Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 37 (1938)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES CERCLES FOCAUX DES CONIQUES

Autor: Lebesgue, Henri

Kapitel: 8. — Les deux familles de cercles focaux des coniques A CENTRE.

DOI: https://doi.org/10.5169/seals-28584

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ou

Quant au fait que deux droites Γ et Γ_1 se coupent sur la médiatrice de HH_1 , c'est une propriété bien connue des diamètres de la parabole.

Pour démontrer que nos courbes \mathcal{C} sont effectivement des paraboles, on pourrait procéder comme au paragraphe précédent, on ne rencontrerait que des simplifications; mais il suffira de noter qu'en prenant D confondue avec ωx , auquel cas la tangente au point M de \mathcal{C} situé sur ωx est perpendiculaire à ωx , nous avons l'équation de \mathcal{C} en coordonnées rectangulaires par la formule (17'); ωd est le paramètre de notre parabole.

8. — LES DEUX FAMILLES DE CERCLES FOCAUX DES CONIQUES A CENTRE.

J'ai maintenant achevé ce que je m'étais proposé de faire quant à la théorie générale. Sans doute cette étude pourrait être, comme toute étude, poussée plus loin, mais je me bornerai à donner encore quelques indications que les professeurs pourraient utiliser pour la construction d'exercices. A cet égard, la caractérisation des familles de cercles focaux est essentielle. Elle peut être faite de bien des manières; j'indique de nouvelles formes de cette caractérisation dans le cas des coniques à centre.

Reprenons la relation, qui nous a servi dans le § 5, entre les puissances d'un point M par rapport à γ , Γ et H, et prenons pour M le point ω ; nous avons:

$$-r^{2}+(k-1)\left[\overline{\omega\Omega}^{2}-R^{2}\right]-k\overline{\omega H}^{2}=0,$$

$$-r^{2}-(k-1)\,\mathrm{R}^{2}+\overline{\omega\Omega}^{2}\Big[k-1-rac{k}{\mathrm{K}^{2}}\Big]=0$$
 .

Simplifions en multipliant par $\frac{-k}{k-1} = -K$, on a:

$$Kr^2 + kR^2 - \overline{\omega}\Omega^2 = 0 . \qquad (18)$$

Cette relation, qui aurait permis une recherche facile des foyers, s'écrit, en supposant que ωx soit l'axe focal, en conservant

aux lettres a, b, c leur sens ordinaire, et en posant $B=+b^2$ pour l'ellipse, $B=-b^2$ pour l'hyperbole, d'où $k=\frac{c^2}{a^2}$, $K=\frac{c^2}{-B}$,

$$\mathrm{B} ig[c^2 \mathrm{R}^2 - a^2 \, \overline{\mathrm{O} \, \Omega}^2 ig] = a^2 ig[c^2 \, r^2 + \mathrm{B} \, \overline{\mathrm{O} \, \omega}^2 ig] \, .$$

D'ailleurs, dans les cercles Γ il y a toujours celui pour lequel Ω est en O et R=a, ceci donne la valeur constante du rapport du premier crochet à a^2 , d'où, pour remplacer (18),

$$\begin{cases} \frac{c^2}{a^2} R^2 - \overline{O\Omega}^2 = c^2, \\ \frac{c^2}{B} r^2 + \overline{O\omega}^2 = c^2. \end{cases}$$
 (19)

Ces formules donnent les caractérisations suivantes: si l'on modifie dans le rapport $\frac{c}{a}$ les rayons des cercles focaux ayant leurs centres sur l'axe non focal, on a le faisceau Φ des cercles passant par les foyers;

si l'on modifie dans le rapport $\frac{c}{\sqrt{-B}}$ les rayons des cercles focaux ayant leurs centres sur l'axe focal, on a le faisceau Ψ orthogonal au faisceau Φ .

Le rapport $\frac{c}{\sqrt{-B}}$ n'est réel que pour l'hyperbole, il égale alors $\frac{c}{b}$. Pour l'ellipse il faut dire: si l'on modifie dans le rapport $\frac{c}{b}$ les rayons des cercles focaux ayant leurs centres sur l'axe focal, on a les circonférences qui sont coupées diamétralement par celles du faisceau Φ .

Suivant la nature de la conique et la famille de cercles focaux envisagés, ces énoncés peuvent être mis sous diverses formes géométriques. Les plus élégantes ne sont d'ailleurs pas celles que suggèrent immédiatement les formules (19). Ainsi, considérons une hyperbole de cercle principal Γ_0 , de foyer F, de directrice correspondante d, d'asymptote s'OsT; s' et s étant sur Γ_0 , s sur d, T sur la droite directrice D, parallèle à Ox, d'un cercle focal Γ dont le centre Ω est sur Oy; D et d se coupent en H, le pied de d sur Ox est d_0 .

Le cercle de diamètre MT considéré au § 4 se réduit pour le cas de l'asymptote, M étant à l'infini, à la perpendiculaire en T à OT. Comme ce cercle est orthogonal à Γ , cette perpendiculaire est ΩT . (Si l'on remarque que les pieds des normales abaissées de Ω sur l'hyperbole sont les points de rencontre de cette hyperbole et de D, on reconnaît là une propriété connue que nous démontrons incidemment.)

L'axe radical Δ de Γ et Γ_0 étant équidistant des droites directrices D et Ox coupe l'asymptote au milieu Δ_0 de OT. Donc les symétriques S et S' de s et s' par rapport à Δ_0 sont sur Γ et nous avons cet énoncé, dû à M. H. Mirabel (loc. cit.): les cercles focaux d'une hyperbole ayant leurs centres sur l'axe non focal découpent sur les asymptotes des segments de longueur 2a.

Le cercle Γ appartient au faisceau défini par H et par le cercle γ réduit au point F; H et F sont les deux cercles points de ce faisceau, donc sont deux points inverses par rapport à Γ et le rayon R de celui-ci est donné par:

$$\mathrm{R}^2 = \overline{\Omega}\overline{\mathrm{H}} \cdot \overline{\Omega}\overline{\mathrm{F}} = \overline{\Omega}\overline{\mathrm{F}}^2 \cdot \frac{\mathrm{O}d_0}{\mathrm{O}\overline{\mathrm{F}}} = \overline{\Omega}\overline{\mathrm{F}}^2 \cdot \frac{\overline{\mathrm{O}s}^2}{\overline{\mathrm{O}\overline{\mathrm{F}}}^2} = \frac{a^2}{c^2} \cdot \overline{\Omega}\overline{\mathrm{F}}^2.$$

Ainsi, les cercles focaux considérés sont vus du foyer sous un angle constant, égal au supplément de l'angle des asymptotes. Cette seconde forme, qui découle tout de suite des formules (19), permettrait d'obtenir autrement l'énoncé de M. Mirabel.

9. — Propriétés diverses.

Il est clair que des énoncés comme ceux du numéro précédent permettent de construire des problèmes intéressants; on a vu aussi qu'en étudiant les cercles focaux on rencontrait de nouvelles démonstrations des propriétés classiques. Il resterait à indiquer des généralisations des propriétés des foyers aux cercles focaux assez simples pour qu'elles puissent servir à mieux faire comprendre ces propriétés et leurs démonstrations; il me semble que, si l'on veut rester vraiment élémentaire, le choix est bien plus limité.