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LES CERCLES FOCAUX DES CONIQUES 13.

On passe d'un cercle focal, soit y de centre « sur à un

cercle jide1(1 même série en remarq1a'au déplacement mwi

du centre correspond ledéplacement ddx de la droite directrice,

tel que _kddi cocùj t14'

et que l'axe radical de y et Tl est la droite équidistante de d et de dr
On passe aux cercles focaux de Vautre série en considérant les

cercles définis par
3>(M, y) kMM ; (10)

H étant un point quelconque de la droite directrice d du cercle y.

6. — Nature des courbes C, lorsque k est différent de 1.

Il sera démontré que (3 est une conique à centre si nous trouvons

un cercle focal de rayon nul.
T sera de rayon nul, si cette circonférence est réduite à son

centre, c'est-à-dire est le second cercle point du faisceau y, H,
donc si l'on af

coli • ço H r2

Ainsi, Q devra être à la rencontre de 0y et du cercle S inverse

de d, y étant le cercle d'inversion. Si S coupe Oy, leurs points

de rencontre sont des centres de cercles T de rayon nul; £ est

une conique d'axe focal Oy.

Or S a pour diamètre
r2

cdd

et, d'après (12),
coO Kcùd

donc (3 est une conique d'axe focal Oy si Von a:

K > 0 r2 > KcdcZ ; (15)

(3 est une conique d'axe focal Ox si I'on a :

k > 0 R2 > /cÔD2 (16)



14 H. LEBESGUE
Si k est négatif, K est, d'après (13), compris entre 0 et 1* la

première inégalité (15) est remplie, la seconde s'écrit encore
1 — kétant positif,

(1 — k) r2>— k.Si elle n'était pas vérifiée, on aurait

r2 + k (Uli —<0 ;

ce qui exigerait, puisque k est négatif,

<od > r et k(côd2 — < 0

c'est-à-dire les deux inégalités (9), lesquelles ne sauraient être
vérifiées à la fois, C étant réelle.

Donc, pour k < 0, C est une ellipse d'axe focal Oy, et l'on a
une conclusion analogue pour K < 0.

Sik et K sont tous deux positifs, il n'y a plus lieu de tenir
compte des conditions (9), qui ne peuvent être vérifiées
simultanément que pour k < 0. D'après (13), on a alors k 1, K > 1.

Ecrivons la relation (3) pour les trois cercles y, T et H, et
en prenant M au point H, il vient

Hfl(ïn;2 — r2) +êùH(Hfl2 — R2) o

où, d'après (11), (12), (13),

K(Hcù —/•-'} + k(ÏÏTi — R2) 0

Les relations entre longueurs

HG>2 (ad2+ OD2 Hfl2 AD2 + 2

_
HGi (ad OD- Hfl ~ ~ AD '

transforment l'égalité précédente en

K[Kg>(22 — r2] + AD2 — R2] o

ce qui prouve que les deux quantités entre crochets sont de
signes contraires. Donc l'un ou l'autre des systèmes d'inégalités
(15) ou (16) est vérifiée; C est une hyperbole.
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Un cas particulier vaut d'être signalé; c'est celui où les deux

crochets seraient nuls. Alors le cercle S serait tangent àO?/en 0;
pour D confondu avec Ox, T se réduirait au point 0 et la relation
MO2 KMD2 montre que £ est une hyperbole réduite à ses

asymptotes. On laissera de côté ce cas limite dans la suite.

7. — Nature des courbes £ lorsque k égale 1.

Pour éviter des complications de rédaction, on a supposé

k^- 1 depuis le § 5; pourtant l'étude des courbes <3 paraboliques

peut être faite par les procédés des deux paragraphes précédents,
seulement la lettre T désignera maintenant l'axe radical du

faisceau H, y. Il suffira donc de montrer que la marche de l'étude

pour k 1 pourrait être parallèle à celle de l'étude déjà faite.
La relation (1) donne pour tout point Mx du plan

c?(Ml5 y) — $(Mlt H) + 2coH • M^T 0

ce qui s'écrit encore:

(M*, y) — Wd M^D2 — 2côH • Mff

Or £ est le lieu des points M1 pour lequel le premier membre
est nul, donc £ est aussi le lieu des points Mx tels que Von ait:

M^D2— 2^H • M^f 0 ; (17)

ou si l'on veut:
sin 4 • SÜD* — 2 ÏTd M^î 0 (17')

4 étant l'angle de F et de cùx.

Réciproquement, on déduira de l'équation (17) des cercles

focaux ayant leurs centres sur cax; y est l'un d'eux. Les relations
entre la série des droites T et celle des cercles focaux sont les

mêmes que précédemment, seulement la relation (14) s'est

simplifiée; devenue

coco! dd-L (14')

elle exprime la propriété déjà énoncée: la sous-normale est
constante.
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