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LES CERCLES FOCAUX DES CONIQUES ü

Pour k1,on a, d'après (11),

M n_H (o _ ^ _j_ -i=- 1 — k ;

.Mfl HQ Hü

donc, lesdeux axes Ox, Oy d'une courbe G déterminent

sur toute normale à cette courbe deux segments Mre, MO te

rapport est constant et égal à 1 — k.

5, __ Cercles bitangents, cercles focaux.

Soit k=Al;à toute parallèle D à cox, coupant n H, nous

associons un cercle T grâce à la relation (10), toutes les fois du

moins que cette relation donne un lieu ou un point. Ce cercle

qui peut donc être un cercle point1, est appelé un focal,

dont D est dite la droite directrice. Dans les cas où D et se

coupent, P est un cercle bitangent à G.

Soit Mx un point quelconque, comme (11) et (12) donnent:

OH ÏTS> uQ
-j; k— 1 — k

la relation (3) appliquée aux trois cercles y, T, H d'un meme

faisceau s'écrit :

S (Mi Y) + (k-1) • «(Mi r) - ft® (M1( H) 0

ou, exprimant ®(MX, H) à l'aide de M^d et M^D,

[®(Ma, y) - ftSM2] + (ft - 1) [«(Ml, T) - j^qMxD2] 0

Donc, lacourbe G est susceptible d'être définie à partir de

chaque couple T, D par la relation

danslaquelle on a posé :

i On pourrait même sans grande difficulté parler ici de cercles imaginaires à centres

réels.



12. H. LEBES GUE

Le passage d'un cercle V de centre £2 et d'une droite D de
pied H à un cercle I\ de centre et à une droite D1 de pied Hj
est immédiat, que ce soit Qj ou Hx qui soit donné. En effet, £2H
et Ü1H1 passant par co, on a:

üco k

hh; ~ ln> k—i K ;

d'autre part, l'axe radical A de T et I\ est parallèle à wx et
passe par le point de rencontre des axes radicaux de T avec y
et de I\ avec y. Mais ceux-ci sont aussi les axes radicaux de y
avec H et de y avec H1? donc A est l'axe radical de H avec H1?
c'est-à-dire la médiatrice de HH1.

Faisons jouer maintenant à T, D, K les rôles que jouaient
tout d'abord y, d, ket cherchons l'intersection de C et de d.
Il nous faudra construire la circonférence définie par

S (M, r) KMH2 (10')

Or, comme l'on a, d'après (3),

ÜH (M, y) + H<Ô®(M, T) + &Tü MH2 0

OU

5H2(M, Y) + H(ô[®(M, r) — KMl2] 0

la circonférence à construire est donc y.
Ainsi le procédé qui, de d, y, k, nous a permis de passer à

D, T, K, permet aussi de revenir des circonférences T à une
famille de circonférences centrées sur Ox et dont y fait partie.

En résumé: toute courbe C à centre est susceptible d'une double
infinité de définitions comme lieu des points dont le quotient de lu
puissance par rapport à un cercle focal par le carré de la distance
à une droite directrice est constant. Les centres des cercles focaux
sont sur les deux axes de (L auxquels les droites directrices sont
respectivement perpendiculaires. A tous les cercles ayant leurs
centres sur Ox correspond la même constante k, à tous ceux ayant
leurs centres sur Oy correspond la même constante K
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On passe d'un cercle focal, soit y de centre « sur à un

cercle jide1(1 même série en remarq1a'au déplacement mwi

du centre correspond ledéplacement ddx de la droite directrice,

tel que _kddi cocùj t14'

et que l'axe radical de y et Tl est la droite équidistante de d et de dr
On passe aux cercles focaux de Vautre série en considérant les

cercles définis par
3>(M, y) kMM ; (10)

H étant un point quelconque de la droite directrice d du cercle y.

6. — Nature des courbes C, lorsque k est différent de 1.

Il sera démontré que (3 est une conique à centre si nous trouvons

un cercle focal de rayon nul.
T sera de rayon nul, si cette circonférence est réduite à son

centre, c'est-à-dire est le second cercle point du faisceau y, H,
donc si l'on af

coli • ço H r2

Ainsi, Q devra être à la rencontre de 0y et du cercle S inverse

de d, y étant le cercle d'inversion. Si S coupe Oy, leurs points

de rencontre sont des centres de cercles T de rayon nul; £ est

une conique d'axe focal Oy.

Or S a pour diamètre
r2

cdd

et, d'après (12),
coO Kcùd

donc (3 est une conique d'axe focal Oy si Von a:

K > 0 r2 > KcdcZ ; (15)

(3 est une conique d'axe focal Ox si I'on a :

k > 0 R2 > /cÔD2 (16)
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