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qui soit celle de I'un des vecteurs de ce point: ce serait le premier
pas fait en vue de conférer a Y une microstructure affine et
d’apprendre & y définir, en chaque point d’accumulation, le ptg.
d’un ensemble ponctuel, ou ce qui peut étre plus commode, le
ptg. mixte de deux ensembles ponctuels ayant un point d’accu-
mulation commun3%. Pour étre utile, une telle théorie devrait
aboutir & Dexistence de systémes réguliers de. coordonnées
curvilignes dans la variété, systémes dont la représentation
analytique rencontrée au n° 18 admet a priori I’existence.

Ces indications suggérent l'importance de tout ce qui reste
a faire en pareille matiére. Et cependant avons-nous ici laissé
de coté bien des questions essentielles, telles les relations de la
théorie des surfaces avec la théorie de la mesure, relations dont
I'importance apparait de plus en plus nette 3.

SUR LES PROPRIETES INFINITESIMALES
DES ENSEMBLES FERMES ET LE PRINCIPE INDUCTIF
DE I’ENLACEMENT !

PAR

B. Kavrmannx (Leeds).

I. — PROPRIETES LOCALES D’ORIGINE INTEGRALE.

1. — Essayons de donner les caractéristiques de la topologie
générale. Etant donné ce que cette science représente aujourd’hui
on serait porté & considérer comme son probléme principal
I'examen par les méthodes de la topologie combinatoire des
espaces les plus généraux et en particulier des ensembles fermés.

35 On devrait respecter la condition d’aprés laquelle‘le ptg. m1xte de E et de F; 4 F2
est la réunion des ptg. mixtes de E, F, d’une part, et de E, F, d’autre part. .

36 Voir sur ce point la thése de M. Georges DURAND (Parls 1931, ou Journ. de Math.,
9me gérie, t. XI, 1931) et Iimportant mémoire déja cité de MM H. BUSEMANN et
W. FELLER (Acta Math., 1. 66, paragraphes 4, 5, 6). —Pourléhmlnatmn des eraces
usuels, voir Pavc, Bull. Ac. Sc. Belg., aolit 1936 .

1 Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par I’Université de Genéve; série consacrée i
Quelques questions de Géoméirie et de Topologie.
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En effet, ces derniéres années la topologie générale s’est trés
sensiblement rapprochée de la topologie combinatoire. Cepen-
dant, une différence importante subsiste entre ces deux disciplines
trés liées et c’est une différence de principe. On peut facilement
la réduire & un seul fait. | o A

La topologie combinatoire construit ses objets d’apres certaines
régles d’incidence & partir d’'un nombre fini ou dénombrable
d’éléments que I'on appelle des simplexes ou des cellules. Pour
la plupart des problémes il est indifférent si ces éléments sont
géométriquement définis ou congus d’une maniére abstraite
comme des schémas combinatoires. En tous cas cette cons-
truction fournit d’une maniére univoque: les relations d’incidence
ou de frontiére, les possibilités de subdivisions successives ou
de triangulations des configurations en d’autres équivalentes
(ou homologues), etc.

La situation dans la topologie générale est tout a fait différente.
Les ensembles fermés ne sont d’abord que des assemblages
amorphes et essentiellement continus de points; il n’y a point
d’éléments du genre des simplexes a l’exception de ceux &
0 dimensions, & savoir des points. Par conséquent il n’existe
pas de subdivisions simples, de relations d’incidence, etc. Les
subdivisions usuelles fournissent des éléments qui eux-mémes
n’ont pas de forme non plus, moins encore que l’ensemble
lui-méme. Cette différence fondamentale quoique évidente est
décisive pour la mise en problémes de la topologie générale,
elle explique méme son développement actuel.

Il est bien connu que la possibilité d’une apphcatlon des
méthodes combinatoires subsiste malgré cela. Elle se base sur
Pidée d’approximations. On part des subdivisions suffisamment
fines d’un ensemble F, subdivisions qui découlent des théorémes
de recouvrement, ou encore d’un réseau fini (ou dénombrable)
de points (simplexes O-dimensionnels) distribués régulierement
sur F; une seule régle, & savoir celle qui affirme que r + 1
éléments ayant un point commun ! déterminent un simplexe
a r dimensions, permet de construire les complexes d’approxima-

.1 Dans le cas d’un réseau ponctuel c’est un réseau partiel formé de » 4 1 points
et dont l’enveloppe convexe a un diamétre donné, qui déte[mme un simplexe

r-dimensionnel,
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tion (les nerfs). Les subdivisions successives de I’ensemble F
donnent une suite de complexes d’approximation. Alors, une
approximation ' suffisamment poussée permet de déceler la
parenté entre les complexes et ’ensemble. lui-méme. Le succes
de ces méthodes est bien connu. Elles ont permis de définir
pour les ensembles fermés les relations d’homologie, les ordres
de connexion .t les nombres de Betti pour un nombre arbitraire
de dimensions, de généraliser les relations d’intersection et
d’enlacement, d’établir et de démontrer les théoremes corres-
pondants de dualité et, enfin, d’obtenir plusieurs proprietes
nouvelles des ensembles les plus généraux.

9. — J’ai voulu rappeler le développement de la topologie
des ensembles fermés pour souligner quelques-uns de ses
caractéres auxquels on ne pense pas souvent.

L'un de ces caractéres est lexistence de nombreux problémes
qui ne peuvent pas se présenter en topologte combinatoire et qui
dans le cadre de cette derniére deviennent des énoncés évidents
et triviaux bien qu’ils découlent en topologie des ensembles de
théorémes combinatoires de toute importance.

Ces problémes spécifiques a la topologie générale peuvent étre
trés intéressants et trés profonds sans avoir de pendant dans la
topologie cellulaire. Le probléme de la dimension en est un
exemple. Représentons-nous, par exemple, les énoncés suivants
pour le complexe r-dimensionnel K": K" contient un cycle
(r — 1)-dimensionnel homologue a 0, K" est un «obstacle
d’homologie » & r dimensions, K" contient une multiplicité de
Cantor & r dimensions, etc. A tous ces énoncés qui sont bien
triviaux dans le cadre de la topologie cellulaire correspondent
des résultats importants et intéressants dans la topologie
générale. Songeons seulement que ces résultats découlent des
théorémes de dualité ou peuvent étre ramenés a eux.

Une autre propriété remarquable de la topologie générale se
rapporte & son développement et se manifeste par la prépon-
dérance de résultats globaux. Les complexes d’approximation
permettent d’appliquer les invariants combinatoires & I’ensemble
et puisque ces invariants sont des propriétés globales pour les
complexes, ils le sont & plus forte raison pour les ensembles.
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La parenté mentionnée ci-dessus entre les ensembles et les
complexes d’approximation est une parenté globale. Méme les
transformations d’un ensemble F & r dimensions en un complexe
K" & r dimensions — d’aprés le théoréeme de transition de
M. ALEXANDROFF — transformations qui sont certainement des
processus localement définis, expriment uniquement une parenté
globale. Généralement I’approximation ne confére pas les propriétés
locales des complexes a Uensemble.

3. — Pour cette raison il semble désirable de distinguer
nettement entre elles les propriétés locales d’un ensemble F
donné dans un espace R. P étant un point de F il est d’usage
d’appeler local un énoncé ou une propriété E de F se rapportant
a un voisinage U de P dans ’espace R. Si le ' méme énoncé E se
rapporte & un voisinage arbitrairement petit du point P, on
pourrait ’appeler une propriété infinitésimale de F. Mais d’avoir
formé ces notions ne permet pas encore d’obtenir les caractéres
distinctifs des propriétés locales d’un ensemble. Je crois
cependant qu’il existe deux types essentiellement différents
de ces propriétés. |

Nous voulons ici nous restreindre aux énoncés qui sont des
théorémes, c¢’est-a-dire & des énoncés qui se démontrent.

Soit (B) un systéme d’hypothéses dont, par une démonstra-
tion, découle un énoncé ou une propriété E; désignons la
démonstration par (B) — E (F). g

- U étant un voisinage dans R d’un point P de F, nous appelleronst
E (U) une propriété locale ordinaire de F si sa démons-
tration (B) — E (F) ne contient pas non plus d’hypothéses
essentielles dans R — U. Si un méme énoncé E (U,) reste vrai
pour une suite (U,) de voisinages convergeant en un point P de F
et st la démonstration (B) — E (U,) reste pour chaque n intérieure
a U, alors nous parlerons d’une propriété infinitésimale
ordinaire de F relatif a P..

Dans les cas suivants cependant on se trouve en présence
de faits tout & fait différents.

-1 Si un énoncé ou une propriété E se-rapporte & un ensemble F nous écrivons aussi ‘
briévement E (F). Si U est un voisinage dans I’espace R, E (U) désigne que 1’énoncé
E (F) contient au moins un énoncé essentiel pour U.
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Si la démonstration (B) —E (U) nécessite des hypothéses
essentielles dans R — U et en particulier si elle doit se seroir
essentiellement d’endroits intérieurs & R — U, alors nous appelle- .
rons E (U) une propriéié locale (de F) d’origine intégrale. Et,
d’une facon analogue, si E(U,) est un énoncé vrai pour un
voisinage arbitrairement petit U, de P et s’il existe un poLsinage
fize Us tel que (B) — E (U,) reste vrai pour chaque n, des hypo-
théses essentielles étant données dans R — Us, alors nous appelons
E une propriéié infinitésimale (de F) d’origine intégrale.

Les propriétés locales (ou infinitésimales) d’origine intégrale
peuvent notamment s’exprimer (totalement ou en partie) par
les énoncés dans R — T, malgré qu’elles se rapportent tmmé-
diatement* & U. Si c’est le cas, alors nous parlons d’énoncés
locaux (ou infinitésimaux) de caractére intégral. Evidemment,
ces énoncés peuvent étre en méme temps envisagés comme des
énoncés globaux. L’on constate aisément qu’un énoncé de
caractére intégral doit &tre nécessairement d’origine intégrale
(mais pas réciproquement).

Les propriétés locales et notamment les proprletes infinité-
simales d’origine intégrale sont caractéristiques pour la topologie
des ensembles fermés. Mais on voit immédiatement qu’il s’agit
seulement d’une formation relative des notions. La distinc-
tion entre les propriétés ordinaires ou d’origine intégrale
dépend non seulement d’un certain systéme (B) d’hypotheses,
mais aussi des démonstrations elles-mémes 2. Je crois cepen-
dant qu’il est un principe de travail utile et de grande actualité
de former ces notions malgré qu’elles ne requiérent pas, au
moins sous cette forme, de rigueur mathématique ou méme
philosophique. | :

4. — Je voudrais encore compléter ces considérations sur.
les propriétés locales et infinitésimales des ensembles fermés en
soulignant les deux (ou trois) attitudes qu’on peut prendre

1 La définition de propriété locale n’exclue point que I’énoncé E (U) contienne en
méme temps des énoncés dans R —U. Cela n’est.exclu que pour le cas des proprittés
locales ordinaires. Considérons par exemple 1’énoncé suivant: «(B) entraine que
tous les couples de points dans U peuvent étre relies par un arc dans F tel qu’il
rencontre des points dans R — T .-

2 Seuls les énoncés de caractére mtégral sont 1ndépendants des démonstrations.
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vis-a-vis -d’elles, attitudes entrainées par les problémes
eux-mémes. | o

L’une de ces attitudes est déterminée par le désir de caractériser
entre les ensembles et les espaces les plus généraux ceux qui
présentent les propriétés déja connues des formations cellulaires
(des multiplicités, des espaces de Poincaré, des sphéres). Ces
problémes sont aussi trés importants pour la topologie combina-
toire puisqu’ils permettent d’étendre son domaine de validité.
La résolution de ces problémes s’obtient en posant des conditions
nécessaires et suffisantes de genre généralement local, qui
garantissent la possibilité de la structure cellulaire. On a une
trés grande liberté dans le choix de ces conditions et I'intuition
est d’un grand secours. A priori au moins, ces conditions peuvent.
aller des tautologiques jusqu’aux trés profondes. Le principe
directeur est évidemment le suivant, si 'on envisage un but
concret: moins on pose d’hypothéses, plus la portée des conditions
s’étend. Comme exemple citons le probléme de la généralisation
de la notion de multiplicité, dont on s’est beaucoup occupé ces
derniéres années (VAN KaAmMPEN, PONTRJAGIN, ALEXANDER,
LErscHETZ) ou encore le probléme de caractériser la spheére
& n dimensions. On peut aujourd’hui poser des conditions
nécessaires et suffisantes pour ’homéomorphie d’un espace et
d’une sphére, mais on pourrait aussli en poser assez peu pour
rendre le probléme extrémement difficile, comme c’est le cas
avec I’hypothése de Poincari. Comme probléeme tres relié a
ce dernier, mais plus profond encore, citons le probléme de la
réciproque du théoréme Jordan-Brouwer dans les espaces &
quatre ou plus dimensions (& savoir de caractériser la sphére
par les propriétés de l’espace complémentaire).

Une attitude fonciérement différente doit étre adoptée si I’on
se donne un objet géométrique (aussi général que possible) et
si ’on cherche des propriétés nouvelles de cet objet. Si, dans
cette attitude, nous définissons la propriété d’une facon abstraite
ou bien si nous formons de nouvelles notions, le critere est
opposé: plus la notion formée, qui exprime des propriétés
nouvelles de 1'objet, est tranchante, plus sa portée est grande.
Dans la topologie des ensembles on trouve tant d’exemples de
ce fait qu’il nous semble inutile d’insister. Ce critére oblige aussi
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4 justifier une notion nouvellement introduite et cela par
Pindication de sa signification pour une classe d’objets donnée
indépendamment de cette notion et aussi générale que possible.

Enfin,- je mentionnerai encore une troisiéme attitude: par
des définitions (des axiomes) on peut déterminer une nouvelle
classe d’objets satisfaisant aux conditions données. Ensuite
on examine d’autres propriétés de 'objet. Pour cette attitude
il ne faut pas oublier que le nouvel objet dépend généralement
N des définitions. Cette attitude est d’usage pour établir une
M iLcorie abstraite nouvelle et le développement cohérent de cette
théorie doit la justifier. Pratiquement, elle est suggérée par
0 1e désir d’6tudier les probléemes difficiles d’homéomorphie et
Il d’homotopie au moins dans des conditions plus spéciales et
I plus faibles. Les trois attitudes sont courantes dans la topologie.

II. — LE PRINCIPE INDUCTIF DE L’ENLACEMENT.

5. — Les pages suivantes seront consacrées a un bref exposé
| de 1a théorie infinitésimale des ensembles les plus généraux.
Il s’agira sans exception de propriétés d’origine intégrale dans
le sens du critére énoncé plus haut. Ce sont, d’ailleurs, les
résultats d’une suite de recherches que j’avais abordées dans les
derniéres années et qui, je crois, font connaitre pour le moment
plusieurs nouvelles relations importantes pour la structure
infinitésimale des ensembles. Je voudrais d’ailleurs me restreindre
aux questions de principe de ces recherches. La compréhension
et la classification de ces principes nous sera facilitée si nous
retenions quelques phases du développement de la topologie
B oénérale. On peut noter, je crois, trols moments critiques,
décisifs pour ce développement.

Le premier moment critique s’est présenté le jour ou l'on
sest rendu compte de 1'importance des relations d’enlacement
pour la topologie générale. On avait reconnu notamment.que la
décomposition. d’un espace par un ensemble n’était qu'un cas
particulier d’enlacement de ’ensemble avec un cycle de dimension
duelle. On sait que cette découverte est due & MM. LEBESGUE

L’Enseignement mathém., 36™e année, 1937. 3
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et BRouwer!. En topologie combinatoire ce sont les theoremes
de dualité qui relévent le mieux Pimportance de cette décou-
verte. Ce sont les relations d’intersection et notamment les
indices de Kronecker dont la théorie compléte est due a
M. LeErscuETz qui forment leur outil le plus important.

En particulier, cette conception a permis d’introduire la
notion de la multiplicité générale qui est fondamentale pour
Pexposé qui suit. |

Soit U un voisinage sphérique dans R". Un ensemble ferme
a r dimensions F dans U est appelé une multiplicité générale
s'il existe un cycle algébrique I dans U irréductiblement
enlacé avec F; ¢’est-a-dire I ~_ 0 dans U—F tandis qu’on
a I ! ~ 0 dans U — F’ pour chaque vrai sous-ensemble F’
de F 2.

La grande importance de ces multiplicités s’explique par leur
valeur universelle. Comme M. ALEXANDROFF a pu le montrer,
chaque ensemble fermé & r dimensions contient une multiplicité
générale 4 r dimensions °. |

Un second point de vue qui — au moins pendant quelques
années de suite — a fortement influencé la topologie, était
le suivant: on concoit la nature de la dimension d’un ensemble
comme un invariant o définir inductivement, l'induction se
rapportant 4 une suite de décompositions d’un ensemble par
des ensembles &4 un nombre inférieur de dimensions. Ce principe
aussi est di & M. BROUWER.

Le troisiéme pas est fait par la théorie de 'approximation que
nous avons déja mentionnée et dont le développement est dit
notamment & MM. ALEXANDROFF et LEFSCHETZ.

Le principe que je voudrais indiquer maintenant apparaissait
de plus en plus au cours de mes recherches; il s’agit ici d’une
synthése du principe de Uenlacement et du principe inductif de la
séparation. J’appellerai ce principe le principe inductif de
Penlacement et la configuration des cycles et des ensembles a
laquelle il donne lieu le systeme inductif de Uenlacement.

1 Voir L. PONTRJAGIN, Math. Annalen, 105 (1931), pDp. 166-167.

2 La notation 1?71 ~o 0 désignera désormais I’existence d’'un complexe
I{n~'1’ - I‘”"'L

3 Voir P. ALEXANDROFF, Dimensionstheorie, Math. Annalen, 106 (1932), pp. 161-238.
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6. — Décrivons tout d’abord deux opérations trés simples
qui, formellement, s’appliquent a4 des ensembles aussi bien qu’a
des cycles.

Soit, dans R", A" un ensemble fermé a r dimensions. Nous
appelons décomposition de A" la détermination d’un ensemble
A"D 3 (r— 1) dimensions au plus et tel que A" puisse étre
représenté comme somme de deux ensembles fermés A" et 2A",
1AT2A" = AT ce que nous écrivons A" = A" L ATD L 24T,
Nous appelons extension d’un ensemble ’opération inverse; un
ensemble donné A subit I’extension 4 un ensemble & r dimen-
sions si I'on parvient & déterminer deux ensembles 1A" et 2A"
tels que *'A” 4 A"V 4 2A" = A" s0it une décomposition de A”.

Nous pouvons définir les opérations correspondantes pour les
cycles algébriques. Soit I'" un cycle algébrique a r dimensions.
La décomposition de I'" en deux complexes 1C", 2C" sera déter-
minée si nous indiquons un cycle I'"' 4 r — 1 dimensions tel
que I'" =1C" 4-2C7, 'C" — I, — 2C" —~ I'"™!, Etant donné
un cycle I nous appelons extension de I"! la détermination
ou la construction de deux complexes 'C" et 2C" tels que
1C" + 2C7 = I soit décomposé par I,

Soit F = B” un ensemble fermé & r dimensions — dans le
sens de M. BROUWER — intérieur & un voisinage sphérique U
borné dans R"™ par une sphére & (r — 1) dimensions. Soient

T r—1 ~j
B, B!, .., B™, ... B,

une suite d’ensembles fermés a (r — j) dimensions (j = 0,1, ..., 7)
tels que chaque ensemble B! décompose l’ensemble B’"’ en
deux sous-ensembles 'B"7 et 2B,

B — 1B + Br-i-1 4+ 2B2T

Soit I un cycle algébrique (mod. 0) & (n — r — 1)
B dimensions, satisfaisant 3 la condition

| "™t ~_0 dans U—B"
Wet soient 4
IR A A £ A A

&
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urie suite d’extensions du cycle I

Iwn—r—kj _ 1Qn—r+j + 2Qn—-'r+j,
ou l'on a pour chaque j = 0,1, 2, ..., r

1Qn—r+j — Iwn—r-»j——l dans‘ U — 1BT~3' :

— QT Pl dans U — 1B

Si les suites {T"7+1Y. ) et {B};_q;4,.,, satisfont
a ces conditions, nous dirons qu’elles forment un systéme inductif
d’enlacement relatif & ’ensemble F.

Etant donné un systéme inductif d’enlacement, nous appelons
Jes suites { T"7*7'} une suite fondamentale de cycles et la
suite {B'7} une suite fondamentale d’ensembles du systeme
d’enlacement en question.

7. — Etant donné un systéme inductif d’enlacement, on en
tire d’abord une extension inductive de l'important théoréme
Phragmen-Brouwer-Alexandroff. Conformément a I’hypothese,
lensemble F = B" est un obstacle d’homologie par rapport
au cycle I™7!, ¢’est-a-dire que ’on a, dans U—B", =t~ 0.
De ce fait le théoréme PHRAGMEN-BROUWER généralisé affirme
quil existe dans B" rel S"" un vrai cycle enlacé avec | K
(mod. my) et totalement non homologue dans B’

ot 'on a pour chaque k&

r T T
Zk = 1Ch + 2C 9

r—1

e i S

et ou
Zr—l — -1 r—1 r—1

est un cycle dans B et totalement non homologue 0 dans B |
Le cycle Z" peut étre supposé de position générale par rapport f
a ™! de facon que les indices de Kronecker (de module 1
variable m;) puissent étre déterminés pour chaque £. |




SUR LES PROPRIETES INFINITESIMALES 37

La généralisation inductive du théoréme Brouwer-A lexandroff.
Soit
e r—j
{Pn r' ! }j=0,1"--sr ’ {B }j:Oa1!-'-ar

un systeme inductif d’enlacement relatif a F. Nous affirmons
que:

1o 11 existe une suite de cycles entiers

{Zr—j = z:_j, z;_j,-..., z;:_j, e §5=0.1, .t (mod. m}) ,
telle que, pour chaque j, Z'7 soit un cycle entier dans B,
totalement non homologue 0 dans B"™, ou

r—j _ 1071 o 2T
AlC};‘j — g dans B,

— 20— 21 dans 2B}

2 On a, pour chaque j, T+ ~ 0 dans U — B™7.

Ce théoréme se démontre aisément par induction; 1’on
démontre les propriétés 1° et 20 alternativement pour des j
croissants. De la validité de la relation 2° pour j = 0 découle
— d’apres la définition du systéme d’enlacement — la validité
de 20 pour chaque j = 1, 2, ..., r. De ce fait, chaque ensemble
B est un obstacle d’homologie du cycle I ¢tendu j fois,
ce qui explique le nom de «systéme d’enlacement» pour la
configuration formée des suites {[™7+i1} ot {B™7}.

En construisant encore les cycles entiers {Z™7} qui corres-
pondent univoquement aux ensembles décomposants { B™7 },
nous obtenons une configuration efficace au point de vue
combinatoire. Pour chaque j elle satisfait aux relations 1° et 2°0
et, pour préciser, nous la'notons dans le tableau suivant. Nous
‘appelons cette configuration wun «systéme combinatoire
d’enlacement ». |
Soit

™"t ~_0 dans U—B".
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Les relations suivantes (mod. m,) sont vraies pour chaque
- 07 17 '

it o i . i . .
il o oagrerti-t | egrerti-t B — 1pri L pri-l o eprd |

QT+ —» Il dans U —1B™
— QT Tl gans U — 2p7-d ,
29 - {57 G+ g, dans B
{67 =T g Yy, dans BT, BT
{x(C7, TH) = g (=27, T £ 0} .

7+l L0 dans U —B™7.

8. — L’importance du systeme inductif d’enlacement repose
sur le fait suivant: I'on peut, en retenant les suites {B"7} et
{Z7}, remplacer la suite fondamentale de cycles {I""¥}
par une suite fondamentale {y" "'} de cycles arbitrairement
petits qui forme avec les suites {B"7} et {Z"7} un systéme
combinatoire d’enlacement équivalent. En d’autres termes?’:

Pour chaque e arbitrairement petit il existe une suite de

cycles { y* "1},

Yn—r—{-j-i _ 1qn—1+9—1 + gqﬂ—r+3—1 ,
1qn—r+3 i Yn—T-H—l dans U — g™ ,
— g e Tl dans U —2B™7 |

S(v* 1) < e,

qui a les mémes relations d’intersection et d’enlacement avec
les cycles Z' que les cycles { T""+i-1 1,

Il est essentiel pour la construction des cycles { Y"1} de
ramener un cycle donné a une « position générale » par rapport
a un ensemble de dimension complémentaire.

Nous appelons K" un complexe -en position générale par
rapport & un ensemble B, si son « échafaudage» & (n —r — 1)
dimensions ne rencontre pas ’ensemble B".

1 Voir [7] et surtout [9]. Les chiffres gras entre crochets se rapportent a la bibliographie
indiquée a-1a fin.
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Nous dirons qu’'un complexe K™ ge trouve en position
générale par rapport a la suite fondamentale {B"7}, si chaque
échafaudage & (n —r +j—1) dimensions de K™™' est en
position générale par rapport a I’ensemble B"7. Un complexe
K™ peut toujours étre ramené a un complexe équivalent *Knt
qui serait en position générale par rapport au systéme {B’"“j %
La construction de *K™! se fait par une généralisation de la
méthode des modifications infinitésimales de complexes de
M. Alexandroff. Remarquons encore que les complexes habituels
de simplexes étant beaucoup trop «rigides » ne se prétent guére
3 1a solution du probléme de la position générale d’un complexe
B ct d’un ensemble et, surtout, pas dans le cas d’un systéme
B d’ensembles {B™ }. Pour cette raison I'on construit les
B complexes modifiés d’éléments qui sont eux-mémes des
complexes correspondant d’une fagon univoque et réciproque
aux simplexes du complexe donné.

Les invariants d’intersection et d’enlacement nous permettent
de construire les cycles {y" "™} sur un complexe & (n—1)
dimensions et en position générale par rapport au systéme
d’ensembles {B"7}. Cette construction découle du simple
principe de décompositions « disjonctives » de cycles, qui
correspondent aux décompositions d’ensembles ‘de dimension
complémentaire et sont déterminées par ces dernieres [9].

Nous pouvons maintenant formuler le lemme fondamental
de cette théorie.

Si les cycles { ™7} et les ensembles {B"”} forment un
systéme inductif d’enlacement, alors pour chaque nombre
h=0,1,..,r il existe dans F une multiplicité a ~ dimensions
arbitrairement petite f*, contenant des points de I’ensemble B°.
11 existe, en plus, dans B® un point de multiplicités a h dimensions
P" ¢est-a-dire il existe dans F® une suite de multiplicités
(générales) a4 h dimensions f* D f* D ... décroissantes et
convergeant en un point P" intérieur & B

Dans la définition du systéme inductif d’enlacement la suite
fondamentale était donnée d’une facon purement formelle. Par
conséquent, les théorémes énoncés ci-dessus sont valables d’une
maniére générale pour une multiplicité arbitraire F ou, plus
généralement encore, pour un ensemble F = B” satisfaisant par
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exemple aux hypothéses du théoréme Phragmen-Brouwer. Le
systéme inductif d’enlacement doit avoir une construction
correspondante au - probléme concret. L’on construit alter-
nativement les cycles et les ensembles de suites fonda-
mentales { "+ Y et {B"7} pour les j croissants et I'on fait
sur les ensembles B"? des hypothéses qui autorisent des
conclusions inductives. L’on voit ainsi que ce sont seulement
les démonstrations des théorémes exposés briévement dans la
suite qui font voir toute la fécondité des systémes inductifs
d’enlacement. |

III. — LA STRUCTURE D’ENSEMBLES A PARTIR DE MULTIPLICITES
ARBITRAIREMENT PETITES.
LES NOUVEAUX THEOREMES DE PAVAGE.

9. — C’est 'extension locale du théoréme Phragmen-Brouwer-
Alexandroff qui forme le premier échelon de la théorie infini-
tésimale des ensembles [1, 2]. Le théoréme suivant est valable:

Soit F une multiplicité a r dimensions ou, plus généralement,
un ensemble (dim F = r) satisfaisant aux hypothéses du
théoréme Brouwer-Alexandroff. Soit F = 'F 4 B™! L 2F une
décomposition de F par un ensemble B! & (r — 1) dimensions
en deux composants ouverts F et 2F. Alors, il existe une multi-
plicité & r dimensions arbitrairement petite f* = 1f" 4 b™1 4 2f
décomposé par un sous-ensemble b de B! en deux parties |
ouvertes f" C F et 2f" C ?F.

La démonstration de ce théoréme [6] découle de I'invariance
locale des cycles placés dans les deux premiéres lignes du
systeme d’enlacement. Le cas particulier r = n—1 de ce
théoreme fut démontré pour la premiére fois et par des méthodes
trés différentes par M. H. D. URSELL et moi-méme [2, 3, 4, 5, 8].
Les représentations dites harmoniques de complexes qui sur-
gissent dans ce cas particulier et leurs invariants sont aussi,
me semble-t-il, intéressantes en elles-mémes. Ce théoréme en-
traine aussi que I’ensemble de tous les points de multiplicités
r-dimensionnels dans F est & une dimension. ‘

Les résultats suivants montrent trés nettement que la fotalité
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des multiplicités arbitrairement petites de chagque dimension h <1
a dans un ensemble d r dimensions la méme étendue que les points
de Densemble lui-méme [1, 9]. En d’autres termes, si nous
considérons toutes les multiplicités arbitrairement petites de
diamétre = 8 (3 étant arbitrairement petit), nous voyons
qu'elles forment — dans un sens qui s’impose [8, § 1] — un
systéme r-uplement connexe et cela que ce soient des courbes
(h = 1), des surfaces (A = 2) ou des hypersurfaces de dimen-
sion arbitraire < r. Nous aurons un résultat encore plus
précis en considérant l’extension dimensionnelle des totalités
des points de convergence des systémes de multiplicités arbi-
“trairement petites de chacune des dimensions fixes, c¢’est-a-dire
des points de multiplicités définis plus haut (voir le lemme
fondamental de § II). Mais pour cela une conception appro-
priée de la dimension s’impose. ? .

La notion relative de dimension. Soit A un ensemble fermé &
r dimensions. dans R™ Nous dirons qu’un ensemble donné ®
(qui n’est pas nécessairement fermé) dans R" a la dimension
homogéne j relativement & A (hom dim ® = j rel A) si j est le
plus petit entier positif tel que chaque couple A’ et A" de sous-
ensembles fermés et disjoints de A peut étre séparé par un
ensemble B — A dans A ayant au plus la dimension (r — 1),
avec hom dim ® = j— 1 rel B. Si C est un sous-ensemble
fermé quelconque de A alors on a hom dim ® = —1 rel Csi ®
et G sont disjoints. Si G est composé d'un seul point, alors
on a hom dim ® = 0 rel C si le point C est intérieur a @,
hom dim ® = — 1 rel C §’il ne I’est pas?. |

L’on voit immédiatement que cette notion de dimension est
extrémement intuitive. Nous pouvons maintenant énoncer le
théoréme suivant:

Sotent F un ensemble a r dimensions dans R" et ®" la totalité
des points de multiplicités de dimension h. Alors, pour chaque
valeur de h = 0, 1, ..., r Pensemble ®" a la dimension homo-
gene r relativement a F.

‘ L I est évident que cette définition spéciale s’impose pour la dimension relative
4 un point. Soient A un segment (0, 1) et P:= A. Les ensembles de séparation B sont
formés de points singuliers et ne contiennent pas de parties disjointes. Pour avoir
hom dim P = 1 rel A il faut aussi avoir hom dim P = 0 rel B (pour chaque B). -
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Ces théorémes et aussi ceux que j’exposerai dans la suite
n’ont été démontrés jusqu’a présent que pour les ensembles
formant des obstacles d’homologie pour des sphéres & (n —r —1)
dimensions. Par conséquent, ces théorémes sont en tous cas
valables pour tous les ensembles & (r — 1) dimensions dans R".
En général, ils sont valables pour tous les cas ou Iensemble
satisfait aux hypothéses du théoréme inductif Phragmen-
Brouwer.

Les moyens dont nous disposons aujourd’hui nous permettent

” : cep 1
de démontrer pour chaque entier positif j =< (r S g ) le
théoréme suivant, F étant un ensemble arbitraire a r dimensions
et 2r > n + 1.

La totalité @ de tous les points de multiplicités @ r dimensions
de F, a au moins la dimension homogéne v rel F.

10. — Soient F un ensemble & r dimensions dans un voisinage
sphérique U de R" ef s*™ ! une hypersphére & (n —r — 1)
dimensions et ~/~ 0 dans U —F. Soit € un nombre positif
arbitrairement petit et soit

F=F+F+ . .+F+..+F,, 8F) <=

une décomposition de I'ensemble F. I1 est connu qu’il existe,
pour chaque ¢, des décompositions de 'F  dont chaque
k(k=2,3, .., 2 -+ 2) parties aient toujours une intersection a
(r — k + 1) dimensions. Appelons ces décompositions de F
des décompositions canoniques. Les théorémes de pavage sul-
vants sont valables [10]: |

Pour chaque < suffisamment petit il existe v - 1 parties de chaque
décomposition canonique de F qui contiennent des points d’une
multiplicité générale arbitrairement petite £ de chaque dimension
h=201,..r

11 existe, de ce fait, r 41 parties de chaque décomposition
canonique de F, ayants des points communs sur des courbes,
surfaces et hypersurfaces générales arbitrairement petites de
chaque dimension. Il ’agit ici d’un systéme fixe de r + 1 parties
pour tous les . L’on voit aisément que le lemme fondamental
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de M. LeBEsGuE correspond au cas h =0 tandis que, pour
chaque h> 0, nous trouvons un théoréme de pavage de
dimension supérieure.

La démonstration des theoremes de pavage découlant du
principe inductif d’enlacement donne aussi un résultat purement
quantitatif sur les ensembles. '

Pour avoir I’effet du théoréme de M. Lebesgue ou des nouveaux
théorémes de pavage, nous devons évidemment supposer le ¢
de la décomposition de F «suffisamment petit». Maintenant
nous pouvons reconnaitre, au moins en principe, la valeur et la
signification de cet . Ici de nouveau nous nous restreignons au
cas d’ensembles F (dim F = r) formant un obstacle d’homologie
de la sphére a (n —r —1) dimensions dans un voisinage
sphérique U de R". -

L’effet de tous les théorémes de pavage v + 1 se présente pour

chaque ¢ < ;—TD, D étant la distance o (s"7!, F).

Par conséquent, le ¢ des théorémes de pavage dépend de r
et D. Plus grande peut-on supposer la distance D, plus grand. e
peut étre choisi. Dans le cas absolu, ou F forme un obstacle
d’homologie d’une sphére & (n — r — 1) dimensions R", 1l se
peut évidemment qu’on puisse supposer D arbitrairement grand.
Dans ce cas l’on peut, de ce fait, supposer ¢ arbitrairement
grand, c¢’est-a-dire == M, M étant un entier positif arbitrairement
grand. Il serait intéressant, me semble-t-i1l, de déterminer le ¢
pour des classes plus spéciales d’ensembles et de figures
géomeétriques. |

Les points de multiplicités de chaque dimension 2 = 0, 1, .
permettent aussi d’apporter plus de premsmn aux theoremes de
pavage * [7, 10].

F étant dans U un ensemble enlacé avec la sphere s
(ou, plus généralement, ayant s"" ~|_ 0 dans U — F), alors

il existe pour chaque e /—p (F, s"') une décomposition

canonique de F avec r +1 partles, qui contiennent un point
de multiplicités commun de chaque dimension 2 = 0,1, ..., r

1 La démonstration des nouveaux théoremes de pavage pour tous les ensembles
satisfaisant aux conditions du théoréme inductif Phragmen-Brouwer sera indiquée
dans un travail postérieur.
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IV. — AUTRES PROBLEMES.

11. — Les résultats indiqués plus haut nous permettent de
considérer les multiplicités générales comme des éléments a
dimension supérieure d’un ensemble. Au moins d’une facon
infinitésimale nous pourrions comparer la composition d’un
ensemble & partir de multiplicités arbitrairement petites a la
ecomposition d’un simplexe & partir de simplexes arbitrairement
petits.de chaque dimension. Sans doute, ce sont ici les premiers
resultats obtenus dans cette direction; ils permettent cependant
de poser, aussi globalement, plusieurs autres problémes. Pour
terminer, je voudrais en mentionner quelques-uns 1.

La tache consiste en la construction d’un systéme inductif
d’enlacement, correspondant au' probléme concret donné. En
géneral, la solution de ce probléme est facile pour le cas d’en-
sembles formant des obstacles d’homologie des hypersphéres.
Dans le cas général d’ensembles enlacés avec des cycles arbi-

traires, on peut facilement étendre les cycles j fois, si I’on a

" /—l 7 /4 /4 .
] < (r— = —’2_ ) En conséquence, nous ne pouvons établir des

nouveaux théorémes de pavage que jusqu’a la j-éme dimension.
Pour des j<r et des r <n arbitraires la solution générale
n’existe pas encore 2.

1 D’autres problémes liés immédiatement & la théorie exposée ici sont indiqués dans
les travaux mentionnés dans la bibliographie.

2 Ayant déja terminé le manuscrit de cette conférence, j’ai pu encore démontrer
les théoremes de pavage, de méme que les théorémes énoncés dans le paragraphe 9,

pour tous les ensembles fermés & un nombre arbitraire de dimensions dans R”. En méme

temps le probleme d’étendre r fois un cycle par rapport & un F arbitraire dans U a

été résolu.
La solution repose sur le lemme suivant:

Soient F un ensemble fermé & r dimensions arbitraire dans ﬁ et 171 yn cycle
arbitraire (mod. O) a (n — r — 1) dimensions dans U — F; rn—r—1 ~/~ 0 dans U-F,

Alors il existe une suite de complexes 4 (n — r) dimensions {Kn 7}\’21 3
K" s 177-1  gans U, ve= 4, 2 L

tels que llm{ K F} soit un ensemble 4 0 dzmenswns
= 0
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19. — D’autres problémes se présentent si l'on veut carac-
tériser les multiplicités classiques a ce nouveau point de vue.
La définition de l'ordre des points de multiplicités peut étre
considérée comme un travail préparatoire dans cette direction.
Soient {f*} et {'fl} pour n, m=1,2,... deux suites de
multiplicités décroissantes a A dimensions ayant un point
limite P commun. Si une multiplicité 'f* (pour m = p) contient
toutes les f* pour chaque w arbitrairement grand et si, récipro-
quement, une multiplicité f* contient presque toutes les ‘i si
grand que soit n = v, alors nous appelons les suites {3} et {fm}
équivalentes et nous dirons qu’elles définissent le point P comme
un point de multiplicités & £ dimensions. Si toutes les suites
qui définissent un point P comme un point de multiplicités a k
dimensions sont équivalentes, nous appelerons P un point de
multiplicités stmple. 11 est clair que le nombre (fini ou infini)
de suites {/!'} non équivalentes définissant le point P comme
un point de multiplicités & h dimensions peut étre considére
comme ordre (& z dimensions) de P. |

F étant un ensemble & r dimensions, nous appelons un point P
de F point régulier si, 3 étant un nombre arbitrairement petit,
il existe un 1 < 3 et tel qu'une multiplicité & r dimensions de
diamétre = S contienne tous les points de F intérieurs a un
voisinage U (). Un ensemble F est dit régulier si tous ses points
sont réguliers. Il est clair qu’un point régulier de F doit étre
simple dans la dimension r-eme. Il serait intéressant de savoir
si un ensemble fermé F dont tous les points sont des points
simples dans la r-éme dimension est régulier lui-méme.

11 serait notamment intéressant de savoir si la notion générale
de multiplicité permettrait & elle seule de caractériser les
multiplicités classiques . L’on pourrait essayer d’appliquer icl
aussi le principe inductif.

Une multiplicité générale & 2 dimensions (et notamment dans
le sens absolu, c’est-a-dire définie dans U = R") est appelee
simplement connexe (localement) dans la dimension (h — 1)-éme
si chaque point P de F peut étre séparé de chaque point R 7= P
de F par une multiplicité & (h — 1) dimensions ' placée dans

1 En se servant des nombres de Betti généralisés M. Lefschetz a résolu ce probléme
pour des ensembles fermés, M. E. Cech pour des espaces topologiques.
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U (P, 3) (pour chaque 3) et simplement connexe (localement) dans
la dimension (h— 2)-éme. L’induction peut ici commencer par f°
ou fi, c’est-a-dire par des cercles topologiques. La question qui
se pose est la suivante: les ensembles d r dimensions, localement
simplement connexes dans la (r — 1)-éme dimension, sont-ius des
multiplicités classiques (dans le sens étendu de MM. vaN KAMPEN
et PoNTRJAGIN) ? 1.

13. — Cette question ne doit pas étre confondue avec le
probléme de caractériser les multiplicités classiques par les
propriétés de espace complémentaire et notamment avec le
probléme de la réciproque du théoréme de Jordan dans les
espaces & un nombre supérieur de dimensions. Ce dernier
probléme a aujourd’hui de l'intérét aussi dans R®. Il faut ici
distinguer entre les conditions locales (dans le sens ordinaire) et
les conditions globales qui sont plus essentielles. Les premiéres
peuvent facilement étre indiquées de diverses maniéres; la
seule solution dans R3® connue jusqu’a présent? repose sur
’hypothése de la connexion simple du domaine complémentaire
d’une surface fermée. Il est naturel que la démonstration se serve
du théoréme de dualité de M. ALExANDER. Mais je voudrais
remarquer ici qu’il existe une forme purement ensembliste de la
réciproque du théoréme de Jordan dans R®.

Pour qu'une surface ¥ & deux dimensions dans R3, fermée el
réguliére (dans le sens indiqué plus haut) dans chaque point soit
une sphére topologique il faut et il suffit que chaque section irré-
ductible d’un domaine complémentaire de F soit une multiplicité
de Cantor. ‘ |

La condition de régularité pourrait étre remplacée par une
autre condition, aussi purement ensembliste ®. Bien que la forme
de ce théoréme soit purement ensembliste, sa démonstration est
essentiellement combinatoire et ne pourrait guére étre ramenée
immeédiatement aux théorémes de dualité. L’on remarque
toujours que les problémes ensemblistes sous une forme générale

1 I’on sait que cette assertion est vraie pour le cas le plus simple h = 2.

2 Voir R. L. WILDER, Math. Annalen, 109 (1933), p. 273.

3 Si ’on voulait se servir de notions plus anciennes, il suffirait d’exiger (localement)-
que la surface F soit accessible et « unbewallt » & partir des . domaines complémentaires.
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ne peuvent étre résolus que par des moyens combinatoires et
conduisent souvent a des nouveaux problémes combinatoires.

Je ne saurais indiquer a quel point une surface fermée dans
R" et satisfaisant & des conditions analogues, doit étre une
multiplicité dans le sens classique. - -

L

14. — Nous voulons revenir encore a des multiplicités
générales.

o]

La supposition suivante indique un probléme global trés
itéressant.

Soit F une variété générale & r dimensions. Soient A" et B"

deux sous-ensembles fermés & % dimensions de F, pour un
h=01, .. r—1 fixe. Nous prétendons qu’il existe toujours
une multiplzczte de Cantor a (h 4 1) dimensions Tthi contenant A"
et B"1,
Ce probléme est trés li6 au probléme du prolongement des
multiplicités arbitrairement petites & 2 dimensions dans F, et
ce dernier présente des analogies avec les surfaces de Riemann.
En général, la possibilité d’une analogie méme globale entre les
ensembles fermés et les espaces de Riemann n’est point absurde.
L’on pourrait, par exemple, envisager les multiplicités générales
comme des surfaces plides une infinité de fois et les ensembles
comme des totalités de telles surfaces; il n’est pas impossible
d’avoir une vue des éléments d’accumulation qui se présentent
ainsi. Dans R3 'on connait ces éléments qu’on pourrait aussi
appeler des «ideal elements ». II est stir que les recherches sur la
totalité de ces singularités d’un ensemble se feront par les
méthodes de la topologie combinatoire. '

1 11 est facile de démontrer cette assertion pour h = 0.

Dans R” 'on peut toujours relier un couple A” et B% d’ensembles & h dimensions
par une multiplicité de Cantor T2+1 Considérons une suite de décompositions en
simplexes z(s¥) de R” dont les diamétres tendent vers 0. Déterminons A partir des -

(h + 1) — simplexes de z(+1) une variété de Cantor Kh“H telle que I'on ait
d(A 1+ B, h_H) < <1, Ajoutons & Kh'} ! un complexe Kh'}"1 de tous les (h + 1) —
simplexes de z(:2) dont la distance de (A” + B?) serait 1nfér1eure a <2, etc. L’enve-
loppe fermée de K"+ 1 pour v+« est-une multiplicité de Cantor & (a -+ 1) dimen-
sions, reliant Al et B2. ‘ v
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NOTES COMPLEMENTAIRES. A MA CONFERENCE
SUR LA TOPOLOGIE DES VARIETES

1. — Au lieu du passage de la Géométrie anallagmatique de
M. J. HapaMARD, cité dans ma conférence sur la TOpologle des variétés,
t. 35, p. 246, il seralt préférable de lire la Note L insérée dans le tome 11
de ses Legons de Géoméirie élémentaire (7me édition, Paris 1932).

2. — Le dernier paragraphe de la page 249 ne concerne que les surfaces
orientables. Car la variété-voisinage d’une surface non-orientable i immergée
dans I’espace & quatre dimensions doit étre orientable, comme chaque i

variété & n — 1 dimensions immergée sans smgularltes dans [P’espace

euclidien & n dimensions. Or, le produit topologlque du cercle et d’une
surface non-orientable est non-orientable, lui aussi. — Voir a ce sujet
H. Serrert, Algebraische Approximation von Mannigfaltigkeiten, Math.
7eztschmft 40 (1936) et W. HanTzscue, Einlagerung von Mannigfaltigkeiten
in euklidische Raume, ibid. 42 (1937).

.. 3. — L’article de M. E. STiEFEL, cité & la page 250 vient de paraitre:
Comm. math. help., vol. 8, p. 305- 353 Il faudrait le lire également au
sujet des variétés 1mmergées dans des espaces euclidiens.

W. THRELFALL.

1 Cette bibliographie indiqiie seulement les travaux ‘s’occupant directement de la
théorie exposée ici.
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