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280 G. VIVANTI
a donc tout au plus une racine positive, et le lieu géométrique
qu'elle représente est constitué par une seule circonférence (réelle)
au plus.

Le théorème C est vrai non seulement pour les puissances

paires inférieures à n, mais même pour celles inférieures à 2n.

III. — Sur quelques polygones plans équilatères.

Losange. — Prenons comme origine des coordonnées le centre
du polygone, et comme axes cartésiens obliques les parallèles
à ses côtés; et soit X l'angle des deux axes. En désignant par S

la demi-longueur des côtés, les équations normales des côtés

sont
± s + a o ± y -f S o

Il suit de là

3

2 4 l* + 8>2 + (— * + 8>2 — S)2

h=0
2 (x2 + y2+282);

3

V 4 (X + sr + (-X+S)3 + (y + 8)3 + (- 8)3
s,n

fc=o
2 8[3 (x2+ y2) + 2 82]

3 3

Les lieux 2^ const. et const, sont donc des
h=0- h=0

ellipses, dont les diamètres parallèles aux côtés du losange

sont conjugués et ont égale longueur.
n-1

Pour tout polygone équilatère ou non, les lieux 2 d\ const.
h=0

sont des ellipses. En effet, le premier membre est une fonction

quadratique de x1 y, qui, par sa nature, ne peut représenter

qu'une conique bornée.
Si le polygone a deux axes de symétrie orthogonaux, on

n-1

vérifie aisément que les lieux 2 ^h son^ aussi des ellipses.
h= 0

Pour tönt polygone équilatère la somme des distances d'un

point aux côtés est constante pour tous les points du plan.
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Si xh, yh(h=0,1, —, n — 1) sont les coordonnées des sommets

du polygone, et I est la longueur commune des côtés, les équations

normales des côtés sont

j[(yh+i — yh>x+*xh— Xh+Jy + yh xhyh + \)] 0 •

Il suit immédiatement de là

rt-'l n-i
"Zdh7 S {^H+i

7i=0 h=0

IV. — Les polyèdres réguliers.

Je vais démontrer les théorèmes suivants:

D. La somme algébrique des distances d'un point aux faces

d'un polyèdre régulier est constante pour tous les points de

l'espace.

E. — Le lieu des points tels, que la somme des puissances miemes

de leurs distances aux faces d'un polyèdre régulier soit

constante, est une sphère concentrique au polyèdre pour les valeurs

suivantes de m:
2 pour le tétraèdre ;
2 et 3 pour l'hexaèdre et l'octaèdre ;
2, 3 et 4 pour le dodécaèdre et l'icosaèdre h

La même chose, sauf l'unicité de la sphère, pour toute

fonction symétrique des distances, avec les mêmes limitations

pour le degré m.

F. — Sous les mêmes conditions des théorèmes précédents pour le

nombre m, le lieu des points tels, que la somme des 2miemes

puissances de leurs distances aux sommets d'un polyèdre soit

constante, est une sphère concentrique au polyèdre.

Les théorèmes D et E.

Prenons sur la sphère de rayon 1 ayant pour centre l'origine
des coordonnées, n points distribués uniformément sur un

i On peut dire que m doit être moindre que le nombre des sommets disposés en

couronne autour d'un axe dans le polyèdre respectif.
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