Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 37 (1938)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Buchbesprechung: J. Van Mieghem. — Contribution à la Théorie du Principe des Ondes

enveloppes de Huyghens (Institut belge de Recherches scientifiques Président-Fondateur: Th. De Donder. Volume VIII).-Un volume gr. in-

8° de 100 pages. Prix: 30 francs. Gauthier-Villars. Paris, 1938.

Autor: Buhl, A.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

L'antenne est un milieu complexe dont le voisinage immédiat se ressent énormément de cette complexité. Dans le lointain la théorie du rayonnement se simplifie et coı̈ncide avec celle de propagations classiques; ces dernières donnent des procédés d'approximation.

A signaler l'emploi d'équations du type $w'' + \lambda(\zeta) w = 0$, équation immédiatement remplaçable par une équation de Riccati; les généralités, si elles ne peuvent être traitées de manière absolument complète, sont du moins esquissées, de façon suffisante, en raisonnant d'abord sur le cas de coefficients constants.

La résonance dans l'antenne a donné lieu à de remarquables considérations due à M. Léon Brillouin. Les formes diverses de l'antenne exigent de certaines classifications à partir de l'antenne filiforme ou fuselée, classifications fort délicates, du moins autent que celle de bassins où un fluide mobile devrait présenter de certaines résonances ou de certains phénomènes d'ondes. Les équations différentielles linéaires et de second ordre, mises intelligemment à contribution, sont encore ici d'un grand secours. L'empirisme numérique complète ce que la théorie a de non maniable.

Quant aux antennes complexes, il est déjà bien joli qu'on puisse leur étendre les équations de l'antenne simple, même si la généralisation des solutions ne suit pas aisément. En attendant de grands progrès analytiques, il faut ençore savoir utiliser des faits d'expérience.

Vient ensuite le rayonnement à distance, surtout représentable à grande distance, comme je le disais au début. Néanmoins, les fonctions elliptiques, la constante d'Euler jouent avec intérêt dans la représentation de ce rayonnement.

Outre Th. De Donder, M. Pierre Baudoux cite, comme grands auteurs de référence, Pomey, Heaviside, Hadamard, Milne-Thomson, Jahnke-Emde, Fleming, Terman, Mesny, Hund. Naturellement Maxwell ne cesse point d'être à l'honneur bien que les nécessités de la pratique aient souvent transformé ses écritures théoriques.

A. Buhl (Toulouse).

J. Van Mieghem. — Contribution à la Théorie du Principe des Ondes enveloppes de Huyghens (Institut belge de Recherches scientifiques. Président-Fondateur: Th. De Donder. Volume VIII). — Un volume gr. in-8° de 100 pages. Prix: 30 francs. Gauthier-Villars. Paris, 1938.

Ce nouvel exposé s'ajoute à une *Etude sur la Théorie des ondes* qui constituait le premier volume publié par l'Institut radioscientifique belge présidé par M. Th. De Donder. Ce premier volume de M. Van Mieghem a été publié en 1934. Une analyse bibliographique a été insérée, en 1935, dans le *Bulletin des Sciences mathématiques*.

Il s'agit maintenant de mettre les idées modernes sur les ondes qui ont, sans doute, leur plus belle expression dans les travaux de M. J. Hadamard, d'accord avec les idées d'autrefois. Et cet accord peut être établi de façon véritablement merveilleuse. Le transport de l'onde dans l'espace géométrique se fait avec recours au système différentiel des bicaractéristiques, système différentiel qui donne les rayons mais, chose extrêmement remarquable, il peut n'y avoir là qu'une sorte de topologie; les considérations métriques n'interviennent obligatoirement qu'avec la vitesse de transport de l'onde.

On voit ensuite que l'onde élémentaire de Huyghens a une équation ponctuelle corrélative de l'équation tangentielle aux dérivées partielles.

Ces considérations duales se retrouvent plus loin sous d'autres espèces. C'est alors le dualisme ondes-corpuscules. Vraiment il y a encore nombre de physiciens, et même de mathématiciens, qui ne semblent pas comprendre ces prodigieuses associations. On peut voir le point comme l'élément géométrique fondamental mais, pour peu qu'on le considère comme intersection de deux lignes, on recourt à un système dual. Pour moi, de telles réciprocités élémentaires aident à saisir l'association des mouvements ponctuels et des mouvements ondulatoires. Certes la très belle analyse de M. Van Mieghem est beaucoup plus élevée mais elle ne pourrait exister si, au fond, elle n'était le développement et la synthèse d'idées simples. Toute la Physique théorique peut être jugée ainsi et la présente Contribution confirme plus que jamais cette manière de voir.

A. Buhl (Toulouse).

Henri VILLAT. — **Mécanique des Fluides.** Cours de l'Ecole nationale supérieure d'Aéronautique. Deuxième édition revue et augmentée. — Un volume gr. in-8° de VIII-196 pages. Prix: 85 francs. Gauthier-Villars, Paris, 1938.

Quel éloge ne serait pas superflu pour un livre qui, par le temps qui court, atteint la deuxième édition en moins de huit ans. De tous les grands ouvrages de M. Henri Villat, c'est sans doute le plus simple, celui qui s'adresse au public le plus étendu; c'est une initiation. On voit que ce rôle initiateur a été apprécié. L'Enseignement mathématique (29, 1930, y. 360) a déjà analysé la forme initiale de l'exposé. Comment caractériser la forme d'aujourd'hui. D'une part, on sent l'influence de progrès récents qui sont du domaine de la pure analyse. D'autre part, il faut rappeler que l'auteur, esprit éminemment élégant, a toujours tenu à présenter son sujet sous des formes esthétiques qui donnaient parfois un regret quant à leur non complet accord avec des vérifications expérimentales moins parfaites. De ce côté, grands progrès. Des expériences, dues notamment à l'Ecole de Toulouse dirigée par M. Charles Camichel, ont apporté, à la Science, une note d'art qui rapproche beaucoup le fluide en mouvement, ou le solide en mouvement dans le fluide, de concepts géométrico-analytiques tels ceux concernant la simple continuité ou le tourbillonnement. Autrement dit, les créateurs mathématiques de la Mécanique des Fluides semblent, à l'origine, n'avoir pas été suffisamment soutenus par la qualité de l'expérimentation; c'est sur ce point que les choses se modifient maintenant de manière fort heureuse.

Ne faisons pas de la présente analyse bibliographique une répétition de celle déjà publiée en 1930. Pour varier la méthode, considérons maintenant les titres des Chapitres:

- I. Equations générales et Notions classiques.
- II. Quelques propriétés des fonctions harmoniques.
- III. La Représentation conforme.
- IV. Le théorème de Kutta-Joukowsky. Cas de deux dimensions.
 - V. La théorie de Prandtl et les surfaces portantes.
- VI. Files de tourbillons. Couches de tourbillons.
- VII. Théorie des sillages.
- VIII. Fluides visqueux. Indication sur la méthode d'Oseen.