arc B; est formé d’au maximum deux arcs
d’ordre trois et que par suite G, est formé d’au maximum douze-
arcs d’ordre trois.

Cette proposition s’étend par récurrence aux arcs et aux
courbes d’ordre n + 1 de I’espace & n dimensions:

Toute courbe ouverte ou fermée d’ordre n + 1 de Uespace a n
dimensions peut toujours éire décomposée en un nombre fini
d’arcs d’ordre n n’excédant pas s, = 2 (7 - 2" — 1) (n > 3).

Cette borne peut d’ailleurs étre abaissée. Poursuivant ’analyse
précédente, et utilisant certains résultats de M. DEnk sur l'ordre
"d’un point commur. & deux arcs d’ordre n dans l’espace a n
dimensions [9], nous avons montré que s, pouvait étre abaissée
jusqu’a la valeur n + 2 pour les courbes ouvertes, n + 1 pour
les courbes fermées, et que ce nombre ne pouvait étre réduit
davantage [48]. Nous avons toutefois supposé, pour les courbes
considérées, 'existence d’une tangente et d’un plan osculateur
unique, tout au moins en certains points. De nouveaux résultats
de M. DENk, encore 1ned1ts permettralent peut-étre de s affran-
chir de cette restriction.

On trouvera dans les travaux de MM. MOHRMANN, SCHERK
et SEGRE des renseignements détaillés sur certaines courbes
fermées d’ordre quatre de I'espace ordinaire [50], [61], [62].

14. — L’étude des arcs et des courbes gauches pourrait
peut-étre cependant étre abordée d’une fagon autonome. Nous
ne pouvons icl nous attarder sur ce point; on trouvera des
renseignements précieux dans un travail fondamental de
M. Hjelmslev sur la théorie des suites monotones [35].

Nous observerons encore que la structure des arcs gauches
d’ordre linéaire trois peut étre étudiée par la considération de
leur ordre sphérique. M. Haupt a montré & ce sujet que tout
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arc d’ordre linéaire trois et d’ordre sphérique cing est la réunion
d’un nombre fini d’arecs d’ordre sphérique quatre [17].

Nous dirons enfin quelques mots du probléme du prolongement.
Il consiste & rechercher dans quelles conditions un arc plan ou
gauche est prolongeable jusqu’en un autre arc de méme ordre
qui le contienne et, en particulier, jusqu’en une courbe fermée.

Ce probléme, dont la solution est immédiate pour les arcs plans
. d’ordre linéaire deux, était utile & résoudre pour les ares
gauches d’ordre trois car la possibilité du prolongement de ces
arcs intervient comme hypothése dans certaines recherches [37].
M. Haupt a démontré que tout arc gauche d’ordre linéaire trois
tel que le plan osculateur en I'une des extrémités ne passe pas
par Pautre extrémité, et tel que les tangentes en ces points ne
solent pas coplanaires, est prolongeable jusqu’en une courbe
fermée d’ordre trois [26] (bien entendu, en n’additionnant pas
simplement un segment de droite); pour les ares de Pespace a n
dimensions cf. [60]. 1] a également donné des conditions pour la
possibilité du prolongement des arcs plans d’ordre quelconque
[25] (cf. les remarques de M. Hjelmsley [36]). |

15. — Peu de recherches ont été faites quant a ’étude des
surfaces. Il faudrait d’ailleurs tout d’abord s’entendre sur une
définition précise des ensembles ponctuels que I'on conviendra
de désigner ainsi, et cette question n’est pas sans difficultés [71].

L’ordre linéaire d’une surface sera ici le maximum du nombre
des points de la surface situés sur une droite quelconque de
Pespace. On pourra toutefois convenir de ne pas considérer les -
droites dont un segment appartiendrait & la surface et pour
lesquelles ordre de celle-ci serait infini.

Quels sont les modéles simples au moyen desquels on pourra
toujours reconstituer une surface quelconque ? Si Pon exclut
les surfaces réglées, pour lesquelles il y aura lieu de faire une
étude séparée, il est permis de croire que ce sont les éléments
de surface primitifs d’ordre deux, trois et infini [19],[29],[32]. Un
élément de surface sera dit primitif d’ordre 7 ou infini s’1l posséde
cet ordre ainsi que tout autre élément de surface qu’il contient.

Le verschirfte Verteilungssatz, en tout cas, peut encore s’énoncer
a Poccasion des surfaces.
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Le mémoire le plus justement célébre sur la théorie des surfaces
est certainement le mémoire de Juel sur les surfaces élémentaires
non réglées du troisiéme ordre. Une surface élémentaire est une

surface possédant en chaque point un plan tangent variant d’une

maniére continue ‘avec le point de contact, et telle que toute
section plane et tout contour apparent soient des courbes
élémentaires.

JUEL a démontré que, en général, toute surface élémentaire
non réglée et d’ordre trois contient 3, 7, 15 ou 27 droites [39].
Il existe d’ailleurs des surfaces d’ordre trois, distinctes des
surfaces algébriques du troisiéme degré et contenant 27 droites
réelles [2], [49]. ‘

Mais le mémoire de Juel, outre que les surfaces considérées
y sont soumises & certaines hypotheses restrictives, est encore
imprécis sur certains points, ne fiit-ce que dans la définition
méme de la notion de surface. On trouvera des premiéres
recherches sur ce dernier point dans la thése de M. HAALMEYER
[11] et dans deux notes de M. Marchaud [46], [47]; voir aussi
certaines remarques intéressantes de M. HyeLMsLEV [36].

La profonde analogie que nous venons de constater entre les
surfaces du troisiéme ordre et les surfaces du troisiéme degré
s’observe encore & l'occasion des surfaces réglées. Les. surfaces
réglées du troisiéme ordre, comme celles du troisiéme degré,
se répartissent en deux catégories suivant qu’elles possedent
deux droites directrices gauches distinctes ou infiniment voi-
sines [42].

Nous ne nous attarderons pas davantage a la considération
des surfaces; nous nous ecarterlons rapidement du but que nous
nous somimes Imposé.

Nous estimerions ce but atteint si nous avions fait ressortir
suffisamment la véritable nature de I'ordre et son role dans
I’étude des figures réelles.

Des recherches, probablement délicates, devront encore étre
 poursuivies au sujet des courbes et surtout des surfaces. L’état
actuel de la théorie de I’ordre, grace aux travaux de M. Haupt,
permet d’espérer, dans cette direction, des résultats aussi
nombreux qu 1mportants
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