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280 G. VIVANTI

a donc tout au plus une racine positive, et le lieu géométrique

- qu’elle représente est constitué par une seule circonférence (réelle)
au plus.

Le théoréme C est vrai non seulement pour les puissances
paires inférieures ¢ n, mais méme pour celles inférieures ¢ 2n.

IIl. — SUR QUELQUES POLYGONES PLANS EQUILATERES.

Losange. — Prenons comme origine des coordonnées le centre
du polygone, et comme axes cartésiens obliques les paralleles
a ses cOtés; et soit A I’angle des deux axes. En désignant par 3
la demi-longueur des cOtés, les équations normales des cotés
sont

+24+8=0, L+y+38&=0.
Il suit de la ‘

3
Ddy = le P (—a Iy (—y 3=

sin2 A <&
h:

I

2(a* + y* + 28) ;

3 .
- DAy =+ W+ (—a+ 3Py I+ (—y =
= 23[3(a® + 7)) + 287 .

3 : 3
Les lieux >\d; = const. et > d, = const. sont donc des
H=0- R=0

ellipses, dont les diameétres paralleles aux cOtés du losange

SOIlt con]ugues et ont egale longueur
n-1

Pour tout polygone équilatére ou non, les lieux Z d; = const.

sont des ellipses. En effet, le premier membre est une fonction
quadrathue de z, y, qui, par sa nature ‘ne peut représenter

‘qu’une conique hornée.

Si le polygone a deux axes de symétrie orthogonaux, on
n—t
vérifie aisément que les lieux >\ d;, sont aussi des ellipses.
| | ‘ - h=0
Pour tout polygone équilatére la somme des distances d’un

‘point aux cdtés est constante pour tous les points du plan.
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Siay,,y, (h=0,1,..,n—1) sont les coordonnées des sommets
du polygone, et [ est la longueur commune des cotés, les équa-
tions normales des cOtés sont

1

7[(yh+1 —yp)z + (T, — Tpq) Y+ (@h 1 Yp — @ yhﬂ)] =0 .

1 suit immédiatement de la

n~1 1 n~-1
|
2 dy, = 7 _>__: (@}, 1 Yp — Zp Y1) -
h=0 h=0
IV. — LES POLYEDRES REGULIERS.

Je vais démontrer les théorémes suivants:

D. — La somme algébrique des distances d’un point aux faces
d’un polyédre régulier est constante pour lous les points de
Pespace.

E. — Le lieu des points tels, que la somme des puissances m'ees

de leurs distances aux faces d’un polyédre régulier soit cons-
tante, est une sphére concentrique au polyédre pour les valeurs
suivantes de m:

2 pour le tétraédre ;
2 et 3 pour Phexaédre et Uoctaédre;
2, 3 et 4 pour le dodécaédre et U'icosaédre *.

La méme chose, sauf Uunicité de la sphére, pour toute
fonction syméirique des distances, avec les mémes ltmitations
pour le degré m..

F. — Sous les mémes conditions des théorémes précédents pour le
nombre m, le liew des points tels, que la somme des 2 mitmes
puissances de leurs distances aux sommets d’un polyédre sott
constante, est une sphére concentrique au polyédre.

Les théorémes D et E.

Prenons sur la sphére de rayon 1 ayant pour centre l'origine
des coordonnées, n points distribués uniformément sur un

1 On peut dire que m doit étre moindre que le nombre des sommets disposés en
couronne autour d’un axe dans le polyédre respectif.
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