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SUR QUELQUES THEOREMES GEOMETRIQUES
DE CHARLES STURM

PAR

G. Vivanti (Milan).

M. Gino LoriA a attiré mon attention sur quelques théoremes
géométriques contenus dans une Note! de Charles STURM.
Les voici:

A. — Le lieu géométrique des points tels que la somme des puis-
sances MM de leurs distances aux cotés d’'un n-gone
régulier soit constante, est une circonférence concenirique au
polygone, pourvu que m soit plus pelit que n.

B. — La méme chose pour une fonction symétrigue rationnelle
entiére de degré m de ces distances.

C. — La méme chose pour les puissances m**™® des distances d’un
point aux sommets d’un polygone régulier, pourvu que m sotl
pair et plus petit que n.

Le théoréme A est dit & L’HuiLLiER; Sturm en donne une
simple vérification. Les autres sont seulement énoncés.

Je me propose de démontrer ces théorémes en en précisant
quelques points, et d’y ajouter quelques généralisations dans
le plan et dans I’espace.

1 Théorémes sur les polygones réguliers. Ann. de math., 15, 1824-25, p. 250-256.
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I. — Les THEOREMES A ET B.

De la relation

cos p = %(ei“’ + &%)

il suit | |
- 'n—ll n—1 n-1 ; 2hr - (. 2hm
. o _ 9k 1 ‘ 1($+—n—) ~'L<¢+—n—)
sm—Zch——Zcos(cp—}—T):—i[Ze, +Ze
h=0 h=0 h=0 h=0 .
g [ eet2m) __ gio o~ e+2m) __ e
= ?[ Zin R ] =
e —1 e —1
pour n = 1.
On a de méme, pour m < n
n—1 '
2 mh
S‘cos(cp—!— mn)z().
'h=0 "
Or
) 1 N m\ i "
m . __ -~ |sime i(m-2)¢ —ime
cos cp—2m[e .+(1)8 + ...+ e ]

m

1
= -2——7;[200§m@ + 2(1) cos.(m——z)(p + ] :

le dernier terme est

m m
(22> ou 2 <m — 1) coS
2 2 cp b

suivant que m est pair ol impair. D’ou, en vertu des formules
trouvées,

1 1 m x
= mlm —2)" pour m pair ,
Sm - Z Ch -:: s (1)
h=0 0 pour m impair .

. Les sommes s, de degré impair sont donc nulles; celles de
’ ! / . [ : . e e . )
degré pair sont des fonctions essentiellement positives, ration-
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nelles et entiéres de n. Tout cela pour m < n; pour m = n les

choses ne vont pas ainsi, et ¢’est 1& la raison du défaut de conti-

nuité que Sturm remarquait avec surprise dans ses théoremes.
On a en particulier

n 3n
Sy ™ =, 34 - — .

8

En outre, une fonction symétrique (nous entendons toujours:
: . e 2hT ,
rationnelle et entiére) des quantités cos —— de degré m sera,

en vertu d’un théoréme bien connu, une fonction rationnelle et
entiére de sy, Sy, -.. Sy et, par conséquent, pour m < n, une
fonction rationnelle et entiére de n.

Les résultats obtenus nous permettent de démontrer rapide-
ment les théoréemes de Sturm.

Prenons comme origine des coordonnées le centre d’un poly-
gone régulier de n coOtés, inscrit dans un cercle de rayon 1, et
faisons passer I’axe z par le milieu de I'un des cotés. Les cosinus
directeurs des perpendiculaires aux cotés seront alors

2h7 . 2h
cos——:—c, sm—;ﬂ? (h = 0,1, ..., i~—1) ;

. A ¥ E
la distance du centre aux cotés sera cos —-
Les équations normales des cotés seront alors

2h T . 2hT T
x c0S — + y sin-—— 4 cos— = 0,
n n n

ou, en coordonnées polaires,
2hT T
COS \— - €oS -~ =
e ( ¢+ — > + cos- =0,

et les premiers membres de ces équations donneront les distances
d, du point (p, @) aux cdtés. Une fonction symétrique de degré m
des d, sera une fonction rationnelle et entiére de p de degré m

ayant comme coefficients des fonctions symétriques de degré < m

2mh . -
), qui sont, comme nous 'avons

n
trouvé pour m << n, des fonctions de n.

des quantités cos (—— o +
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‘Notre fonction se réduit donc a une fonction rationnelle et
entiére de p et n, et le lieu des pomts pour lesquels elle a une
valeur constante C sera représenté par 1’équation

F(p, n) = 0C.

Ce lieu est donc constitué par une ou plusieurs circonférences
concentriques au polygone. Le théoréme B, dont A est un cas
particulier, est ainsi démontré.

Le cas de plusieurs circonférences, dent nous donnons ci-
dessous un exemple !, ne peut pas se presenter dans le cas du
théoréme A. ’

En effet, on a

m

Edm—z,( >cos ;s ipm‘i;

1=0

dans le polynome a droite les coefficients des puissances impaires
de p pour m'<< n sont nuls, et ceux des puissances paires sont
des fonctions essentiellement positives de n, d’ou il suit que
I’équation en p

2 dy' = const.

a tout au plus une seule.racine positive.

1 Considérons pour n = 5, la fonction symétrique des dj
| : 4 9 ¢ 2 2
fldp) = 2 dh—'z_ﬁ[ 2 dh] .
h=0 h=0

» . '
On trouve, en écrivant 3 pour cos 5

o 4 15
S dj, = g ot + 158202 4 53¢,
h=0
4 .
N d2=392.+552 i
~ 2
k=0

II en résulte “hy
15 15 - 25

= — 2t 4 8202 — 254
f(dp) 16 ° + 7 3 A 8
-et équation
| fidy =—225
T

a les racines g% = 82, p? = 3382.
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11 faut toutefois remarquer que le théoréme A ne subsiste pas

pour m = 1. Il résulte en effet

n—1 - -
};Odh = s, + 1 cos - = ncos -,
¢’est-a-dire:
La somme (algébrique) des distances d’un point aux colés
d’un polygone régulier est constante pour 10us les points du

plan.

1. — Lr teEorEME C.

Venons maintenant a la démonstration du théoreme C.
Faisons passer I’axe des z par l'un des sommets du n-gone;

les coordonnées des sommets seront alors

2 .2
cos—ﬁv—t, sm—h—E (h =0,1, ..., n—1) ,
n n

et les carrés des distances du point (z, y) ou (p, @) aux sommets

seront

2 “ 2hm\? . 2hm\?
lhz(x——cos s > + (y——sm—n—>

, : 2hT . 2hw
:p~+1—29 xCOS———n—"I—ySIHT

2hn).

n

:p2+1——2900s(—cp+

Il s’en suit:

o

3

1/

m
B = S (1) 2 e et )T
i=0

>
I

0

Or, si m < n, toutes les sommes s; d’indices impairs sont

nulles et toutes celles d’indices pairs sont positives; il résulte
n—1

que '™ est un polyndéme en p a coefficients positifs et
h=0

dépendant seulement de n. L’équation

n—1
2 *™ = const. (m < n)
h=0
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a donc tout au plus une racine positive, et le lieu géométrique

- qu’elle représente est constitué par une seule circonférence (réelle)
au plus.

Le théoréme C est vrai non seulement pour les puissances
paires inférieures ¢ n, mais méme pour celles inférieures ¢ 2n.

IIl. — SUR QUELQUES POLYGONES PLANS EQUILATERES.

Losange. — Prenons comme origine des coordonnées le centre
du polygone, et comme axes cartésiens obliques les paralleles
a ses cOtés; et soit A I’angle des deux axes. En désignant par 3
la demi-longueur des cOtés, les équations normales des cotés
sont

+24+8=0, L+y+38&=0.
Il suit de la ‘

3
Ddy = le P (—a Iy (—y 3=

sin2 A <&
h:

I

2(a* + y* + 28) ;

3 .
- DAy =+ W+ (—a+ 3Py I+ (—y =
= 23[3(a® + 7)) + 287 .

3 : 3
Les lieux >\d; = const. et > d, = const. sont donc des
H=0- R=0

ellipses, dont les diameétres paralleles aux cOtés du losange

SOIlt con]ugues et ont egale longueur
n-1

Pour tout polygone équilatére ou non, les lieux Z d; = const.

sont des ellipses. En effet, le premier membre est une fonction
quadrathue de z, y, qui, par sa nature ‘ne peut représenter

‘qu’une conique hornée.

Si le polygone a deux axes de symétrie orthogonaux, on
n—t
vérifie aisément que les lieux >\ d;, sont aussi des ellipses.
| | ‘ - h=0
Pour tout polygone équilatére la somme des distances d’un

‘point aux cdtés est constante pour tous les points du plan.
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Siay,,y, (h=0,1,..,n—1) sont les coordonnées des sommets
du polygone, et [ est la longueur commune des cotés, les équa-
tions normales des cOtés sont

1

7[(yh+1 —yp)z + (T, — Tpq) Y+ (@h 1 Yp — @ yhﬂ)] =0 .

1 suit immédiatement de la

n~1 1 n~-1
|
2 dy, = 7 _>__: (@}, 1 Yp — Zp Y1) -
h=0 h=0
IV. — LES POLYEDRES REGULIERS.

Je vais démontrer les théorémes suivants:

D. — La somme algébrique des distances d’un point aux faces
d’un polyédre régulier est constante pour lous les points de
Pespace.

E. — Le lieu des points tels, que la somme des puissances m'ees

de leurs distances aux faces d’un polyédre régulier soit cons-
tante, est une sphére concentrique au polyédre pour les valeurs
suivantes de m:

2 pour le tétraédre ;
2 et 3 pour Phexaédre et Uoctaédre;
2, 3 et 4 pour le dodécaédre et U'icosaédre *.

La méme chose, sauf Uunicité de la sphére, pour toute
fonction syméirique des distances, avec les mémes ltmitations
pour le degré m..

F. — Sous les mémes conditions des théorémes précédents pour le
nombre m, le liew des points tels, que la somme des 2 mitmes
puissances de leurs distances aux sommets d’un polyédre sott
constante, est une sphére concentrique au polyédre.

Les théorémes D et E.

Prenons sur la sphére de rayon 1 ayant pour centre l'origine
des coordonnées, n points distribués uniformément sur un

1 On peut dire que m doit étre moindre que le nombre des sommets disposés en
couronne autour d’un axe dans le polyédre respectif.

L’Enseignement mathém., 37=e année, 1938. 19
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cercle situé dans un plan'perpefldioulaire a ’axe z. Désignons par
(%1, Yn, 2,) et par (1, N %-—— Y) (h=0,1, ... n—1) leurs coor-

données cartésiennes et polaires; z, et v sont indépendants de £
et

2h
o= M+ (h=0,1,..,n—1) .

Si (x, y, 2z) et (p, @, ¥) sont les coordonnées cartésiennes et
polaires d’un point quelconque de I’espace, on a

xx, + yy, + 2z, = p 1 (cos @ cosmy, + sin @ sin ) sin y cos ¢ +

-+ cosysinq;% = pgcos(‘qo—-cp + 2—275) sin y cos ¢ + cosysinq»g—

Or nous avons trouvé, quel que soit ¢ [voir éq. (1)]:

n—1

COS(CP—FM):O pour n > 1 |

|

n
o) pour n > 2,

n—1
Sg = z}cos2 ((p + gn—h)
h=0

n—1 o2nh
33=ZC (cp—i—i>=0 pour n > 3,
h=0 ' .

|

Sy

n—
~Zcos4(cp -+ gn—h) = %’1 pour n > & .

Il s’en suit; sous les mémes conditions

n—~1

D@z +yyy) =0,

h=0 o

n—1 ‘

) ez, + yyp)® = g o* cost y sin?
h=0 ’

n-1

Zxxh—l-yyh =0,

"O

3n "
Z azy + yyp)t = et costysinty,
h= |

(=
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et, par conséquent:

n-1
P, , = :}1 (wx, + Yy, + 38,) = npCOSY sin ¢
h=0
n—1
Py, = > (o2, + vy, + 33)* =
h=0
= % o? [cos? ¢ sin? v + 2 sin® $ cos® v] ,
n—-1
_‘ ——
3,n § (xzp, + YYp + Z'Zh)3 =
h=0
= %93[3 cos? ¢ sin? v + 2sin® ¢ cos® y] sin g cos v ,
n—1

Pin 2 (xz), + yyp + 22,)*
h=0

n ot [% cos? ¢ sin* v +

1+ 3 cos? ¢ sin? ¢ cos? v sin? y +- sin* ¢ cos Y] .

11 va sans dire que I'expression de P, , est valable seulement

pour k < n.

Supposons un polyedre régulier inscrit dans une sphere de
rayon 1 ayant pour centre l'origine des coordonnées, et dispo-
sons-le de facon qu’une ou deux faces soient paralléles au plan 2y
(tétraédre, hexaeédre, dodécaédre), ou qu'un sommet se trouve
au point (0, 0, 1) (tétraédre, octaedre, icosaédre). Nous pourrons

distinguer dans le polyédre

a) des faces paralléles au plan xy;

b) des couronnes de faces également inclinées sur I'axe z, et
déduisibles de I'une d’elles par des rotations successives

. 2T )
d’un sous-multiple == de 27 autour de ’axe z; nous dirons
n 9

que n est Uordre de la couronne.

L’équation normale d’une face paralléle au plan zy est
+z+98=20,

ou S est la distance du centre aux faces.

(3)
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Les équations normales des faces d’une couronne d’ordre n
et d’inclinaison vy sont !

2%y, + Yy, + 2z + 8 = 0, (&)

ou (x, Y, 2z) est le point de rencontre de la sphére avec la
perpendiculaire & la face issue du centre, ou, ce qui est la méme
chose, ou x;, y,, 2, sont les cosinus directeurs de cette per-
pendiculaire. Les premiers membres des équations (3) et (&)
donnent les distances du point (z, y, z) aux faces.

Cela posé, calculons pour les différents polyédres les sommes
des puissances m'*™® d’un point (z, y, z) aux faces, que nous
désignerons par T,,

T'étraédre. — Disposons le polyédre de facon qu’un sommet
soit le point (0, 0, 1). Le polyédre contient alors

une face parallele au plan zy a distance § = %— du centre;

une couronne d’ordre 3;
le cosinus de l'inclinaison de la perpendiculaire par rapport
a l’axe est le rapport de & a 1, c’est-a-dire:

oA/T
cos vy = siny::%

Les sommes des distances et des carrés des distances du
point (z, y, z) ou (p, ¢, ¢) & la face horizontale et aux faces de la
couronne seront respeétiveme;qt

—psing + 8, (—psind+ 9

et : _
xxy, + Yy, + 2% + 9, (xzy, + vy, + 25, + 9)2

1 Par mcllnalson d’une couronne nous entendons l’angle de laxe z avec les per-
pendiculaires aux faces de la couronne.

)
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On aura donec:

T, = [—psin¢ + 38 + [P, ; + 39],
T, = [— e sin¢ + 8 + [Py, + 2P, ;8 + 3%,

ou
T, =[—psiny + 8] + [psind + 33] = 4§ = const. ,

T, = [¢?sin?2 ¢y — 23p sin ¢ 4 8%] +

+ 3 2 §—cosz? ~;—Esin2' + 28psin ¢ 4 33%| =
5 P\ 4 @

Hej

&

s 2
39 - 432 .

Les théoremes D et E sont donc démontrés pour le tétraédre.

Hexaédre. — Deux faces paralleles au plan xy; une couronne

. T :
d’ordre 4 ot ¥ = +. On a donc pour les sommes des puissances

des distances d’exposant << 4

T, = (—psind + 3) + (psiny + 8 + (P

Ty, = (—esin¢ + 8)% 4 (psin ¢ + §)% +

Ty = (—esind + 8)® 4 (o sing 4 8)° +
+ (P, + 38P,, + 3%P,, 4 &8,

ou
T, = (—egsiny + 3) + (psin¢ + ) + 43 = 68 = const. ,

T, = (¢?sin?¢ — 238p sin ¢ + 32 4 (psin? ¢ 4 28psin ¢ + 8%) +
+ (292 cos?d 4 4£8%) = 2p% 4 682,

T, = (— % sin® & + 38p% sin*> ¢ — 338% sin ¢ + 3%) +
+ (e®sin® ¢ + 38p%2sin?2¢ + 33%p sin + 3% +
+ (68p% cos?d + 4£3%) = 63 (p% + &7 .

Les deux théoréemes sont donc démontrés pour ’hexaédre.
Octaédre. — Deux couronnes d’ordre 4. La distance du centre
-1l s’en suit

A
V3
1 - /9

cos y = &+ —— , sin vy = 2
7 r=y/2

aux faces est
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On, obtient:

Ly == (%psinxb + 48) + (——\—/lt—s:psinap - 48).=88=c0nst. ,

3 o '
’T2 = |—2 92(-§ cos? LI) _I_ % sin? 4}) + WSP Sin EI) -+ 482_]

+[2 (ECOS2¢+Esin2¢>_—~8:39 sin ¢ -+ 482] =
e 3 3 N '\/3 | v

.—§2 2 -

Ty = [A 4 4302 + B + 48] + [— A + 480> —B + 45% = 83 (g% + &)

ou
1

V3

A = 93(4sin¢ + écos%};) , B = 12 d%psing .

3 73
Les deux théorémes sont donc démontrés pour 1’octaédre.

Dodécaédre. — Deux faces paralléles au plan xy; deux couronnes
d’ordre 5. Il faut calculer I'inclinaison vy de la perpendiculaire
aux faces de 'une d’elles; pour 'autre I’inclinaison sera © — Y.
On sait que I'angle diédre v de deux faces contigués du dodé-
caédre régulier est déterminé par les relations, ou r = 4/5,

§in 7 = ~ cosn = — —
m = s n = -
- Le supplément de cet angle est ’angle v cherché; on a done
sin y = 2 CoS y = 1
my = r Y = r

I résulte, pour la face et la couronne supérieures prises en-
semble, en omettant les termes qui se rencontreraient avec le
signe opposé pour la face et la couronne inférieures,

T, =68, Ty=20%+ 682, T,=350%+ 65°,

T, = g ot + 128202 1 63 .
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On a donge, en total

T, — 128 = const. , T, = 4p?® + 128% , T, = 63p% 4 128°,
| 12, . \
Ty =4 ot + 263%0° + 1284 .

Les deux théorémes sont donc démontrés pour le dodécaedre.

Jcosaédre. — 11 y a deux couples de couronnes d’ordre 5. Cal-
culons les inclinaisons respectives, que nous désignerons par y
(et @— ) et vy (et ™— vq)-

Si 'on méne du centre la perpendiculaire & I'une des faces
issues du point (0, 0, 1), 'angle y de cette perpendiculaire avec
’axe z positif appartiendra a un triangle rectangle, dont I’hypo-
thénuse est 1, et le cathéte opposé est formé par les ?/; de la
hauteur de la face. Or on sait que la longueur de l'aréte de

P’icosaeédre est \/2—(5;:&, la hauteur de la face sera donc

\/23 \/2 (rr— 1) , et les 2/; de cette hauteur sera \/?_(’____“ 1

3r
. 2 (r— =
Sln‘Y:\/~——(—rgT—/l—)‘, COSYZ\/’;‘Q.

I’angle v, — v de la perpendiculaire aux faces de la seconde
couronne et de la perpendiculaire & celles de la premiére est le
supplément de I’angle diédre = de deux faces contigués, qui est
déterminé par |

résulte

. 2 r
smv)=—§, COSV]:'—g,

Il résulte donec:

i 1 s 2 X 2 » e 9

1
= o 2 2 g 2;___
3’\/37'( '\/7‘—}— +7'\/7 2),

r r 2 2 2 2

1
T s » 2___2 R 3
Wer (rv/r + \/2‘1 —3) ,
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Or

w={ 2'\/r—}—2—(—r\/2r——2‘2 hr 4 8 4+ 10r—10 + 4r+/(r + 2)(2r —2),
v=(rA/r +2—24/2r—2)2=5r +10 + 8r—8—4r+/(r + 2) (2r—2),
(r 4+ 2){2r—2) =6 + 2r = (r+ 1)2.

" Donce
= 14r — 2 4 4r(r + 1) = 18 (r 4+ 1) ,
v =13r + 2 —4r(r + 1) = — 18 + 9r = 9(r — 2) ,

. 2 1
Sin Yy = \/___(r 3—": ) » COS v, =

11 suit de la:

=

et

3r

3

. . 16
sin* v - sin* v, = -, cos* vy 4 cost y; =

. . & 2
- sin? v 4 sin? y; = - , cos® y -4 cos® vy, = 5 ,

2

15’ 5

. 5 . 4
sin? vy cos? y 4 sin? y; cos? vy, = 15

L’ensemble des deux couronnes extrémes donne
| T, = 108 ,
T, = 5p2 [cos? ¢ sin? y + 2sin® ¢ cos? y] 4 1082,
T, = 153p2[cos? ¢ sin? vy + 2 sin? ¢ cos? y] 4 1083 ,

(VU

T, = 10p* <§ cost ¢ sint y + 3 sin? ¢ cos? ¢ sin® vy cos? y -+ sin? ¢ cos? Y>
4 3082p2 (cos® ¢ sin% y 4+ 2 sin? ¢ cos? y) -+ 1034 .
Les formules analogues pour les deux couronnes moyennes

s’obtiennent de celles-ci en substituant y par v;. II résulte en
total en vertu des relations (b)

T, = 208 = const. N e 339 of L 2082 , T, = 408p® 1+ 208° ,

T, = 8p* + 408%2p% 4 208* .

Les théozémes D et E sont maihtenan't démontrés pour tous

les polyédres réguliers. Et comme les T,, sont dans tous les cas

j
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des polynémes en p & coefficients positifs, 11y a toujours une seule
sphére au plus.

Le théoréme F.

Venons enfin au théoréme F. Les points (0, 0, + 1), et ceux
que nous avons désignés par (T, Y, z;,), sont les poles sphériques
des faces du polyédre, cest-a-dire les sommets du polyedre
réciproque (le tétraédre pour le tétraedre, loctaedre pour
’hexaédre et vice versa, I'icosaédre pour le dodécaedre et vice
persa).

Les carrés des distances d’un point (z, y, 2) ou (p, ¢, J) aux
sommets du polyedre sont donc respectivement

22 4+ y? -+ (z F 1)2  ou (e + 1) F 2psin ¢,

(x —@p)? + (y —yp)? + (2 —z)% ou (02 + 1) — 2 (wzy, + yyp + 53p) -

Les formules (2) nous permettent de calculer aisément les
sommes des premiéres puissances paires des distances pour les
différents polyédres réguliers; les valeurs de vy trouvées nous
donneront les inclinaisons des rayons qui vont aux sommets
formant une couronne.

Tétraédre. — Un sommet au point (0, 0, — 1); une couronne
1 .
de sommets d’ordre 3 avec cos v = &, S1n ¥ =

24/2
_ 37 BEE
Désignons en général par V,, la somme des puissances 2m
des distances; on a

iétmes

V, = [(6* + 1) + 2osin U] + [3 (¢ + 1) — 6p cos v sin Y] = & (¢* + 1) ,
V, = [(p% + 1) + &p (p® 4 1) sin ¢ + 4p? sin® ¢] +
4 [3 (% + 1) — h&p (p? -+ 1) 3 cos v sin ¢ +

o2 (cos? ¢ sin? v -+ 2 sin? ¢ cos? y)] = & (p* + 1)2 4 —1~3§ B

=~
rof w

Hexaédre. Deux couronnes d’ordre 4 avec

1
COSY:i“——_:, Siﬂ‘Y:\/ —
3
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(les valeurs trouvées pour I’octaédre). Il résulte, en omettant les
termes qui se détruisent mutuellement, et en doublant les autres,

V, =8(%+ 1), _ ,
V, = 8 (p? + 1)2 + 162 (cos® ¢ sin® v + 2 sin® ¢ cos? v) =

—8(92+1)2+%2 p?
Vs = 8 (p2 + 1)® + 32¢% (p% + 1) .

Octaédre. — Les points (0, 0, + 1), et une couronne d’ordre 4

avec y = % (la valeur trouvée pour ’hexaédre). Il résulte, avec

les omissions déja adoptées,

V,—=2(p* + 1) + [4 (p* + 1) — 8p cos v cos 4] = 6 (¢* + 1),

Vy = 2[(6® + 1)2 + ho? sin? §] + [4 (* -+ 1)2— 16 (¢ + 1) cos y cos ¢ +
' + 8p2 (cos? ¢ sin? y + 2 sin? ¢ cos® y)] = 6 (p* + 1)2 4 89 )

Vy = 2[(p? + 1)® + 12¢% (% + 1) sin® ¢] + [& (¢* + 1)° +
4 264p% (2 + 1) cos? ¢] = 6 (p® + 1) + 2&e* (0* 4 1) .

Dodécaédre. — Deux couples de couronnes d’ordre 57 les angles
v et vy, sont déterminés par les formules trouvées pour l'ico-

saedre
sin y = \/ 2(r —=1) " cos.
_ Yy = ! 3 -, COS:

. 2(r +1)
sin Y} = \/_(—f;;_—_)_’ Ccos Yy, —

En vertu des relations (5), si P; , représentent les expréssions
P; , ou v est substitué par vy, on obtient

3r

Py, + Pyy =15 0, Pyg+ Py =26t
et par conséquént S |
—20(* + 1),
2 = 20 (¢* + 1) + 80 )
.« Vy=120(p" )+8092(2+1),
—'20(2+1)4 + 160p* (p* + 1)* + 64t .
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Tcosaédre. — Les deux points (0, 0, =+ 1), et deux couronnes
d’ordre 5 avec la valeur de y trouvée pour le dodécaedre,
¢est-a-dire

. 2 1
sin v = —, COS Yy =—.
r r

Il résulte
V, =2 (e + 1) + 10 (> + 1) =12(¢* + 1),

V, = 2[(¢* + 1) + ke?sin® U] + 2 [5 (62 + 1)2 4 10¢2 <f;— cos? ¥ +
+—25—sin2 ¢>] — 19 (p* 4 1) 160
Vy = 206t 4+ 1) + 1262 (6t + 1) sin® §] + 2[5 (e* + 1) + 300

(6 + 1) - (% cos? § + & sin? q;)} 12 (pf o 1)® - 48g2 (e + 1)
V, = 2[(6" + 1)t + 2p* (¢* + 1) sin? ¢ + 16p¢sint ¢ + 2[5 (62 + 1 +

+ 60p2% (p2 + 1) <% cos? ¢ + %sin2 «P)] + 80 [565 cos* ¢ +

) 1 .
+ 22 cost g sint § + ggsin' b =121+ 1) 4 966% 6+ 112 5

192

+g et

Le théoréeme F est ainsi complétement démontré, et le lieu ne
peut se composer que dune seule sphére réelle tout au plus.
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