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LESCERCLES FOCAUX DES CONIQUES .9

Pour (ùdrlaseconde inégalité ne peut être vérifiée; pour

od > r et k & - r2) + i* 0, G se réduirait à un point,

au pôle H de d par rapport à y. Il était donc légitime d ecarter

comme nous l'avons fait le cas où les inégalités se transformeraient

en égalités.

4. _ Construction par points et par tangentes.

Pour construire £on prendra une droite A que l'on fera

varier continûment. Choisissons cp 0, donc prenons une

droite D parallèle à orx et dont nous ferons varier le pied H

sur d. La relation (8) devient:

<T(M, y) kMR • (10)

Pour k—1, cette relation définit une droite T, d'où un

point M sur D. Ainsi, pour k 1, <3 admet un point et Un seul

sur toute droite D parallèle à wi; nous dirons que est

parabolique.

Pour ky± 1, la relation (10) définit une circonférence P dont

le centre est le point Q de Hw tel que

(il
ÖH

Donc, quand H varie sur d, Q décrit la perpendiculaire 0
à Ocox qui est l'homothétique de d par rapport à co et dans le

rapport

— T (12)
c,ii i

Les deux points M et M' de £ situés sur D sont, quand ils

existent, symétriques l'un de l'autre par rapport à Oy, ainsi,

pour k ^ 1, la courbe £ a un centre 0 et deux axes de symétrie

rectangulaires Ocox, Oy.

Reprenons une droite A quelconque ; ses points de rencontre

avec £ sont sur la circonférence IL définie par (8). Mais tous les

points communs à £et à Z, vérifiant (7) et (8), sont tels que
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Md MK cos 9; donc ce sont les points communs à Z et à A
ou à la droite A' symétrique de A par rapport à

Faisons tendre A vers D, donc K. vers H et 9vers zéro;
Z tend vers T. Les deux sécantes communes à Z et tendent
vers D, les quatre points communs à ces deux courbes tendent
deux à deux vers les points M et M' de rencontre de T et de

On devine ainsi que ces deux courbes sont tangentes en M
et M'; pour le démontrer, précisons. Soit M0 un point de
choisissons A passant par M et par le symétrique de M0 par
rapport à d, A' passe donc par M0. Si l'on fait tendre M0 vers M,
A tend vers D, Z vers T; les deux rayons de Z aboutissant en M
et M0, tendent tous deux vers DM ainsi que la bissectrice
intérieure de leur angle. Donc MM0, qui est perpendiculaire à cette
bissectrice, a une position limite, c'est-à-dire que a une
tangente, et cette tangente est la perpendiculaire à QM.

Donc, en chaque point M de Cilexiste une tangente qui est
la droite Tayant fourni M, si T est une et qui dans le cas
général, la tangente en M au cercle T ayant fourni ce point.

Soit MT cette tangente, T étant sur d. La circonférence de
diamètre MT étant orthogonale en M à T et passant par H
est orthogonale à toutes les circonférences du faisceau H, T,
donc à y. Ainsi: la portion de tangente M.T comprise entre un
point M de C etla droite d est le diamètre d'une circonférence
orthogonale à T. Cette propriété, quand T est un cercle point,
est bien connue: la portion de tangente à une conique comprise
entre le point de. contact et une directrice est vue du foyer
correspondant sous un angle droit; nous la retrouverons.

Les constructions diverses de la tangente se déduisent facilement

de cette propriété qu'on pourra démontrer aussi en recherchant

une droite A tangente à la circonférence Z qui lui est
associée.

La construction des tangentes peut aussi se déduire de celle
des normales. Pour k1, Test l'axe radical de y et de H, donc
est perpendiculaire à wH, la normale en M est parallèle à coH

et, si n est le point de rencontre de cette normale et de ox,
nM et coH sont équipollents. Donc, dans une courbe C parabolique,
la sous-normale (projection de nM sur oyx) est constante et égale
à cod.
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Pour k1,on a, d'après (11),

M n_H (o _ ^ _j_ -i=- 1 — k ;

.Mfl HQ Hü

donc, lesdeux axes Ox, Oy d'une courbe G déterminent

sur toute normale à cette courbe deux segments Mre, MO te

rapport est constant et égal à 1 — k.

5, __ Cercles bitangents, cercles focaux.

Soit k=Al;à toute parallèle D à cox, coupant n H, nous

associons un cercle T grâce à la relation (10), toutes les fois du

moins que cette relation donne un lieu ou un point. Ce cercle

qui peut donc être un cercle point1, est appelé un focal,

dont D est dite la droite directrice. Dans les cas où D et se

coupent, P est un cercle bitangent à G.

Soit Mx un point quelconque, comme (11) et (12) donnent:

OH ÏTS> uQ
-j; k— 1 — k

la relation (3) appliquée aux trois cercles y, T, H d'un meme

faisceau s'écrit :

S (Mi Y) + (k-1) • «(Mi r) - ft® (M1( H) 0

ou, exprimant ®(MX, H) à l'aide de M^d et M^D,

[®(Ma, y) - ftSM2] + (ft - 1) [«(Ml, T) - j^qMxD2] 0

Donc, lacourbe G est susceptible d'être définie à partir de

chaque couple T, D par la relation

danslaquelle on a posé :

i On pourrait même sans grande difficulté parler ici de cercles imaginaires à centres

réels.
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