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16 H. LEBESGUE

Quant au fait que deux droites I' et I'; se coupent sur la
médiatrice de HH,, c’est une propriété bien connue des dia-
métres de la parabole. B |

Pour démontrer que nos courbes C sont effectivement des para-
boles, on pourrait procéder comme au paragraphe précédent, on
ne rencontreralt que des simplifications; mais il suffira de noter
qu’en prenant D confondue avec oz, auquel cas la tangente au
point M de C situé sur wz est perpendiculaire a ®Zr, NOUs avons |
Iéquation de C en coordonnées rectangulaires par la formule (17');
wd est le paramétre de notre parabole.

8. — LES DEUX FAMILLES DE CERCLES FOCAUX DES CONIQUES
' A CENTRE.

J’al maintenant achevé ce que je m’étais proposé de faire
quant a la théorie générale. Sans doute cette étude pourrait
étre, comme toute étude, poussée plus loin, mais je me bornerai
a donner encore quelques indications que les professeurs pour-
raient utiliser pour la construction d’exercices. A cet égard, la
- caractérisation des familles de cercles focaux est essentielle. Elle
peut étre faite de bien des maniéres; j’indique de nouvelles
formes de cette caractérisation dans le cas des coniques a centre. |

Reprenons la relation, qui nous a servi dans le § D, entre les
puissances d’un point M par rapport a v, I' et H, et prenons ||
pour M le point «; nous avons:

- [ — 2
— P+ (k—1)[0Q —R —koH =0,

ou
2} 2 ot k
— 1 (k— 1R+ 00 [k—1——K2J — 0.
Simplifions en multipliant par —1=—K, ona:
Krt + kR? — @Q = 0 . (18)

Cette relation, qui aurait permis une recherche facile - des
foyers, s’écrit, en supposant que wz soit I’axe focal, en conservant
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L3 AO % g ' - Q '
aux lettres a, b, ¢ leur sens ordinaire, et en posant B = + 6%

pour Dlellipse, B = — p2 pour I'hyperbole, d’ou k=,
02
K = :—E,

B[R — 2200 ] = @[ + BO o | .

D’ailleurs, dans les cercles I'1l y a toujours celul pour le'quel,Q_
est en O et R = a, ceci donne la valeur constante du rapport
| du premier crochet & o?, d’oti, pour remplacer (18),

c? ——=2
a,_sz’—— 0Q = c2 "

' (19)
02 9 X

| §r2 + O = .

Ces formules donnent les caractérisations suivantes: si l'on
. ' C . A . .
modifie dans le rapport — les rayons des cercles focaux ayant leurs

cenires sur P'axe non focal, on a le faisceaun @ des cercles passant
par les foyers;

c
V=B
focauz ayant leurs centres sur Paxe focal, on a le faisceau ¥

orthogonal au faisceau ®.
c

v/~—B

alors % Pour ellipse il faut dire: si I'on modifie dans le rapport —g

les rayons des cercles focaux ayant leurs centres sur Uaxe focal, on
a les circonférences qui sont coupées diaméiralement par celles du
faisceau ®@.

Suivant la nature de la conique et la famille de cercles focaux
envisagés, ces énoncés peuvent étre mis sous diverses formes
géomeétriques. Les plus élégantes ne sont d’ailleurs pas celles
que suggérent immédiatement les formules (19). Ainsi, considé-
rons une hyperbole de cercle principal Ty, de foyer F, de direc-
trice correspondante d, d’asymptote s'OsT; s’ et s étant sur I,
s sur d, T sur la droite directrice D, paralléle & Oz, d’un cercle
focal T' dont le centre Q est sur Oy; D et d se coupent en H, le
pied de d sur Oz est d,. |

si Uon modifie dans le rapport les rayons des cercles

Le rapport n’est réel que pour I'hyperbole, il égale

L’Enseignement mathém., 37=° année, 1938. ) ‘ 2




18 : H. LEBESGUE

Le cercle de diamétre MT considéré au § 4 se réduit pour le cas
de 'asymptote, M étant & l'infini, & la perpendiculaire en T
& OT. Comme ce cercle est orthogonal & I', cette perpendiculaire

est QT. (Si 'on remarque que les pieds des normales abaissées

de Q sur Phyperbole sont les points de rencontre de cette hyper-
bole et de D, on reconnait 14 une propriété connue que nous
démontrons incidemment.)

L’axe radical A de I' et Ty étant équidistant des droites direc-
trices D et Ox coupe Pasymptote au miliea A, de OT. Donc les
symétriques S et S’ de s et s’ par rapport & A, sont sur I' et
nous avons cet énonceé, da & M. H. Mirabel (loc. cit.) : les cercles
focauz d’une hyperbole ayant leurs centres sur Uaxe non focal
découpent sur les asymplotes des segments de longueur 2a.

Le cercle I' appartient au faisceau défini par H et par le
cercle v réduit au point F; H et F sont les deux cercles points
de ce faisceau, donc sont deux points inverses par rapport a I'
et le rayon R de celui-ci est donné par:

9 (—);‘2_&2 -2

R: — OH.0OF — 0F°. 9% _

Ainsi, les cercles focaux considérés sont vus du foyer sous un
angle constant, égal au supplément de Vangle des asymptotes.
Cette seconde forme, qui découle tout de suite des formules (19),
permettrait d’obtenir autrement 1’énoncé de M. Mirabel.

9. — PROPRIETES DIVERSES.

I1 est clair que des énoncés comme ceux du numéro précédent
permettent de construire des problémes intéressants; on a vu
aussl quen étudiant les cercles focaux on rencontrait de nou-
velles démonstrations des propriétés classiques. Il resterait a
indiquer des généralisations des propriétés des foyers aux
cercles focaux assez simples pour qu’elles puissent servir & mieux
faire comprendre ces propriétés et leurs démonstrations; il me
semble .que, si 'on veut rester vraiment élémentaire, le choix
est bien plus limité.

T In————n
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