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Les cercles yl7 y2 jouent donc le rôle des foyers; ce sont les

cercles focaux de l'ovale. Et, puisque la projection d'une courbe

tracée sur une quadrique est tangente au contour apparent en

projection aux points où elle lé rencontre, ces cercles focaux

sont ceux des cercles bitangents à l'ovale dont les centres sont

sur l'axe de symétrie F1F2F3 de la courbe.

L'étude des ovales est donc à recommander aux aspirants

professeurs; en particulier, les définitions des coniques, à 1 aide

de deux foyers ou d'un foyer et d'une directrice, leur apparaîtront

alors comme deux cas particuliers de la définition d'un ovale

par la relation (22).

SUR LA THÉORIE DE L'ORDRE DES FIGURES

RÉELLES

ET LES TRAVAUX DE M. HAUPT

PAR

M. Linsman (Liège).

1. — Dans un très intéressant article « Sur la géométrie finie

et les travaux de M. C. Juel » [51]1, M. Montel a donné un

exposé d'ensemble des travaux de ce géomètre et des recherches

qu'ils ont suscitées chez d'autres auteurs.
Sans vouloir fixer des limites bien nettes à la géométrie finie,

nous pouvons dire qu'elle considère ordinairement ce que Juel
a appelé des figures élémentaires. Celles-ci sont toujours réelles,

mais elles atteignent à un grand degré de généralité.

La notion capitale intervenant dans leur définition et dans

leur étude est la notion d'ordre.
Considérons un ensemble ponctuel E plan (ou spatial), et

supposons qu'il possèdo un nombre borné de points sur toute

i Les nombres en caractères gras renvoient à la bibliographie placée à la fin de cet
article.
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droite de son plan (ou dans tout plan de l'espace). Le maximum
de ce nombre sera dit Vordre, ou plus exactement l'ordre linéaire
de E.

Les courbes élémentaires planes sont alors des courbes fermées

au sens projectif, admettant en chaque point une tangente
variant d'une manière continue avec le point de contact, et qui,
en outre, sont la réunion d'un nombre fini d'arcs d'ordre deux,
c'est-à-dire d'arcs convexes, placés bout à bout.

Les courbes élémentaires gauches sont des courbes fermées

au sens projectif, possèdent en chaque point une tangente et
un plan osculateur répartis d'une façon continue et sont la
réunion d'un nombre fini d'arcs gauches d'ordre trois placés
bout à bout.

Ces courbes apparaissent dans les travaux de Juel en généralisation

des courbes algébriques. Leur ordre est analogue au degré
de ces dernières. Toutefois, l'ordre d'une courbe algébrique n'est
pas nécessairement égal à son degré: il peut lui être inférieur.

Si la notion d'ordre est indispensable dans l'étude des courbes
élémentaires, elle est également appelée à jouer un rôle de toute
première importance dans la considération d'ensembles ponctuels
plus généraux tels les arcs simples, les arcs de Jordan et même
les continus.

Dans ces recherches, il y aura lieu de faire preuve d'esprit
critique. On- écartera autant que possible toute hypothèse
accessoire. L'enchaînement des propriétés qui conduisent à une
proposition donnée et le rôle de chaque hypothèse ressortiront
alors nettement.

Un des premiers travaux où les hypothèses faites sur l'ordre
d'un ensemble apparaissent comme les principales responsables
de certaines propriétés de cet ensemble est l'important mémoire
de M. Marchaud « Sur les continus d'ordre bornés » [44].

Juel avait démontré la proposition suivante:
Toute courbe élémentaire plane d'ordre trois, sans point

double et sans point de rebroussement, est la réunion de trois
arcs convexes (au sens projectif) [38]. '

Cette proposition est déjà extrêmement générale quand on

compare les courbes élémentaires aux courbes algébriques.
Qu'en resterait-il si, à la considération de courbes élémentaires,
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on substituait la considération de continus, la seule hypothèse
conservée étant celle relative à l'ordre La proposition de Juel
n'en serait pas foncièrement modifiée. C'est ce que montrent
les théorèmes suivants établis par M. Marchaud dans son
mémoire :

Tout continu plan, borné, (Tordre trois, est formé de un ou de
deux arcs de Jordan rectifiables. Tout arc d'ordre trois est formé
de deux1 trois ou quatre arcs d'ordre deux placés bout à bout.

La condition imposée au continu d'être borné n'a rien d'essentiel.

On passerait sans peine à une proposition sur les continus
projectifs; le nombre des arcs convexes dont est formé un arc
d'ordre trois pourrait peut-être alors s'élever jusqu'à cinq.

On remarquera encore, avec M. Marchaud, que si un continu
plan d'ordre trois possède en chaque point une tangente unique,
celle-ci varié d'une manière continue avec le point de contact,
puisque cette propriété est vraie pour les arcs convexes..

On ne peut, d'autre part, formuler de propositions semblables
pour les continus d'ordre quatre [14], [44].

Les recherches de M. Marchaud ont également porté sur les
continus gauches. L'orientation que nous voulons donner à
cet exposé ne nous permet pas de nous arrêter ici sur ce point.

On constatera cependant, avec M. Marchaud, que certains
des résultats auxquels il est amené sont encore valables si, dans
la définition de l'ordre, on substitue, à l'ensemble des droites,
un système de courbes convenable. C'est ainsi que l'on considérera

l'ordre cyclique d'un ensemble (intervenant d'ailleurs déjà
dans les recherches de Juel et de Mukhopadhyaya), c'est-à-dire
le maximum du nombre des points de cet ensemble situés sur
une même circonférence, et aussi, avec Hjelmslev [35], l'ordre
par rapport à certains systèmes linéaires de courbes
algébriques.

On peut même considérer l'ordre par rapport à un système
de courbes simples approprié, ce qui confère à la notion d'ordre
un aspect topologique.

Il appartient à M. Haupt, à qui revient cette dernière idée,
d'avoir tracé dans ses grandes lignes une théorie de l'ordre
extrêmement générale, et d'en avoir commencé activement l'édifica-



26 M. LINSMAN
tion 1. Dans cette théorie, M. Haupt considère également l'ordre
d'un ensemble ponctuel plongé dans un espace à plus de deux
dimensions. Cette notion s'entendra ici relativement à certains
systèmes d'hypersurfaces, par exemple.

2. — Avec M. Haupt [20], essayons d'abord de dégager,
relativement aux arcs plans, le véritable caractère de la notion
d'ordre.

Soit, dans le plan euclidien, un domaine G, le domaine
fondamental, d'un seul tenant, limité par une courbe simple.
Considérons, dans ce domaine, un système âC de courbes K, ouvertes
ou fermées, répondant aux conditions suivantes:

1° Ce sont des courbes simples, c'est-à-dire qu'elles sont
l'image continue et biunivoque d'un segment de droite ou d'une
circonférence;

2° Toute courbe K ouverte a ses deux extrémités situées sur
la frontière de G; toute courbe K fermée possède au plus un
point en commun avec cette frontière.

Il résulte de cette seconde condition que G est décomposée
par toute courbe K en deux domaines partiels dont l'un au plus
est doublement connexe;

3° Par k points distincts de G passe une courbe K et une seule.
Ces points sont évidemment supposés distincts des points-base
du système c'est-à-dire des points communs à toutes les
courbesi K;

4° Toute courbe K doit varier d'une manière continue avec
tout groupe de k points qui la détermine.

D'une façon plus précise, appelons domaine de rayon tj d'un
ensemble le domaine obtenu par la réunion de tous les cercles
ouverts de rayon y] centrés en un point de cet ensemble. La
condition de continuité ci-dessus s'énonce alors:

Soit Pl5 Vk un groupe de k points et désignons par K la
courbe K qu'il détermine. A tout nombre y) > 0 arbitraire-

i Les tendances qui semblent animer les recherches de M. Haupt apparaissent
également dans les travaux de MM. Menger et Bouligand. Tout en ayant leur principe
propre, celui de Juel convenablement élargi, les recherches de M. Haupt et celles
de ces autres auteurs ont ce lien commun : l'aspiration vers la topologie, très nette dans
l'œuvre de M., Haupt.
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ment donné, on peut alors associer un nombre S

8(ti; Pl7 Pft) > 0 tel que:
^

a) Toute courbe K qui passe dans les cercles de rayon S et^de

centre respectif Pl5Pft appartient au domaine de rayon 73 de K ;

b) Inversement, K appartient au domaine de rayon y) de K.

c) Si T est un arc partiel de K, d'extrémités Q et R, il existe,

dans les domaines de rayon S de ces points, deux autres points Q

et R qui sont les extrémités d'un arc partiel T de K s'étendant

en entier dans le domaine da rayon 73 de T.
Considérons enfin un arc de Jordan B, situé dans G, c'est-à-dire

l'image continue et univoque sans plus d'un segment de droite,
extrémités comprises.

L'ordre de B sera, par définition, le maximum du nombre

des points communs à B et à une courbe K distincts des points-
base de dC. Si ce maximum n'existe pas, mais que toute courbe K
rencontre cependant B en un nombre fini de points, l'ordre de B

sera dit fini. Dans tous les autres cas, B sera dit d'ordre infini1.
Nous supposons d'ailleurs ici, par simple raison de commodité,

que B et une courbe K quelconque ne possèdent, en commun,
aucun arc partiel.

Quelques précisions sont cependant encore nécessaires.

De par sa définition même, B admet une représentation
paramétrique continue de la forme

x =r x (1) y y (t) 0 ^ t — 1

Mais un même point de B peut correspondre à plusieurs valeurs
du paramètre t. Il sera dit posséder la multiplicité r ou infinie
suivant qu'il correspond à r ou à une infinité de valeurs distinctes
de ce paramètre. Dans la détermination de l'ordre de B, chaque

point commun à B et à une courbe K peut être compté soit

comme un point unique, soit avec sa multiplicité. Suivant le

cas, on parlera respectivement de Vordre faible ou de Vordre fort
de B [58]. Par la suite, c'est toujours de ce dernier qu'il s'agira.

Nous n'aurons pas it nous occuper dans cet exposé de la

1 On pourrait préciser davantage et attacher à l'ordre infini une certaine puissance:
le maximum, de la puissance de l'ensemble des points communs à B et à une courbe K.
On consultera à ce sujet K. Menger, Kurventheorie (48), pp. 96 et suivantes.
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configuration des points multiples, mais il convient de signaler
l'important mémoire de M. Rosenthal sur cette question [56].

3- — Afin d'éviter toute confusion, noqs appellerons point-
image tout point P de B quand nous voudrons spécifier qu'il
correspond à une valeur bien déterminée t0 du paramètre, et
nous le désignerons par P(£0).

On définira le domaine d'un point-image P (£0) sur B comme
l'ensemble des points de B correspondant aux valeurs de t
telles, que

0 - \t — *o| < S

où 8 est un nombre positif arbitraire suffisamment petit.
Les expressions domaine à gauche ou à droite de P(£0) sur

B s'entendent d'elles-mêmes.
Enfin, on dira que P (t0) est un point-image d'appui ou

d'intersection de B sur une courbe K si le domaine de P(£0)
sur B appartient ou non en entier à l'un des deux domaines
déterminés dans G par la courbe K considérée.

Comme on le conçoit, l'argument essentiel qui intervient dans
la démonstration des propriétés que nous allons énoncër est
que toute courbe K décompose G en deux domaines partiels,
et que tout arc de B possédant au moins un point dans chacun
de ces domaines doit posséder sur K au moins un point-image
d'intersection. On arrive ainsi aisément aux deux propositions
suivantes :

Soit S(t) un point-image d'intersection de B sur une courbe K.
A tout domaine arbitrairement petit U U('S; B) de S (t) sur B,
on peut associer un domaine de rayon r\ de la courbe K considérée
tel que toute autre courbe K située dans ce domaine possède au
moins un point dintersection avec B appartenant à U.

Soit T (t) un point-image d'appui de B sur une courbe K. A tout
domaine arbitrairement petit U U(T; B) de T (t) sur B, on
peut associer un domaine de rayon y] de la courbe K considérée tel

que, dans ce domaine, il existe d'autres courbes K qui possèdent
au moins deux points-image d'intersection avec B appartenant à U.

On exprimera ces deux théorèmes plus simplement en disant
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que par variation continue de K, les points-image d

intersection se conservent, et que les points-image d'appui peuvent

se transformer en deux points-image d'intersection.

4 _ Supposons maintenant que B rencontre une certaine

courbe Ken A points-image distincts, qui peuvent d'ailleurs être

indifféremment des points-image d'intersection, des points-

image d'appui, ou être les deux extrémités de B. Désignons

cette courbe par K.
Par variation continue de i£, on peut, d'après les théorèmes

ci-dessus, transformer un quelconque de ces points-image

d'appui en deux points-image d'intersection, mais nous ne savons

pas s'il est possible de réaliser ce fait en deux points-image

d'appui simultanément. On peut se demander si, par variation
continue de K, on ne pourrait pas obtenir une autre courbe K

ayant avec B au moins h points-image d'intersection. La réponse

est affirmative et constitue ce que M. Haupt appelle le théorème

de réduction: S'il existe une courbe K ayant, avec B, h points-

image en commun, (aucune distinction n'étant d'ailleurs faite
entre les points-image d'intersection, d'appui et les extrémités

de B), il existe alors dautres courbes K, arbitrairement voisines

de la courbe K considérée qui rencontrent B en au moins h points-
image d'intersection. Toutefois k doit être supposé ^ 2.

Dans le cas où k 1, le théorème de réduction n'est pas
valable en général. Il suffit, pour le voir, de considérer un arc
d'ordre cinq par rapport à un faisceau de rayons, dont les deux
extrémités sont situées sur un même rayon, et qui possède encore

en commun avec ce dernier un point d'appui situé entre deux

points d'intersection.
Nous esquisserons rapidement la démonstration du théorème

de réduction. Nous nous bornerons d'ailleurs au cas où k 2.

Dans le cas où k serait ^2, on pourrait, en effet, toujours
extraire de ÖL un système de courbes K contenant K et pour
lequel on aurait k 2.

K détermine dans G deux domaines G+ et G-. Suivant que
leur domaine sur B appartient respectivement à G+ ou à G~~,

les points-image d'appui de B sur K seront dits positifs ou
négatifs. Il en sera de même des extrémités de B situées sur K.
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Soit maintenant T un arc de K contenant à son intérieur tout

les points-image communs à B et à cette courbe. Sur T un point
quelconque Y détermine deux autres arcs partiels Tg et Td
s'étendant respectivement à gauche et à droite de ce point.

Désignons par qg, q~ et qd1 qj le nombre des points-image
d'appui positifs et négatifs de B sur K qu'ils contiennent
respectivement. Représentons de même par e+, e~ et ej, ej le

nombre des extrémités de B positives et négatives situées

respectivement sur ces arcs. Et soit encore s le nombre total des

points-image d'intersection.
On peut alors montrer que, pour une représentation paramétrique

appropriée de B, et pour un choix convenable des expressions

gauche et droite, il existe, sur T et en dehors de B, une
position particulière V0 de V telle que

+ g + ed + s — h •

Soient maintenant Px et P2 deux points de K situés à gauche
de V0 sur cette courbe, P2 étant à droite de P1? et tels que sur K
n'existent entre P1 et V0 aucun point d'appui ni aucune extrémité
de B. Soit encore P2 un point de G- appartenant au voisinage
de P2, et désignons par K la courbe K. passant par les points Px

et P2. Puisque k 2, cette courbe ne peut rencontrer K qu'en

un seul point, donc en Pa. Ce point détermine sur K deux arcs

situés en entier respectivement dans G+ et dans G~. K peut
d'ailleurs, avec P2, être choisie dans un voisinage arbitrairement
petit de iL

On s'apercevra alors aisément que, lorsqu'on substitue KkK,
q§ + Q~d points-image d'appui de B sur K se transforment
chacun en au moins deux points-image d'intersection, et que
et ~t~ e~d extrémités de B situées sur K se transforment chacune

en au moins un point-image d'intersection. De la relation (1)
résulte alors le théorème annoncé.

Le théorème de réduction intervient dans la démonstration
de nombreuses propriétés. M. Marchaud en avait d'ailleurs déjà
reconnu l'utilité et l'avait établi, dans le cas de l'ordre linéaire,
directement pour les arcs de l'espace à n dimensions [44].
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5. — Dorénavant, comme nous aurons surtout en vue des

théorèmes d'existence, nous nous bornerons parfois à la
considération d'arcs simples au sujet desquels nous formulerons
d'ailleurs des hypothèses très limitatives. Aucune distinction
entre point et point-image ne sera plus alors nécessaire.

Soit donc un arc simple B tel qu'une certaine courbe K
n'ait avec lui que des points d'intersection S-,, Sx en commun,
et d'ailleurs au moins k + 1.

Admettons encore que ces points soient disposés sur B et

sur K dans le même ordre, c'est-à-dire qu'ils soient rencontrés
dans le même ordre quand, on parcourt B et K dans un sens

convenable. Fixons k — 1 de ces points et faisons varier la
courbe K d'une manière continue en imposant à l'un des points S

restants un déplacement monotone sur B, et d'ailleurs sufïisâm-
ment restreint.

Il est alors aisé de voir que deux quelconques des points S

mobiles se déplacent dans le même sens ou en sens inverse sur B
suivant que le nombre des autres points S mobiles qui les séparent
est pair ou impair. C'est le théorème de monotonie énoncé pour
la première fois par Mukhopadhyaya [53], et que M. Haupt
a d'ailleurs généralisé.

Comme on le verra par la suite les arcs simples auxquels
s'appliquent les conclusions du théorème de monotonie
présentent un intérêt tout spécial. Nous les désignerons par B*.
De tels arcs existent certainement, si nous acceptons toutefois
de nous limiter à la considération d'arcs soumis à des hypothèses
convenables; nous en rencontrerons des exemples.

6. — Considérons un arc B* d'ordre fini, et soit K une courbe K
qui le rencontre en k -j~ i points d'intersection au moins.
Prélevons parmi ceux-ci un groupe de k + 1 points que nous
désignerons par Sl5 Sk+i et que nous supposerons distribués
sur B dans l'ordre de leurs indices.

Supposons que par un moyen quelconque nous puissions
trouver une autre courbe K rencontrant B en. certains points
dont k + 1 au moins, que nous désignerons par S', sont des
points d'intersection appartenant à l'arc de B*. Nous
dirons que le groupe des points S' peut s'obtenir par une contrac-



32 M. LINSMAN
tion du groupe S1? Sfe+1. On introduit d'une manière analogue
la notion d'expansion d'un groupe de points: on dira que l'on a

effectué une expansion du groupe S1? Sfe+1 si l'on peut trouver
un groupe de k + 1 points d'intersection S", S^+1 de B*
avec une autre courbe K tels que les points S appartiennent
tous à l'arc S"S^+1 de B*.

Puisque l'arc B* satisfait aux conclusions du théorème de

monotonie, on peut toujours par variation continue de K dans

un sens convenable, rapprocher deux quelconques des points S

l'un de l'autre. Est-il possible de trouver une courbe K rencontrant

B* en k + 1 points au moins condensés dans un intervalle
aussi restreint que l'on voudra et situés, d'ailleurs entre Sx

-et Sfe+i

Nous nous bornerons à énoncer, sans démonstration, le
théorème de contraction qui répond à cette question:

Soit B* un arc simple auquel s'appliquent les conclusions
du théorème de monotonie. A partir d'un groupe de k + 1

points d'intersection de B* avec une courbe K, on peut toujours,

par une suite de contractions convenables, en engendrer un autre
situé sur un intervalle de B* arbitrairement petit.

Nous sommes ainsi amené à introduire encore une notion
nouvelle qui est une des bases de la théorie de M. Haupt: l'ordre
d'un point.

Considérons, sur un arc de Jordan B, un point-image B(t0).
Nous dirons que B(t0) est d'ordre n, d'ordre fini ou d'ordre infini
suivant que tous les voisinages suffisamment restreints de P (t0)

sur B sont respectivement de ces ordres. Il s'agit ici de voisinages
bilatéraux. Si, dans cette définition, on considère, au contraire,
des voisinages latéraux (à gauche ou à droite), on obtient la
notion d'ordre latéral (à gauche ou à droite) d'un point-image.

Exprimé dans ce nouveau langage, le théorème de contraction
nous fournit un premier théorème d'existence, à savoir l'existence
d'au moins un point d'ordre k + 1 sur tout arc B* d'ordre au
moins égal à A' + 1.

Un autre théorème qui constitue comme une réciproque au
théorème de contraction est le suivant:

Soit B* un arc d'ordre k + 1 auquel s'appliquent les conclusions

du théorème de monotonie. Soient X' et T" deux groupes de
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k + 1 points de B* situés respectivement sur une même courbe K,

un point quelconque de T' se trouvant, sur B*,- à gauche d'un

point quelconque de F". Soit encore B* un arc partiel de B* contenant

à son intérieur les deux groupes T' et Y". Si P est un point

situé à gauche ou à droite) de B* sur B*> on peut alors par une

suite dé expansions convenables transformer T' ou Y") en un groupe

de k + 1 points constitué par P et par k points intérieurs à B*.

Signalons enfin que* ce théorème dé expansion conduit à un
second théorème d'existence:

Soit B* un arc répondant aux conditions du théorème d'expansion,

S' et S" deux points d'ordre k + 1 de cet arc. Soit P un point
de Y*'situé en dehors de Varc S' S". Il existe alors sur cet arc un

point dordre k par rapport au système des courbes K passant

par P. Le théorème de contraction et les considérations
développées dans la démonstration du théorème d'expansion sont
d'une importance capitale pour l'étude des arcs et des courbes

réels. Ces deux propositions expriment des propriétés abstraites
et concernent, en réalité, des correspondances ponctuelles
monotones sur un segment paramétrique. Nous aurons l'occasion
d'en reparler par la suite.

7. — Revenons maintenant à la considération d'arcs de

Jordan absolument généraux. Nous savons la complexité qu'ils
peuvent présenter.

Un des problèmes les plus importants auquel la notion
d'ordre apporte une solution adéquate est le problème dx la
structure. Il consiste à rechercher des modèles simples au moyen
desquels on pourra toujours reconstituer un arc quelconque.
Nous allons voir que ces modèles sont ce que M. Haupt a appelé
des arcs primitifs (ou [69] total ordnungshomogen), c'est-à-dire
des arcs dont tous les points possèdent le même ordre et qui en
outre possèdent eux-mêmes cet ordre. Il est encore équivalent
de dire qu'un arc primitif est un arc d/ont tous les arcs partiels
possèdent le même ordre.

Supposons, en effet, adopté un certain type d'ordre, déterminé
par un système de courbes K. Nous pouvons alors énoncer le
théorème (approfondi) de répartition — verschärfter Verteilungs-
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satz-, dit aussi théorème général de décomposition : Tout arc de

Jordan est formé Tun ensemble dénombrable Tares primitifs,
Tares de courbe K et de leurs points Taccumulation.

Cette proposition, établie par M. Haupt, pour la première fois
à l'occasion de l'ordre linéaire [16], constitue un théorème formel

plutôt qu'un théorème de géométrie. Par un simple changement
de vocabulaire, on peut l'étendre aux ensembles ponctuels
topologiques, réguliers, avec base dénombrable, pour lesquels

on a défini une certaine notion d'ordre [69].
Vu l'importance de ce théorème, nous allons en exposer une

démonstration. Au préalable, il sera utile de faire les quelques

remarques suivantes :

a) Soit B l'arc de Jordan considéré. Il ne peut contenir'qu'un
ensemble dénombrable d'arcs, de courbe K n'ayant aucun
point en commun, sauf peut-être des extrémités. Les points
de B non intérieurs à ces arcs se répartissent sur un ensemble

dénombrable d'arcs de Jordan. Il suffira donc de démontrer le

théorème de décomposition pour ces derniers. Autrement dit,
nous pourrons supposer que B ne contient pas d'arc de courbe K.

b) Tout arc de Jordan d'ordre k est primitif: il ne peut, en

effet, contenir d'arc partiel d'ordre supérieur à k et, d'autre

part, un arc quelconque est au moins d'ordre k puisque par k

de ses points passe toujours une courbe K.
c) La condition nécessaire et suffisante pour qu'un arc de

Jordan soit la réunion d'un nombre fini d'arcs d'ordre ^ n est

qu'il ne contienne aucun point-image d'ordre latéral > n. C'est

là une conséquence immédiate du lemme de Borel-Lebesgue.
En particulier, un arc dont tous les points-image sont d'ordre n

est formé d'un nombre fini d'arcs primitifs d'ordre n.
On peut voir également qu'un arc de Jordan ne contenant que

des points d'ordre borné est la réunion d'un nombre fini d'arcs
d'ordre borné.

d) La condition nécessaire et suffisante pour qu'un arc soit

tout au plus d'ordre fini est qu'il ne contienne aucun point
d'ordre infini. La condition, évidemment nécessaire, est aussi

suffisante. Supposons, en effet, l'arc considéré d'ordre infini.
Il existe alors une droite le rencontrant en une infinité de points-
image. Les valeurs du paramètre correspondant à ces derniers
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admettent un point d'accumulation. Le point-image qui y
correspond est d'ordre infini.

é) L'ensemble des points-image de B d'ordre ^ n est fermé;

il en est de même de l'ensemble des points-image d'ordre au

moins fini et de celui des points-image d'ordre infini. Cela résulte

de la définition même de l'ordre d'un point-image.
On en conclut que si l'ensemble des points-image d'ordre ^ n

(ou au moins fini, ou infini) est partout dense sur B, tout point-
image de cet arc est au moins d'ordre n (ou fini, ou infini).

/) L'ensemble des points-image d'ordre < n est formé d'un
ensemble dénombrable d'arcs de Jordan et même, d'après c),

d'arcs de Jordan d'ordre < n.
Si, en outre, l'ensemble des points-image d'ordre ^ n n'est

nulle part dense sur B (c'est-à-dire s'il n'existe aucun arc de B

sur lequel ces points-image soient partout denses), l'ensemble
des points-image d'ordre < n est alors partout dense sur B et
celui-ci est la fermeture d'un ensemble dénombrable d'arcs
d'ordre inférieur à n. -

Cette dernière remarque se prolonge au cas où seulement les

points d'ordre au moins fini et au cas où les points d'ordre infini
ne forment qu'un ensemble nulle part dense sur B.

La démonstration du théorème de décomposition se fera par
récurrence.

Remarquons d'abord que ce théorème est exact dans le cas

où les points-image d'ordre >/cne sont nulle part denses sur B.
En effet, d'après /), B est alors la fermeture d'un ensemble
dénombrable d'arcs d'ordre k et nous avons vu que ceux-ci
étaient des arcs primitifs.

Nous allons maintenant démontrer que si le théorème est

vrai quand les points-image d'ordre ^ n ne forment qu'un
ensemble nulle part dense sur B, il l'est encore quand ce fait
ne se produit que pour les points-image d'ordre ^ n + 1.

Dans ce dernier cas, B est, en vertu de /), la fermeture d'un
ensemble dénombrable d'arcs Tv d'ordre ^ n. Il nous suffira
donc de démontrer l'exactitude du théorème pour ces arcs.
Celle-ci serait assurée par hypothèse si sur Tv l'ensemble des

points-image d'ordre n n'était nulle part dense. Il nous reste
donc finalement à considérer le cas où sur Tv existe au moins un
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arc partiel sur lequel les points-image d'ordre n forment un
ensemble partout dense. Appelons Ov l'ensemble de tous les

arcs T^. On peut toujours le considérer comme la réunion d'un
ensemble dénombrable d'arcs TvP n'ayant tout au plus en

commun que des extrémités. De ce qu'un arc T^p est d'ordre n
et de é) résulte alors que tout point-image de cet arc est d'ordre
n. Tvp, et par suite, Ov sont donc, d'après c), formés d'arcs
primitifs d'ordre n.

Considérons maintenant l'ensemble ouvert Rv Tv—Ov,
où Ov représente la fermeture de Ov. Il est formé d'un ensemble
dénombrable d'arcs sur lesquels les points-image d'ordre- n ne
forment qu'un ensemble nulle part dense. Par hypothèse le

théorème de décomposition est applicable à chacun d'eux.
Il résulte de tout ce qui précède que le théorème de

décomposition est exact quand les points d'ordre > n ne forment
qu'un ensemble nulle part dense sur B.

On reprendra ces raisonnements dans le cas où seulement les

points-image d'ordre au moins fini, puis d'ordre infini ne
forment qu'un ensemble nulle part dense sur B, et on considérera
enfin un arc de Jordan absolument quelconque. On arrivera
ainsi au théorème de décomposition dans toute sa généralité.

8. — Le problème de la structure revient donc à celui de

Vexistence des arcs primitifs. Cette question a été résolue dans
le cas de l'ordre linéaire [16]:

Il ne peut exister d'arc primitif relativement à Vordre linéaire
autre que les arcs primitifs d'ordre deux et les arcs primitifs d'ordre

infini, abstraction faite des segments de droite.

Les premiers sont évidemment bien connus, ce sont les arcs
convexes. Les seconds existent certainement; les arcs représentés

par des équations de la. forme x cp (t), y ip (t) où ç et ^
n'admettent de dérivée nulle part en fournissent des exemples.

Ainsi les arcs convexes, les arcs d'ordre linéaire infini et
les segments de droite suffisent pour reconstituer un arc de

Jordan quelconque. En particulier, tout arc de Jordan d'ordre
fini ne contenant pas de segment de droite est formé d'un
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ensemble au plus dénombrable d'arcs convexes et de leurs points
d'accumulation.

Ces. derniers résultats avaient déjà été établis pour certains
arcs simples par J. Hjelmslev [34], et M. Rosenthal en avait
donné une première généralisation [56].

Soulignons encore la grande généralité des courbes élémentaires

considérées par Juel puisque, à part la condition d'existence

d'une tangente unique en chaque point, on ne leur
impose que la condition d'être formée d'un nombre fini d'arcs
convexes.

M. Haupt a également réalisé la recherche des arcs primitifs
dans le cas de l'ordre cyclique [29], [70]. La méthode qu'il utilise
semble suffisante pour résoudre le cas k 3 et peut-être aussi
le problème de la structure des arcs plans en toute généralité,
c'est-à-dire pour k arbitraire, certaines restrictions étant toutefois

éventuellement imposées aux courbes K. En tous cas, il
n'existe pas d'arc primitif d'ordre k + 1 auquel s'appliquent les
conclusions du théorème de monotonie. Ceci découle
immédiatement d'un autre théorème:

Tout arc 5*, (Tordre k -j- 1 auquel s'appliquent les conclusions
du théorème de monotonie contient au maximum sk 3 • 2k~l 1

points d'ordre k -f- 1, dont aucun n'est d'ailleurs d'ordre latéral
k + 1. On peut voir, en effet, en se basant sur le théorème de
contraction, qu'un point d'ordre latéral k + 1 est nécessairement
point d'accumulation de points d'ordre k + 1.

On conclut encore de là que B* peut être considéré comme la
réunion d'un nombre fini d'arcs d'ordre k n'excédant pas 3 • 2h~K

Rien ne nous permet d'affirmer que cette borne ne puisse encore
être réduite.

9. — La notion d'ordre peut servir de principe de classification,
de même qu'on classe les courbes algébriques d'après leur degré.
Mais la classification, ici, sera plus souple. On classera les
courbes d'après leur ordre linéaire, d'après leur ordre cyclique,
ou on considérera simultanément ces différents ordres [37].

Ceux-ci ne sont d ailleurs pas totalement indépendants. Les
ovales (courbes fermées d'ordre linéaire deux) possèdent des
propriétés intéressantes quant à leur ordre cyclique. Rappelons
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à ce sujet la proposition de Mukhopadhyaya suivant laquelle
tout ovale, soumis à des conditions de différentiabilité
suffisantes, possède au moins quatre points cycliques (points d'ordre
cyclique quatre) [53].

L'ordre par rapport à un faisceau est particulièrement utile
à considérer. Tout arc d'ordre un par rapport à un faisceau

est, en effet, un arc simple; et cela permet d'obtenir des

renseignements sur la décomposition de certains arcs de Jordan
en arcs simples. Nous citerons, par exemple, la proposition
suivante de M. Haupt, qu'il a d'ailleurs généralisée [13]:

Tout arc de Jordan d'ordre linéaire n ^ 5 est décomposable
en un nombre fini d'arcs simples relativement à des faisceaux
de rayons appropriés. D'autre part, il existe, pour tout n ^ 6,

des arcs d'ordre n qui n'admettent pas une telle décomposition
[12].

10. — Il nous reste encore, avant de terminer cet exposé

rapide de la théorie de l'ordre des figures planes, à parler d'un
nouveau type d'ordre qui a été introduit récemment dans l'étude
des courbes par M. Blaschke [1]: l'ordre cinématique.

Considérons un arc de Jordan B. Vordre cinématique de B
est le maximum du nombre des points d'intersection de B avec

tout autre arc qui lui est identique à un déplacement près.

Lorsqu'on limite ces déplacements à des translations, on obtient
Vordre de translation de B.

Les circonférences sont les seules courbes fermées d'ordre

cinématique deux. Les courbes fermées d'ordre cinématique
quatre sont les ovales à centre possédant quatre points
cycliques [3], [10].

L'ordre de translation et l'ordre linéaire ont certaines
relations entre eux. M. Rosenthal, dans un travail récent [58], a

établi à ce sujet diverses propositions dont nous signalerons
celle-ci: Tout arc d'ordre de translation borné est d'ordre
linéaire borné. Il a montré que les ovales sont les seules courbes

de Jordan fermées d'ordre de translation deux, que les arcs

convexes ne possédant pas deux tangentes parallèles sont les seuls

arcs de Jordan d'ordre de translation un.
Il est également parvenu à des propriétés générales, notam-
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ment en ce qui concerne les arcs d'ordre de translation borné,
quant à leur structure et à leur rectificabilité.

11. — Remarquons, en passant, que la théorie de la structure
conduit à des problèmes de configuration (Gestaltsprobleme)
[33]. Ces derniers traitent des propriétés globales des courbes
en opposition avec le problème de la structure qui en recherche
les propriétés locales. Ils consistent au fond à répartir les courbes
en différentes classes, celles-ci étant définies essentiellement au
moyen du concept d'un ordre donné. Les courbes d'une même
classe sont dites équivalentes, ou posséder la même configuration.

Dans ces problèmes rentrent les problèmes du type classique
de Juel (voir entre autres les travaux de MM. Brusotti, Juel,
Linsman, J. v. Sz. Nagy, Schere, Segre; cf. Montel [51] et
notre bibliographie).

Mais nous ne pouvons insister davantage ici sur les nombreux
travaux qui entrent en ligne de compte.

12. Nous nous sommes limités jusqu'à présent à la
considération d'arcs plans. Mais l'on peut définir l'ordre d'un arc
gauche, d une surface, ou plus généralement d'une variété dans
un espace à n dimensions [32], [71].

L'ordre d'un arc gauche de Jordan, représenté par les équations

paramétriques x cp (t), y (*), z x (*), 0 ^ ^ 1,
est, par définition, le maximum du nombre des points-image
de cet arc situé sur les surfaces d'un système approprié.

Jusqu'à présent, seuls l'ordre linéaire (par rapport aux plans)
et l'ordre sphérique (par rapport aux sphères de l'espace) ont
été considérés.

La définition de l'ordre d'un point-image et la définition des
arcs primitifs sont les mêmes que pour les arcs plans. Le
problème de la, structure des arcs gauches est partiellement résolu
dans le cas de l'ordre linéaire. D'une part, le verschärfte
lungssatz., comme nous l'avons d'ailleurs remarqué, s'applique
aux arcs gauches. D'autre part, on peut encore démontrer, avecM. Haupt, que tout arc de Jordan tel que les fonctions 9, et
de la représentation paramétrique admettent des. dérivées
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continues jusqu'au troisième ordre est localement d'ordre
linéaire trois [19]. On est ainsi porté à croire que, par analogie

avec les résultats obtenus pour les arcs plans, les arcs gauches

d'ordre trois sont les seuls arcs primitifs gauches d'ordre fini
(cf. n° 8).

Ce sont ces arcs qui, sous l'hypothèse d'existence d'une

tangente et d'un plan osculateur uniques en chaque point,
constituent les arcs élémentaires avec lesquels Juel a construit
les courbes élémentaires gauches. Remarquons, en effet, que
cette hypothèse suffit à entraîner la Variation continue de la

tangente et du plan osculateur avec le point de contact [35], [44].

On trouvera, dans un travail de Mlle Sauter, une étude approfondie

des arcs de l'espace à n dimensions [35], [48]. L'ordre
linéaire est ici défini par rapport aux hyperplans de cet espace.

13. — Il apparaît que la théorie de l'ordre des arcs plans

développée dans toute sa généralité serait susceptible d'apporter
une simplification considérable dans l'étude des arcs gauches.

C'est ce que l'on comprendra par l'exemple suivant qui constitue

une des plus belles applications [21] que M. Haupt ait donné

de sa théorie de l'ordre.
Nous avons rappelé, au début de cet exposé, la proposition

suivant laquelle tout continu plan d'ordre linéaire trois pouvait
être considéré comme la réunion d'au maximum cinq arcs

convexes. Cette .proposition s'étend aux arcs gauches d'ordre

(linéaire) quatre.
Considérons, en effet, un arc gauche C4 d'ordre quatre, et

soit P un point ordinaire intérieur à cet arc. Projetons C4 de P

sur un plan © ne passant pas par ce point: nous obtenons un

arc plan d'ordre trois et qui peut ainsi être considéré comme la

réunion d'au maximum cinq arcs convexes.

Nous pouvons donc décomposer C4 en, au maximum, six arcs

partiels dont aucun ne possède P comme point intérieur et

qui se projettent tous à partir de P sur © suivant des arcs

convexes. Désignons par la portion de cône convexe de

sommet P et projetant
Les plans de l'espace ne passant pas par P découpent sur
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des courbes que nous appellerons. K. Par trois points de

passe un seul plan, donc une seule courbe K.
Un plan, et par suite une courbe K, ne peuvent rencontrer

qu'en trois ou tout au plus quatre points; nous pourrons donc
dire que Bi est d'ordre trois ou quatre par rapport au système
des courbes K. Dans ce qui suit, nous parlerons indifféremment
de l'ordre de B^ par rapport aux courbes K ou de son ordre
linéaire puisque ces nombres sont égaux.

Les courbes K sont simples relativement aux génératrices de
Mi? c'est-à-dire que toute génératrice de Mi ne peut les rencontrer

qu'en un point au plus. On peut voir qu'il en est de même
pour Bt.

Il en résulte que les points commun à B^ et à une courbe K
sont disposés dans le même ordre sur Bi et sur cette courbe K.

Comme M,- est topologiquement équivalent à un domaine
plan, le théorème de monotonie et toutes les conséquences
qu'il entraîne peuvent être répétés au sujet de l'arc B^ Le
premier théorème d'existence, en particulier, nous permet
d'affirmer que si B^ est d'ordre quatre, il contient au moins un
point intérieur d'ordre quatre. Nous allons voir qu'il ne peut
d'ailleurs en posséder qu'un seul.

Supposons, en effet, que, sur Bb existent deux points S' et S"
d'ordre quatre, et admettons que, lorsqu'on parcourt C4 de la
gauche vers la droite, on rencontre P, S' et S" dans cet ordre.
On peut alors trouver sur Bi deux groupes de quatre points
coplanaires r (T', T^, T», Tl) et T" Tj, Tl, Tl)
suffisamment voisins de S' et de S" pour que tout point T soit à
gauche de tout point T. " et à droite de P. Supposons encore
les points T' et T" disposés de la gauche vers la droite dans
l'ordre de leurs indices. On peut voir aisément que les points T'
et T sont tous des points d'intersection de C4 respectivement
avec les- plans de T' et de T".

Si, sur B^, nous déplaçons d'une façon monotone les points
T2, T3 et Tl vers la droite jusqu'à les amener en coïncidence
avec Tx, T2' et T3, le quatrième point d'intersection de leur
plan avec C4 se déplacera, en vertu du théorème de monotonie,
de la droite vers la gauche tant qu'il appartiendra à l'arc ßj
Il ne peut se perdre en un point intérieur à C4. Il doit finalement
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arriver en Tl. Il devra donc passer par P. Mais alors par ce

point passerait un plan rencontrant Bi en trois points intérieurs,
ce qui est impossible, puisque Mi est convexe.

Il en résulte que si est d'ordre quatre, il contient un et un
seul point d'ordre quatre. D'après un théorème précédent, il
ne peut contenir de point d'ordre latéral quatre.

On en conclut qu'un arc B^ est formé d'au maximum deux arcs
d'ordre trois et que par suite C4 est formé d'au maximum douze-

arcs d'ordre trois.
Cette proposition s'étend par récurrence aux arcs et aux

courbes d'ordre n + 1 de l'espace à n dimensions:
Toute courbe ouverte ou fermée Tordre n -(- 1 de Vespace à n

dimensions peut toujours être décomposée en un nombre fini
d'arcs d'ordre n n'excédant pas sn — 2 (7 • 2n~3 r— 1) (n ^ 3).

Cette borne peut d'ailleurs être abaissée. Poursuivant l'analyse
précédente, et utilisant certains résultats de M. Denk sur l'ordre
d'un point commun à deux arcs d'ordre n dans l'espace à n
dimensions [9], nous avons montré que sn pouvait être abaissée

jusqu'à la valeur n + 2. pour les courbes ouvertes, n + l pour
les courbes fermées, et que ce nombre ne pouvait être réduit
davantage [43]. Nous avons toutefois supposé, pour les courbes
considérées, l'existence d'une tangente et d'un plan osculateur
unique, tout au moins en certains points. De nouveaux résultats
de M. Denk, encore inédits, permettraient peut-être de s'affranchir

de cette restriction.
On trouvera dans les travaux de MM. Mohrmann, Scherk

et Se gré des renseignements détaillés sur certaines courbes
fermées d'ordre quatre de l'espace ordinaire [50], [61], [62].

14. — L'étude des arcs et des courbes gauches pourrait
peut-être cependant être abordée d'une façon autonome. Nous

ne pouvons ici nous attarder sur ce point; on trouvera des

renseignements précieux dans un travail fondamental de

M. Hjelmslev sur la théorie des suites monotones [35].
Nous observerons encore que la structure des arcs gauches

d'ordre linéaire trois peut être étudiée par la considération de

leur ordre sphérique. M. Haupt a montré à ce sujet que tout
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arc d ordre linéaire trois et d'ordre sphériquë cinq est la réunion
d'un nombre fini d'arcs d'ordre sphériquë quatre [17].

Nous dirons enfin quelques mots du problème du prolongement.
Il consiste à rechercher dans quelles conditions un arc plan ou
gauche est prolongeable jusqu'en un autre arc de même ordre
qui le contienne et, en particulier, jusqu'en une courbe fermée.

^

Ce problème, dont la solution est immédiate pour les arcs plans
d ordre linéaire deux, était utile à résoudre pour les arcs
gauches d ordre trois car la possibilité du prolongement de ces
arcs intervient comme hypothèse dans certaines recherches [37].
M. Haupt a démontré que tout arc gauche d'ordre linéaire trois
tel que le plan osculateur en l'une des extrémités ne passe pas
par l'autre extrémité, et tel que les tangentes en ces points ne
soient pas coplanaires, est prolongeable jusqu'en une courbe
fermée d'ordre trois [26] (bien entendu, en n'additionnant pas
simplement un segment de droite) ; pour les arcs de l'espace à ndimensions cf. [60], Il a également donné des conditions pour la
possibilité du prolongement des arcs plans d'ordre quelconque
[25] (cf. les remarques de M. Hjelmslev [36]).

15, — Peu de recherches ont été faites quant à l'étude des
surfaces. Il faudrait d'ailleurs tout d'abord s'entendre sur unedéfinition précise des ensembles ponctuels que l'on conviendra
de désigner ainsi, et cette question n'est pas sans difficultés [71]L'ordre linéaire d'une surface sera ici le maximum du nombre
des points de la surface situés sur une droite quelconque de
1 espace. On pourra toutefois convenir de ne pas considérer les
droites dont un segment appartiendrait à la surface et pourlesquelles l'ordre de celle-ci serait infini.

Quels sont les modèles simples au moyen desquels on pourratoujours reconstituer une surface quelconque Si l'on exclutles surfaces réglées, pour lesquelles il y aura lieu de faire unee ude séparée, il est permis de croire que ce sont les éléments
de surface primitifs d'ordre deux, trois et infini [19], [29] [32] Unelement de surface sera dit primitif d'ordre n ou infini s'il possèdecet ordre ainsi que tout autre élément de surface qu'il contientLe verschärfteVerteilungssatz, en tout cas, peut encore s'énoncer
a 1 occasion des surfaces.
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Le mémoire le plus justement célèbre sur la théorie des surfaces

est certainement le mémoire de Juel sur les surfaces élémentaires

non réglées du troisième ordre. Une surface élémentaire est une
surface possédant en chaque point un plan tangent variant d'une
manière continue avec le point de contact, et telle que toute
section plane et tout contour apparent soient des courbes

élémentaires.

Juel a démontré que, en général, toute surface élémentaire

non réglée et d'ordre trois contient 3, 7, 15 ou 27 droites [39].
Il existe d'ailleurs des surfaces d'ordre trois, distinctes des

surfaces algébriques du troisième degré et contenant 27 droites
réelles [2], [49].

Mais le mémoire de Juel, outre que les surfaces considérées

y sont soumises à certaines hypothèses restrictives, est encore

imprécis sur certains points, ne fût-ce que dans la définition
même de la notion de surface. On trouvera des premières
recherches sur ce dernier point dans la thèse de M. Haalmeyer
[11] et dans deux notes de M. Marchaud [46], [47]; voir aussi

certaines remarques intéressantes de M. Hjelmslev [36].

La profonde analogie que nous venons de constater entre les

surfaces du troisième ordre et les surfaces du troisième degré
s'observe encore à l'occasion des surfaces réglées. Les surfaces

réglées du troisième ordre, comme celles du troisième degré,
se répartissent en deux catégories suivant qu'elles possèdent
deux droites directrices gauches distinctes ou infiniment
voisines [42].

Nous ne nous attarderons pas davantage à la considération
des surfaces ; nous nous écarterions rapidement du but que nous

nous sommes imposé.

Nous estimerions ce but atteint si nous avions fait ressortir
suffisamment la véritable nature de l'ordre et son rôle dans

l'étude des figures réelles.

Des recherches, probablement délicates, devront encore être

poursuivies au sujet des courbes et surtout des surfaces. L'état
actuel de la théorie de l'ordre, grâce aux travaux de M. Haupt,
permet d'espérer, dans cette direction, des résultats aussi

nombreux qu'importants.
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