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SUR UNE APPLICATION DU DERNIER THEOREME
SR DE FERMAT |

PAR

V. TugsavuLT, Le Mans (Sarthe).

La question de Mathématiques élémentaires posée au Concours
d’ A grégation des Sciences mathématiques (Paris 1923), consistait en
I’étude de certaines propriétés d’un triangle ABC dans lequel les
centres des carrés construits intérieurement sur les cotés sont
trois points en ligne droite.

La derniére partie de I’énoncé comportait la relation

5(at + b4+ cf) = 6 (b%2 + c%a? + a2b?) - (1)

entre les cOtés BC = a, CA = b, AB = ¢, afin de démontrer
que, dans un tel triangle, les longueurs a, b, ¢ ne sont jamais
sitmultanément exprimées par des nombres entiers.

1. — Posons

=z, =y,t=zy+z—2x=2X2, 24+ 2—y=2Y2,

La condition (1) s’écrit aussi
fa, b%, ) = 5 (at + b + ¢f) — 6 (b2c? + c2a? + a2b®) =0, (3)
ou, employant les notations (2),
fa,y,5) =8+ ¢+ ) —3l+y+ap=0, (&
ou encore, aprés des calculs simples,

X4 4 Y4+ 74— 2Y2Z2 — 272X2 — 2X2Y2 =0, (5)




SUR LE DERNIER THEOREME DE FERMAT 223

ou enfin

(X+Y+Z)(X+Y—Z)(X—Y+Z)(—X +Y+Z)=0. (6)

Des relations (39) contenues dans un article précédent !, il
résulte que

BC? + CA? > AB?, CA? + AB? > BC2, AB? + BC2 > CA?,

ce qui prouve que les angles A, B, C du iriangle sont aigus.
Par suite, les valeurs de X2, Y2, Z2, en fonction de z, ¥, z, sont
bien positives, et si @ = b = ¢, on a

X=Y=1Z.
X, Y, Z étant réels et positifs, la relation précédente exige que
Z=X+Y. | (7)

Les nombres a, b, ¢ qui vérifient la condition (3) ne peuvent éire
simultanément entiers. ’ , |

S’ils I’étaient en effet, on pourrait, en divisant par leur plus
grand commun diviseur, ce qui revient & remplacer le triangle
ABC par un triangle semblable, les supposer premiers entre eux
dans leur ensemble, et alors il y aurait lieu de considérer trois
cas:

10 les trois nombres a, b, ¢ sont impairs: 5 (a* + b* + ¢4 Pest
aussi, et (3) est impossible. -

20 deux d’entre eux sont impairs, un pair: par exemple,

a=2a+1,b=20+1, c=2; (a, ¥, ¢ entiers)

alors :

r+y+z=a+ b2+ cE2=202x+1), (A entier)
(z + y + 2)2 = & (21 + 1)2;

et, (4) étant impossible, (1) P’est également. _
3° un nombre impair, deux pairs: 5 (at + b* + c) étant
impair, (1) est encore impossible.

1 L’Enseignement mathématique, 1934, p. 323.
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9. — Voici un autre procédé qui, d’une maniere indirecte,
conduit & la méme conclusion.
L’équation (1) devient

8(at + bt + ¢4 = 3 (a2 + b + 2?3, (8)

en complétant le carré du second membre.
Elle devient en outre

B(at + B 0 =3 (2 + B+ ¥R, 9)

dans laquelle «, B, v sont les quotients de a, b, ¢ par leur plus
grand commun diviseur.

Les nombres «, B, v étant premiers entre eux, on peut toujours
supposer, en vertu de (9), que «, par exemple, est pair, § et v
étant impairs.

De plus, 4 divise a2 + 2 4 Y2 et par suite B2 + y2—3 o2

Posons

1
xzz__iaz, y? = — (B2 + y2 — 30a2) , z2=—1—((32-|-y2)
2 & 2
ou .
& = 2a® , B2 = 3x% + 2y% + 2%, v? = 3a? + 2y% — 3% .

x, y, z sont premiers entre eux, autrement «, B, v admettraient
un diviseur commun.
L’équation (9) devient alors

xt =yt + 2. ‘ (10)

Cette équation de FERMAT est impossible en nombres entiers.
Comme elle entraine les équations (9) et (8), et réciproquement,
dans I’hypothése (1) envisagée, les nombres a, b, ¢ ne peuvent
étre entiers simultanément.

Remarque. Le raisonnement direct du premier paragraphe
constitue donc une preuve, peut-dtre nouvelle, de I'impossibilité
de ’équation

xt = y4 + 74

en nombres entiers.
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8. — Ces developpements suggeérent des remarques plus
générales.

Soit un trlangle ABC dont les longueurs des cotes BC, CGA, AB
sont exprimées par des nombres a, b, c.

10 Si I'on pose |

2(bncn + o 4 anbn) =p, aln + pan + P2 — q,
n étant un entier quelconque, puis

Z(bncn—l—cnan—l—anbn) _|_a2n+ b2n+é2n '
~2<bncn+ cnan+ anbn) _(aon_I_ b?n_i__ CQ’n)

(11)

?

on a

- k est un nombre entier lorsque
2¢=m(p—4q),
m étant entier. Il en résulte d’abord que
(m + 2)qg=mp ,
puis, qﬁe les cOtés du triaﬁgle ABC satisfont & la relation
Cm e 2) (@™ BB ) = am (B - et a Y L (12)
Cette condition qui s’écrit aussi |
2(m + 1) (@2 4 B 4 o) — m(a" 4+ B+ oy (13)
devient en outre -

2(m + 1) (@ 4+ B+ ) = o BV Y, (14)
dans laquelle «, 8, v sont les quotients de a, b, ¢ par leur plus
grand commun diviseur d.

Les nombres «, §, v étant premiers entre eux, on peut toujours

supposer, en vertu de la relation (14), que o, par exemple, est
pair, B et v étant impairs.

L’Enseignement mathém., 36me année, 1937. 15
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En effet, quand m est impair, o” -+ 8" -+ y" est pair. Si m
est pair, (m = 2m’), | '

(2mr us 'l) (O(.Qn + B‘ln T ,YQTL) =‘m’(oc” 4 Bn s ,Y’n)z;

dés lors, a®® -+ 8" 4 ¥ ou o + B" + y" est pair, selon que m’
est pair ou impair.
20 Admettons, par hypothese que m -+ 1 divise «" + " + y"

et par suite " + v" ", puis posons
1 1 - 1
xnza‘x’na yn:m_{_i'(gnﬁ"‘{n_’m“n)’ an‘é“(gn_yn)
ou :
an — an , Bn — mxn + <m ;‘ 1>yn _I_ z’n ,‘
Yn:ma:n—F(m;}-l)yn_;.zn. (15)

x, Y, 2 sont premiers entre eux, autrement o, 3, v admettraient
un diviseur commun.
Introduisant les expressions (15) dans la relation (14), on

obtient I’équation

h(m—2) 2™ = (m 4+ 1)y*" + 45 (16)

30 Il .est évident que pour m =3, m + 1 =4 divise
o« + B" 4 y"; car 2 (m + 1) = 8, et par suite o« + B " =
M. 4. ‘

Cette hypothése conduit, avec (16), & I’équation de FERMAT

xﬁZn — an + an , (,17)
qui entraine la relation
5 (@ + ¥ + ) — 6 (B¢ 4 Mg + a™bY (18)

entre les cotés du triangle ABC et réciproquement.
Observons également que dans tous les triangles de cette
forme, ot n est un entier quelconque, le rapport k est constant

et égal a 4.
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4. — Lorsque n = 1, les équations (17), (18) deviennent
22 = y? + 22
5(a?2 4 b% + ¢%) = 6 (bc + ca + abd) . (19)

. Lo X : T
Cette derniére, qui lie les cOtés d’un triangle ABC, est vérifiée
par des nombres entiers dont les formes sont connues . Si I’on
pose

&
I

u? 4 o2 Yy = u— o2, z2 = 2uv ,
a = 2 (u? 4 o?) , b = A(5u? 4+ 2up + 02 (20)
| ¢ = A(5u%—2up + o?) | '

u, ¢ étant des nombres premiers entre eux et de parités différentes
et A un nombre entier quelconque.

Aux propriétés déja signalées 2, ajoutons les relations suivantes
entre les rayons r, r,, ry, 1, des cercles tritangents, le rayon R
du cercle circonscrit et le demi-périmétre p de ce trlangle
special ABC, qui résultent de ce que

(2Xbc 4 Za?) : (2Zbc — Za?) = k = & , (21)
p2:r(4R‘—l— r), re + r.r, +rrb—4r( +rb+’°c)" (22)

En outre, G et I étant le barycentre et le centre du cercle
inscrit du triangle ABC, la formule classique

1

GI? = —9-(p2 + 5r2 — 16 Rr)

se réduit & |
Gl = r.

Dans ce triangle particulier, le cercle inscrit passe par le cenire
de gravité. Cette propriété connue découle ici tres simplement de
'expression du rapport k.

5. — Quand n = 2, on retrouve la relation (1) entre les cotés
d’un triangle ABC et les consequences que nous en avons
déduites.

1 A. ERRERA, Mathesis, 1924, p. 408.
2 Mathesis, 1924, p. 314.
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De plus, S étant I’aire du triangle, de la formule classique
1682 — 2 (B2 + c*a? + a?b?) —af — bt — ot
il résulte que

4:k:<a2+b2+02

2 |
) = (cot A + cot B + cot C)2 ; (23)

4S
d’ou
cot A + cotB + cotC = 2 . (24)
En outre, , ,
at + b 4 ¢t = 2432, b2c® 4+ c2a? + a?2b? = 2032 ,
a? 4+ b2 + ¢2 = 85 . : (25)

Remarque. La relation (7) équivaut a celle-ci,
v/cot A + 4/cotB = 4/cotC ,

que nous avons déja donnée (Mathesis, 1931, p. 284), et qui est
aussi une conséquence des relations (24) et (25).

ERRATUM. — Dans la formule (22), E. M., 34¢ année, il faut lire

@—+§%).

SUR LES NOMBRES DE BERNOULLI

PAR

D. MirimaNoFF (Genéve).

En relisant une Note sur le quotient de Fermat et les nombres
de Bernoulli, que j’ai publiée en 18951, je viens d’y découvrir
deux erreurs dans 1’énoncé et la démonstration des formules du
paragraphe 2. La premiére est une faute d’impression, la seconde,
plus importante, un lapsus calami. Je tiens & les corriger; je crois
utile de compléter en méme temps la démonstration de mes
formules, que je m’étais borné & esquisser.

1 Sur la congruence (r?~T —1): p = g, (mod. p). Journ. fiir die reine und angew.
Math., t. 115, p. 295-300.
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