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276 G. VIVANTI

I. — Les THEOREMES A ET B.

De la relation

cos p = %(ei“’ + &%)

il suit | |
- 'n—ll n—1 n-1 ; 2hr - (. 2hm
. o _ 9k 1 ‘ 1($+—n—) ~'L<¢+—n—)
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pour n = 1.
On a de méme, pour m < n
n—1 '
2 mh
S‘cos(cp—!— mn)z().
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m . __ -~ |sime i(m-2)¢ —ime
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le dernier terme est

m m
(22> ou 2 <m — 1) coS
2 2 cp b

suivant que m est pair ol impair. D’ou, en vertu des formules
trouvées,

1 1 m x
= mlm —2)" pour m pair ,
Sm - Z Ch -:: s (1)
h=0 0 pour m impair .

. Les sommes s, de degré impair sont donc nulles; celles de
’ ! / . [ : . e e . )
degré pair sont des fonctions essentiellement positives, ration-
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nelles et entiéres de n. Tout cela pour m < n; pour m = n les

choses ne vont pas ainsi, et ¢’est 1& la raison du défaut de conti-

nuité que Sturm remarquait avec surprise dans ses théoremes.
On a en particulier

n 3n
Sy ™ =, 34 - — .

8

En outre, une fonction symétrique (nous entendons toujours:
: . e 2hT ,
rationnelle et entiére) des quantités cos —— de degré m sera,

en vertu d’un théoréme bien connu, une fonction rationnelle et
entiére de sy, Sy, -.. Sy et, par conséquent, pour m < n, une
fonction rationnelle et entiére de n.

Les résultats obtenus nous permettent de démontrer rapide-
ment les théoréemes de Sturm.

Prenons comme origine des coordonnées le centre d’un poly-
gone régulier de n coOtés, inscrit dans un cercle de rayon 1, et
faisons passer I’axe z par le milieu de I'un des cotés. Les cosinus
directeurs des perpendiculaires aux cotés seront alors

2h7 . 2h
cos——:—c, sm—;ﬂ? (h = 0,1, ..., i~—1) ;

. A ¥ E
la distance du centre aux cotés sera cos —-
Les équations normales des cotés seront alors

2h T . 2hT T
x c0S — + y sin-—— 4 cos— = 0,
n n n

ou, en coordonnées polaires,
2hT T
COS \— - €oS -~ =
e ( ¢+ — > + cos- =0,

et les premiers membres de ces équations donneront les distances
d, du point (p, @) aux cdtés. Une fonction symétrique de degré m
des d, sera une fonction rationnelle et entiére de p de degré m

ayant comme coefficients des fonctions symétriques de degré < m

2mh . -
), qui sont, comme nous 'avons

n
trouvé pour m << n, des fonctions de n.

des quantités cos (—— o +




278 ‘ ' G. VIVANTI

‘Notre fonction se réduit donc a une fonction rationnelle et
entiére de p et n, et le lieu des pomts pour lesquels elle a une
valeur constante C sera représenté par 1’équation

F(p, n) = 0C.

Ce lieu est donc constitué par une ou plusieurs circonférences
concentriques au polygone. Le théoréme B, dont A est un cas
particulier, est ainsi démontré.

Le cas de plusieurs circonférences, dent nous donnons ci-
dessous un exemple !, ne peut pas se presenter dans le cas du
théoréme A. ’

En effet, on a

m

Edm—z,( >cos ;s ipm‘i;

1=0

dans le polynome a droite les coefficients des puissances impaires
de p pour m'<< n sont nuls, et ceux des puissances paires sont
des fonctions essentiellement positives de n, d’ou il suit que
I’équation en p

2 dy' = const.

a tout au plus une seule.racine positive.

1 Considérons pour n = 5, la fonction symétrique des dj
| : 4 9 ¢ 2 2
fldp) = 2 dh—'z_ﬁ[ 2 dh] .
h=0 h=0

» . '
On trouve, en écrivant 3 pour cos 5

o 4 15
S dj, = g ot + 158202 4 53¢,
h=0
4 .
N d2=392.+552 i
~ 2
k=0

II en résulte “hy
15 15 - 25

= — 2t 4 8202 — 254
f(dp) 16 ° + 7 3 A 8
-et équation
| fidy =—225
T

a les racines g% = 82, p? = 3382.
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11 faut toutefois remarquer que le théoréme A ne subsiste pas

pour m = 1. Il résulte en effet

n—1 - -
};Odh = s, + 1 cos - = ncos -,
¢’est-a-dire:
La somme (algébrique) des distances d’un point aux colés
d’un polygone régulier est constante pour 10us les points du

plan.

1. — Lr teEorEME C.

Venons maintenant a la démonstration du théoreme C.
Faisons passer I’axe des z par l'un des sommets du n-gone;

les coordonnées des sommets seront alors

2 .2
cos—ﬁv—t, sm—h—E (h =0,1, ..., n—1) ,
n n

et les carrés des distances du point (z, y) ou (p, @) aux sommets

seront

2 “ 2hm\? . 2hm\?
lhz(x——cos s > + (y——sm—n—>

, : 2hT . 2hw
:p~+1—29 xCOS———n—"I—ySIHT

2hn).

n

:p2+1——2900s(—cp+

Il s’en suit:

o
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1/

m
B = S (1) 2 e et )T
i=0
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I
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Or, si m < n, toutes les sommes s; d’indices impairs sont

nulles et toutes celles d’indices pairs sont positives; il résulte
n—1

que '™ est un polyndéme en p a coefficients positifs et
h=0

dépendant seulement de n. L’équation

n—1
2 *™ = const. (m < n)
h=0
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