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d'un autre côté

sin \ v sin M'L'V M'Y——- lim 7^— lim • 7—7sin pi-, /\ L'Y v '^ \ sinL'M'V
et d'.après (4), (5), (6)

sin \ M^V • M'Y l_ _ l
sin^ L^y L^y m m ^

\ ^ (9)

On aurait de même [x2 [x, v2 — v, donc zz' et xx' se confondent
avec une parallèle à S.

Les deux coniques (C) et (A) ont cette parallèle pour tangente
commune. Le cercle F correspondant est une ligne droite qui,
passe par V et se confond avec xz; il peut être exclu du groupe
des quatre cercles T qui passent en général par V.

Donc: dans tout système convergent, Venveloppe de la corde
commune au cercle variable F et à une position fixe T0 quelconque
de ce cercle est une conique S tangente à A1? A2 et S.

IV. — Systèmes orthogonaux.

11. — SiA1? A'et S passent par un même point O la conique S
se réduit à O et, par suite, la corde commune à F et T0 passe
constamment par ce point.

Donc dans tout système convergent, si A1? A7 et S passent par
un même point, le cercle V reste orthogonal à un cercle fixe, ayant
pour centre le point d'intersection de ces trois droites.

Nous dirons alors que le système est orthogonal.

12. Soient Z, m, n, les trois paramètres définis au n° 7, et
satisfaisant à l'équation (1) de ce numéro.

Proposons-nous de construire un système convergent orthogonal,

l'angle <p étant arbitraire.
La direction S est donnée par les équations (3) n° 8 et S se

trouve comme étant une droite de Simson (n — <p) de direction
donnée.
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Soient £2 l'intersection de Ax et A2; Sl7 S2 les intersections de D

avec le cercle circonscrit 0, S3 le troisième point dont la droite
de Simpson (9) passe par £2; et A3 cette droite. (D, S) étant un
angle égal à 9, la direction D est connue. Le point S3 est donné
alors par le théorème n° 5, et est déterminé comme intersection
de A3 et de S puisque S doit passer par £2.

Sl7 S2 sont alors les intersections de 0 avec une conique qui
passe par S3, £2 etc... (n° 5, 1er alinéa).

Si 9 ± y il n'y a qu'une position de £2 et par suite de D, le

système se trouve alors parfaitement déterminé.

Si 9 y les droites A3 et S coïncident, et il y a une infinité

de positions pour D ; ce qui démontre le théorème de Lemoyne
dont le cas précédent est une généralisation.

13. — On peut se demander maintenant si cette généralisation
n'est pas illusoire, en d'autres termes si le cercle variable T n'est

pas toujours circonscrit au triangle podaire ordinaire d'un point
qui décrit une droite ou une conique circonscrite.

Or si L, M, N, étaient les projections orthogonales sur a, &, c,

d'un même point, les projetantes seraient tangentes à une conique
de foyer S et dont le cercle principal aurait pour rayon celui de T

multiplié par cos • 9.
Cette conique aurait trois tangentes qui passeraient par un

même point.
En outre le point qui a L pour projection sur a, et le second

point d'intersection de T avec &, pour projection sur .6, ne

décrit pas en général une droite.

Donc, les cas où 9 ^ ~ sont bien distincts de celui de

Lemoyne.

V. — Autre généralisation.

14. — Par un point donné ne passent que trois positions du

cercle podaire d'un point qui décrit une droite. Ceci résulte du

n° III-10 puisque les projections du point sur les côtés
déterminent un système convergent.
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