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276 G. VIVANTI

I. — Les théorèmes A et B.

De la relation

cos 9 l («*» + e~itp)

il suit
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On a de même, pour m < n

r 7i=0
X

Or

cos" -L |>»«> + ^^("»-2)9 + + g-imtpj

• ^2 cos ra<p + 2 cos — 2) <p + • • • j ;

le dernier terme est

2m I

_ m — 1
ou 2 y—«— / cos <p

suivant que m est pair où impair. D'où, en vertu des formules

trouvées,
1 / m \n-l \ — \n pour m pair

2m W — 2/ r
Sm 2^

h=0

(1)

0 pour w impair

Les sommes sm de degré impair sont donc nulles; celles de

degré pair sont des fonctions essentiellement positives, ration-
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nelles et entières de n.Toutcela pour m < n; pour m > « les

choses ne vont pas ainsi, et c'est là la raison du défaut de continuité

que Sturm remarquait avec surprise dans ses théorèmes.

On a en particulier
n3

s2 2 ' — "g"

En outre, une fonction symétrique (nous entendons toujours:
2 h tu

rationnelle et entière) des quantités cos-^- de degré m sera,

en vertu d'un théorème bien connu, une fonction rationnelle et

entière de sl5 s2, sm et, par conséquent, pour m < n, une

fonction rationnelle et entière de n.

Les résultats obtenus nous permettent de démontrer rapidement

les théorèmes de Sturm.
Prenons comme origine des coordonnées le centre d'un polygone

régulier de n côtés, inscrit dans un cercle de rayon 1, et

faisons passer l'axe x par le milieu de l'un des côtés. Les cosinus

directeurs des perpendiculaires aux côtés seront alors

2 h tz 2hTC ~ a \

cos sm (h 0, 1, n — i)
n n

la distance du centre aux côtés sera cos ~.
Les équations normales des côtés seront alors

2hrt 2&7C 7T

x cos + y sm + cos — — 0
n n n

ou, en coordonnées polaires,

/ 2&7T\ 7Z

p COS (— 9 + —) + cos -- o

et les premiers membres de ces équations donneront les distances

dh du point (p, <p) aux côtés. Une fonction symétrique de degré m

des dh sera une fonction rationnelle et entière de p de degré m

ayant comme coefficients des fonctions symétriques de degré < m

des quantités cos ^— cp + qUi sont, comme nous l'avons

trouvé pour m < n, des fonctions de n.
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Notre fonction se réduit donc à une fonction rationnelle et

entière de p et rc, et le lieu des points pour lesquels elle a une

valeur constante G sera représenté par l'équation

Ce lieu est donc constitué par une ou plusieurs circonférences

concentriques au polygone. Le théorème B, dont A est un cas

particulier, est ainsi démontré.
Le cas de plusieurs circonférences, dont nous donnons ci-

dessous un exemple \ ne peut pas se présenter dans le cas du

théorème A.
En effet, on a

dans le polynôme à droite les coefficients des puissances impaires
de p pour my<n sont nuls, et ceux des puissances paires sont

des fonctions essentiellement positives de n, d'où il suit que

l'équation en p

F (p n) G

n-1 m

n-1

2 d const.

a tout au plus une seule.racine positive.

i Considérons pour n 5, la fonction symétrique des dh

n
On trouve, en écrivant S jpour cos y,

2 4 ^V + 15S2e2 + 584

Û4 Yp2+5S2-
h— 0

Il en résulte

«"*> -Tïk + T 82p2—_S44

et Inéquation

/<d») - -ff84
a les racines p2 S2, p2 — 3:S2.
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Il faut toutefois remarquer que le théorème A ne subsiste pas

pour m 1. Il résulte en effet

n^dh sl9 + » cosJ= IlCOsJ
h= 0

c'est-à-dire :

La somme (algébrique) des distances d'un point aux côtés

d'un polygone régulier est constante pour tous les points du

plan.

II. — Le théorème C.

Venons maintenant à la démonstration du théorème C.

Faisons passer l'axe des x par l'un des sommets du tt-gone;

les coordonnées des sommets seront alors

cos^ sin —- (h 0, 1, 1)

n n

et les carrés des distances du point y) ou (p, cp) aux sommets

seront
/ 2h,TC\2 / • 2/i7T\2

rh («- COS—) + (2/-sin—)
/ 2hiz

p2 + 1 — 2pcos — + y sin — j
21nz\

p2 + 1 — 2 p cos I •— 9 + — J
'

Il s'en suit:
n-l m

2 (-1)' 2isipi(p2 + 1)m_1 •

h=0 1=0

Or, si m < n, toutes les sommes st d'indices impairs sont

nulles et toutes celles d'indices pairs sont positives; il résulte
71—1

que 2 est un polynôme en p à coefficients positifs et
7i=0

dépendant seulement de n. L'équation
71-1

2 const. pn < n)

h=0
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