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qui soit celle de l'un des vecteurs de ce point: ce serait le premier

pas fait en vue de conférer à V une microstructure affine et

d'apprendre à y définir, en chaque point d'accumulation, le ptg.
d'un ensemble ponctuel, ou ce qui peut être plus commode, le

ptg. mixte de deux ensembles ponctuels ayant un point
d'accumulation commun35. Pour être utile, une telle théorie devrait
aboutir à l'existence de systèmes réguliers de coordonnées

curvilignes dans la variété, systèmes dont la représentation
analytique rencontrée au n° 18 admet a priori l'existence.

Ces indications suggèrent l'importance de tout ce qui reste
à faire en pareille matière. Et cependant avons-nous ici laissé
de côté bien des questions essentielles, telles les relations de la
théorie des surfaces avec la théorie de la mesure, relations dont
l'importance apparaît de plus en plus nette 36.

SUR LES PROPRIÉTÉS INFINITÉSIMALES
DES ENSEMBLES FERMÉS ET LE PRINCIPE INDUCTIF

DE L'ENLACEMENT 1

PAR

B. Kaufmann (Leeds).

I. — Propriétés locales d'origine intégrale.

1. — Essayons de donner les caractéristiques de la topologie
générale. Etant donné ce que cette science représente aujourd'hui
on serait porté à considérer comme son problème principal
l'examen par les méthodes de la topologie combinatoire des

espaces les plus généraux et en particulier des ensembles fermés.

35 On devrait respecter la condition d'après laquellede ptg. mixte de E et de F1 + F2
est la réunion des ptg. mixtes de E, Fx d'une part, et de E, F2 d'autre part.

33 Voir sur ce point la thèse de M. Georges Durand (Paris, 1931, ou Journ. de Math.,
9me série, t. XI, 1931) et l'important mémoire déjà cité de MM. H. Busemann et
W. Feller (Acta Math., t. 66, paragraphes 4, 5, 6). —Pour l'élimination des espaces

Iusuels, voir Pauc, Bull. Ac. Sc. Belg., août 1936.
j 1 Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à
Quelques questions de Géométrie et de Topologie.
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En effet, ces dernières années la topologie générale s'est très
sensiblement rapprochée de la topologie combinatoire. Cependant,

une différence importante subsiste entre ces deux disciplines
très liées et c'est une différence de principe. On peut facilement
la réduire à un seul fait.

La topologie combinatoire construit ses objets d'après certaines
règles d'incidence à partir d'un nombre fini ou dénombrable
d'éléments que l'on appelle des simplexes ou des cellules. Pour
la plupart des problèmes il est indifférent si ces éléments sont
géométriquement définis ou conçus d'une manière abstraite
comme des schémas combinatoires. En tous cas cette
construction fournit d'une manière univoque: les relations d'incidence
ou de frontière, les possibilités de subdivisions successives ou
de triangulations des configurations en d'autres équivalentes
(ou homologues), etc.

La situation dans la topologie générale est tout à fait différente.
Les ensembles fermés ne sont d'abord que des assemblages

amorphes et essentiellement continus de points; il n'y a point
d'éléments du genre des simplexes à l'exception de ceux à

0 dimensions, à savoir des points. Par conséquent il n'existe

pas de subdivisions simples, de relations d'incidence, etc. Les

subdivisions usuelles fournissent des éléments qui eux-mêmes

n'ont pas de forme non plus, moins encore que l'ensemble
lui-même. Cette différence fondamentale quoique évidente est

décisive pour la mise en problèmes de la topologie générale,
elle explique même son développement actuel.

Il est bien connu que la possibilité d'une application des

méthodes combinatoires subsiste malgré cela. Elle se base sur
l'idée d'approximations. On part des subdivisions suffisamment
fines d'un ensemble F, subdivisions qui découlent des théorèmes
de recouvrement, ou encore d'un réseau fini (ou dénombrable)
de points (simplexes O-dimensionnels) distribués régulièrement
sur F; une seule règle, à savoir celle qui affirme que r + 1

éléments ayant un point commun 1 déterminent un simplexe
à r dimensions, permet de construire les complexes d'approxima-

i Dans le cas d'un réseau ponctuel c'est un réseau partiel formé de r + 1 points
et dont l'enveloppe convexe a un diamètre donné, qui détermine un simplexe
r-dimensionnel.
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tion (les nerfs). Les subdivisions successives de l'ensemble F

donnent une suite de complexes d'approximation. Alors, une

approximation suffisamment poussée permet de déceler la

parenté entre les complexes et l'ensemble lui-même. Le succès

de ces méthodes est bien connu. Elles ont permis de définir

pour les ensembles fermés les relations d'homologie, les ordres

de connexion et les nombres de Betti pour un nombre arbitraire

de dimensions, de généraliser les relations d'intersection et

d'enlacement, d'établir et de démontrer les théorèmes

correspondants de dualité et, enfin, d'obtenir plusieurs propriétés

nouvelles des ensembles les plus généraux.

2. — J'ai voulu rappeler le développement de la topologie
des ensembles fermés pour souligner quelques-uns de ses

caractères auxquels on ne pense pas souvent.

L'un de ces caractères est l'existence de nombreux problèmes

qui ne peuvent pas se présenter en topologie combinatoire et qui
dans le cadre de cette dernière deviennent des énoncés évidents

et triviaux bien qu'ils découlent en topologie des ensembles de

théorèmes combinatoires de toute importance.
Ces problèmes spécifiques à la topologie générale peuvent être

très intéressants et très profonds sans avoir de pendant dans la

topologie cellulaire. Le problème de la dimension en est un

exemple: Représentons-nous, par exemple, les énoncés suivants

pour le complexe r-dimensionnel Kr : Kr contient un cycle

(r — l)-dimensionnel homologue à 0, Kr est un « obstacle

d'homologie » à r dimensions, Kr contient une multiplicité de

Cantor à r dimensions, etc. A tous ces énoncés qui sont bien

triviaux dans le cadre de la topologie cellulaire correspondent
des résultats importants et intéressants dans la topologie
générale. Songeons seulement que ces résultats découlent des

théorèmes de dualité ou peuvent être ramenés à eux.
Une autre propriété remarquable de la topologie générale se

rapporte à son développement et se manifeste par la prépondérance

de résultats globaux. Les complexes d'approximation
permettent d'appliquer les invariants combinatoires à l'ensemble
et puisque ces invariants sont des propriétés globales pour les

complexes, ils le sont à plus forte raison pour les ensembles.
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La parenté mentionnée ci-dessus entre les ensembles et les
complexes d'approximation est une parenté globale. Même les
transformations d'un ensemble F à r dimensions en un complexe
K à r dimensions — d'après le théorème de transition de
M. Alexandroff — transformations qui sont certainement des
processus localement définis, expriment uniquement une parenté
globale. Généralement Vapproximation ne confère pas les propriétés
locales des complexes à Vensemble.

3. — Pour cette raison il semble désirable de distinguer
nettement entre elles les propriétés locales d'un ensemble F
donné dans un espace R. P étant un point de F il est d'usage
d appeler local un énoncé ou une propriété E de F se rapportant
à un voisinage U de P dans l'espace R. Si le même énoncé E se
rapporte à un voisinage arbitrairement petit du point P, on
pourrait l'appeler une propriété infinitésimale de F. Mais d'avoir
formé ces notions ne permet pas encore d'obtenir les caractères
distinctifs des propriétés locales d'un ensemble. Je crois
cependant qu'il existe deux types essentiellement différents
de ces propriétés.

Nous voulons ici nous restreindre aux énoncés qui sont des
théorèmes, c'est-à-dire à des énoncés qui se démontrent.

Soit (B) un système d'hypothèses dont, par une démonstration,
découle un énoncé ou une propriété E; désignons la

démonstration par (B) —>- E(F).
U étant un voisinage dans R d'un point P de F, nous appellerons1

E (U) une propriété locale ordinaire de F si sa démons-
tration (B) E (F) ne contient pas non plus d'hypothèses
essentielles dans R — U. Si Un même énoncé E (Un) reste vrai
pour une suite (Un) de voisinages convergeant en un point V de ¥
et si la démonstration (B) E (Un) reste pour chaque n intérieure
à Un, alors nous parlerons d'une propriété infinitésimale
ordinaire de ¥ relatif à P.

Dans les cas suivants cependant on se trouve en présence
de faits tout à fait différents.

1 Si un énoncé ou une propriété E se rapporte à un ensemble F nous écrivons aussi
brièvement E (F). Si U est un voisinage dans l'espace R, E (U) désigne que l'énoncé
E (F) contient au moins un énoncé essentiel pour U.
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Si la démonstration (B)—^E(U) nécessite des hypothèses

essentielles dans R — Ü et en particulier jsi elle doit se servir

essentiellement d'endroits intérieurs à R — U, alors nous appellerons

E (U) une propriété locale {de F) d'origine intégrale. Et,
d'une façon analogue, si E (Un) est un énoncé vrai pour un

voisinage arbitrairement petit Un de P et s'il existe un voisinage

fixe U§ tel que (B) E (Un) reste vrai pour chaque n, des hypothèses

essentielles étant données dans R — Us, alors nous appelons

E une propriété infinitésimale {de F) d'origine intégrale.

Les propriétés locales (ou infinitésimales) d'origine intégrale

peuvent notamment s'exprimer (totalement ou en partie) par
les énoncés dans R — Û, malgré qu'elles se rapportent
immédiatement1 à U. Si c'est le cas, alors nous parlons d'énoncés

locaux (ou infinitésimaux) de caractère intégral. Evidemment,
ces énoncés peuvent être en même temps envisagés comme des

énoncés globaux. L'on constate aisément qu'un énoncé de

caractère intégral doit être nécessairement d'origine intégrale
(mais pas réciproquement).

Les propriétés locales et notamment les propriétés infinitésimales

d'origine intégrale sont caractéristiques pour la topologie
des ensembles fermés. Mais on voit immédiatement qu'il s'agit
seulement d'une formation relative des notions. La distinction

entre les propriétés ordinaires ou d'origine intégrale
dépend non seulement d'un certain système (B) d'hypothèses,
mais aussi des démonstrations elles-mêmes2. Je crois cependant

qu'il est un principe de travail utile et de grande actualité
de former ces notions malgré qu'elles ne requièrent pas, au
moins sous cette forme, de rigueur mathématique ou même

philosophique.

4. — Je voudrais encore compléter ces considérations sur
les propriétés locales et infinitésimales des ensembles fermés en

soulignant les deux (ou trois) attitudes qu'on peut prendre

1 La définition de propriété localeji'exclue point que l'énoncé E (U) contienne en
même temps des énoncés dans R — U. Cela n'est.exclu que pour le cas des propriétés
locales ordinaires. Considérons par exemple l'énoncé suivant: « (B) entraîne que
tous les couples de points dans_U peuvent être reliés par un arc dans F tel qu'il
rencontre des points dans R — U ».

2 Seuls les énoncés de caractère intégral sont indépendants des démonstrations.
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vis-à-vis -d'elles, attitudes entraînées par les problèmes
eux-mêmes.

L'une de ces attitudes est déterminée par le désir de caractériser
entre les ensembles et les espaces les plus généraux ceux qui
présentent les propriétés déjà connues des formations cellulaires
(des multiplicités, des espaces de Poincaré, des sphères). Ces

problèmes sont aussi très importants pour la topologie combina-
toire puisqu'ils permettent d'étendre son domaine de validité.
La résolution de ces problèmes s'obtient en posant des conditions
nécessaires et suffisantes de genre généralement local, qui
garantissent la possibilité de la structure cellulaire. On a une
très grande liberté dans le choix de ces conditions et l'intuition
est d'un grand secours. A priori au moins, ces conditions peuvent
aller des tautologiques jusqu'aux très profondes. Le principe
directeur est évidemment le suivant, si l'on envisage un but
concret: moins on pose d'hypothèses, plus la portée des conditions
s''étend. Comme exemple citons le problème de la généralisation
de la notion de multiplicité, dont on s'est beaucoup occupé ces

dernières années (Van Kampen, Pontrjagin, Alexander,
Lefschetz) ou encore le problème de caractériser la sphère
à n dimensions. On peut aujourd'hui poser des conditions
nécessaires et suffisantes pour l'homéomorphie d'un espace et
d'une sphère, mais on pourrait aussi en poser assez peu pour
rendre le problème extrêmement difficile, comme c'est le cas

avec l'hypothèse de Poincaré. Comme problème très relié à

ce dernier, mais plus profond encore, citons le problème de la
réciproque du théorème Jordan-Brouwer dans les espaces à

quatre ou plus dimensions (à savoir de caractériser la sphère

par les propriétés de l'espace complémentaire).
Une attitude foncièrement différente doit être adoptée si l'on

se donne un objet géométrique (aussi général que possible) et
si l'on cherche des propriétés nouvelles de cet objet. Si, dans

cette attitude, nous définissons la propriété d'une façon abstraite

ou bien si nous formons de nouvelles notions, le critère est

opposé: plus la notion formée, qui exprime des propriétés
nouvelles de l'objet, est tranchante, plus sa portée est grande.
Dans la topologie des ensembles on trouve tant d'exemples de

ce fait qu'il nous semble inutile d'insister. Ce critère oblige aussi
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à justifier une notion nouvellement introduite et cela par

l'indication de sa signification pour une classe d'objets donnée

indépendamment de cette notion et aussi générale que possible.

Enfin, je mentionnerai encore une troisième attitude: par

des définitions (des axiomes) on peut déterminer une nouvelle

classe d'objets satisfaisant aux conditions données. Ensuite

on examine d'autres propriétés de l'objet. Pour cette attitude

il ne faut pas oublier que le nouvel objet dépend généralement

des définitions. Cette attitude est d'usage pour établir une

théorie abstraite nouvelle et le développement cohérent de cette

théorie doit la justifier. Pratiquement, elle est suggérée par
le désir d'étudier les problèmes difficiles d'homéomorphie èt

d'homotopie au moins dans des conditions plus spéciales et

plus faibles. Les trois attitudes sont courantes dans la topologie.

II. — Le principe inductif de l'enlacement.

5. — Les pages suivantes seront consacrées à un bref exposé

de la théorie infinitésimale des ensembles les plus généraux.

Il s'agira sans exception de propriétés d'origine intégrale dans

le sens du critère énoncé plus haut. Ce sont, d'ailleurs, les

résultats d'une suite de recherches que j'avais abordées dans les

dernières années et qui, je crois, font connaître pour le moment

plusieurs nouvelles relations importantes pour la structure

infinitésimale des ensembles. Je voudrais d'ailleurs me restreindre

aux questions de principe de ces recherches. La compréhension

et la classification de ces principes nous sera facilitée si nous

retenions quelques phases du développement de la topologie

générale. On peut noter, je crois, trois moments critiques,
décisifs pour ce développement.

Le premier moment critique s'est présenté le jour où l'on
s'est rendu compte de Y importance des relations d'enlacement

pour la topologie générale. On avait reconnu notamment .que la
décomposition d'un espace par un ensemble n'était qu'un cas

particulier d'enlacement de l'ensemble avec un cycle de dimension
duelle. On sait que cette découverte est due à MM. Lebesgue

L'Enseignement mathém., 36me année, 1937. 3
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et Brouwer1. En topologie combinatoire ce sont les théorèmes

de dualité qui relèvent le mieux l'importance de cette découverte.

Ce sont les relations d'intersection et notamment les

indices de Kronecker dont la théorie complète est due à

M. Lefschetz qui forment leur outil le plus important.
En particulier, cette conception a permis d'introduire la

notion de la multiplicité générale qui est fondamentale pour
l'exposé qui suit.

Soit U un voisinage sphérique dans Rn. Un ensemble fermé

à r dimensions F dans U est appelé une multiplicité générale

s'il existe un cycle algébrique rn_r_1 dans U irréductiblement
enlacé avec F; c'est-à-dire rn"r_1 0 dans U —F tandis qu'on

a pn-r-i ^ o dang u — F' pour chaque vrai sous-ensemble F'
de F 2.

La grande importance de ces multiplicités s'explique par leur

valeur universelle. Comme M. Alexandroff a pu le montrer,
chaque ensemble fermé à r dimensions contient une multiplicité
générale à r dimensions 3.

Un second point de vue qui — au moins pendant quelques

années de suite — a fortement influencé la topologie, était
le suivant: on conçoit la nature de la dimension d'un ensemble

comme un invariant à définir inductivement, l'induction se

rapportant à une suite de décompositions d'un ensemble par
des ensembles à un nombre inférieur de dimensions. Ce principe
aussi est dû à M. Brouwer.

Le troisième pas est fait par la théorie de que

nous avons déjà mentionnée et dont le développement est dû

notamment à MM. Alexandroff et Lefschetz.
Le principe que je voudrais indiquer maintenant apparaissait

de plus en plus au cours de mes recherches; il s'agit ici d'une

synthèse du principe de l'enlacement et du principe de la

séparation. J'appellerai ce principe le principe inductif de

l'enlacement et la configuration des cycles et des ensembles à

laquelle il donne lieu le système inductif de l'enlacement.

1 Voir L. PoNTRJAGriN, Math. Annalen, 105 (1931), pp. 166-167.

2 La notation ~ 0 désignera désormais l'existence d'un complexe

jçn—r pW—1.

3 Voir P. Alexandroff, Dimensionstheorie, Math. Annalen, 106 (1932), pp. 161-238.
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6. — Décrivons tout d'abord deux opérations très simples
qui, formellement, s'appliquent à des ensembles aussi bien qu'à
des cycles.

Soit, dans R, Ar un ensemble fermé à dimensions. Nous
appelons décomposition de Ar la détermination d'un ensemble
A(r_1) à (r — 1) dimensions au plus, et tel que Ar puisse être
représenté comme somme de deux ensembles fermés 1Ar et 2Ar,
1Ar 2Ar A(r_1), ce que nous écrivons A1' xAr +A(r_1) -f- 2Ar.
Nous appelons extension d'un ensemble l'opération inverse; un
ensemble donné A^' ' ' subit l'extension à un ensemble à r dimensions

si l'on parvient à déterntiner deux ensembles 1Ar et 2Ar
tels que 1A + A(r_1> 4- 2Ar Ar soit une décomposition de Ar.

Nous pouvons définir les opérations correspondantes pour les
cycles algébriques. Soit F un cycle algébrique à r dimensions.
La décomposition de F en deux complexes 1Cr, 2(7 sera déterminée

si nous indiquons un cycle F"1 à r — 1 dimensions tel
que F x(7 + 2Cr, — F"1, - 2(7 — F"1. Etant donné
un cycle F"1 nous appelons extension de F-1 la détermination
ou la construction de deux complexes 1F et 2Cr tels que
1Cr + 2Cr F soit décomposé par F"1.

Soit F Br un ensemble fermé à r dimensions — dans le
sens de M. Brouwer — intérieur à un voisinage sphérique U
borné dans R" par une sphère à — 1) dimensions. Soient

Br, B^1, Br"3, B",

une suite d'ensembles fermés à (r — /') dimensions (j 0,1,..., r)
tels que chaque ensemble Br-:M décompose l'ensemble Br~3 en
deux sous-ensembles 1Br^ et 2Br~3,

Br~3 iß'"3 + Br~3_1 + 2B2"3

Soit rn~r_1 un cycle algébrique (mod. 0) à (n — r 1)
dimensions, satisfaisante la condition

et soient
T" r 1

o dans U — Br

Tn~r rn~r+1
} pn-r-f j pn-r-l
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une suite d'extensions du cycle rn-r-1

pn-r+j ^ lQW-^+i _|_

où l'on a pour chaque / 0, 1, 2, r

iQn-r+j rn-r-3-l dang y _ igr-i
>

_ iÇf-r+j __pn-r+j-1 dang y _ igr-J _

Si les suites { P r '-M }jV M et { B^'},r satisfont

à ces conditions, nous dirons qu'elles forment un système inductif
d'enlacement relatif à l'ensemble F.

Etant donné un système inductif d'enlacement, nous appelons

les suites { Yn~r+i~i } une suite fondamentale de cycles et la

suite {Br~5 } une suite fondamentale densembles du système

d'enlacement en question.

7. — Etant donné un système inductif d'enlacement, on en

tire d'abord une extension inductive de l'important théorème

Phragmen-Brouwer-Alexandrofï. Conformément à l'hypothèse,
l'ensemble F Br est un obstacle d'homologie par rapport

au cycle r n~r-\c'est-à-dire que l'on a, dans U —Br, r"-'"-1 ~/-0.
De ce fait le théorème Phragmen-Brouwer généralisé affirme

qu'il existe dans Br rel S-1 un vrai cycle enlacé avec rn"r_1

(mod. mk) et totalement non homologue dans Br

Zr /, zr,...,zl,
1 ' 2 ' R

où l'on a pour chaque k

zl

et où
Z'-1 P"1 P1 4"1

1
7 2 K

est un cycle dans Br_1 et totalement non homologue 0 dans Br_1.

Le cycle Zr peut être supposé de position générale par rapport
à rn~r-i de façon que les indices de Kronecker (de module

variable mk) puissent être déterminés pour chaque k.
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La généralisation inductive du théorème Brouwer-Alexandroff.

Soit
-pn-r+j-l \ f T*r~j \l1 Jj 0,l,...,r > t15 )j=0,1,r

un système inductif d'enlacement relatif à F. Nous affirmons

que :

1° Il existe une suite de cycles entiers

(Z^- /r"3, },-=0,w (mod- "*> >

telle que, pour chaque /, Zr~j soit un cycle entier dans Br~3,

totalement non homologue 0 dans Br~?, où

ç* - icuj + 2cr,

^ dans

— 2Cjy3 zr^-{ dans 2B£~3 ;

2° On a, pour chaque /, rn~r+j~i -/w 0 dans U — Br_J.

Ce théorème se démontre aisément par induction; l'on
démontre les propriétés 1° et 2° alternativement pour des j
croissants. De la validité de la relation 2° pour / 0 découle

— d'après la définition du système d'enlacement — la validité
de 2° pour chaque j 1, 2, r. De ce fait, chaque ensemble
Br~3 est un obstacle d'homologie du cycle rn~r+3_1 étendu / fois,
ce qui explique le nom de « système d'enlacement » pour la
configuration formée des suites {pi~r+î'~1} et {Br~3}.

En construisant encore les cycles entiers {Zr~3} qui
correspondent univoquement aux ensembles décomposants {Br~3 },
nous obtenons une configuration efficace au point de vue
combinatoire. Pour chaque / elle satisfait aux relations 1° et 2°

et, pour préciser, nous la notons dans le tableau suivant. Nous
appelons cette configuration un « système combinatoire
d'enlacement ».

Soit
Y71-7"1 ^ 0 dans U — Br
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Les relations suivantes (mod. mk) sont vraies pour chaque

/ 0, 1, r:

pn-r+3-1 iQn-r+j-l _j_ 2Qn-r+j-l
^

gr-j igr-j _j_ gr-j-l + 2gr-j
^

iqn-r+j rn-r+j-1 dans y _ iBr-j

_ 2Qn-r+3 pn-r+i-l dang y _ sgr-j
>

ZM 1CM + «C^}fcB,lf2f... dans Br~3

{^ Wl,2,... ^ns 1Br~3 2Br~3

{ x ecr*. rn~r+j) x (- 2cr rn~r+j) 7* 0 }fe=1>2_

Tn-r+j-1 ^ 0 dang y __ gr-j

8. — L'importance du système inductif d'enlacement repose
sur le fait suivant: l'on peut, en retenant les suites {Br~3} et

{Zr~3}, remplacer la suite fondamentale de cycles {rn"r+3~1}
par une suite fondamentale { yn~r+^~i j de cycles arbitrairement
petits qui forme avec les suites {Br~3} et {Zr~3} un système
combinatoire d'enlacement équivalent. En d'autres termes1:

Pour chaque s arbitrairement petit il existe une suite de

cycles { yn-r+3'-i J.

.n-r+j-1 _ i-n-1 + j-i i 2„n-r+3-l
l ~~ 7 "t" U 5

iqn-r+j yn-r+j-1 dans y _ igM
^

_ 2qn-r+j yn-r+M dang n __ 2BM

atr^xs,
qui a les mêmes relations d'intersection et d'enlacement avec
les cycles Zr~3 que les cycles { rn~r+3-1}.

Il est essentiel pour la construction des cycles { yn~r+3-1 j. de

ramener un cycle donné à une « position générale » par rapport
à un ensemble de dimension complémentaire.

Nous appelons Kn_r> un complexe en position générale par
rapport à un ensemble Br, si son « échafaudage » à (n — r — 1)

dimensions ne rencontre pas l'ensemble Br.

i Voir [7] et surtout [9]. Les chiffres gras entre crochets se rapportent à la bibliographie
indiquée à la fin.
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Nous dirons qu'un complexe Kn_1 se trouve en position

générale par rapport à la suite fondamentale {Br •'}, si chaque

échafaudage à (n — r+j—1) dimensions de K"1 est en

position générale par rapport à l'ensemble Un complexe

K"1 peut toujours être ramené à un complexe équivalent *K
qui serait en position générale par rapport au système {Br 5 }
La construction de *Kr'M se fait par une généralisation de la

méthode des modifications infinitésimales de complexes de

M. Alexandrofî. Remarquons encore que les complexes habituels

de simplexes étant beaucoup trop « rigides » ne se prêtent guère

à la solution du problème de la position générale d'un complexe

et d'un ensemble et, surtout, pas dans le cas d'un système

d'ensembles {Br~j}.Pour cette raison l'on construit les

complexes modifiés d'éléments qui sont eux-mêmes des

complexes correspondant d'une façon univoque et réciproque

aux simplexes du complexe donné.

Les invariants d'intersection et d'enlacement nous permettent
de construire les cycles {yn r+' 1} sur un complexe à (n 1)

dimensions et en position générale par rapport au système

d'ensembles {Br_î}. Cette construction découle du simple

principe de décompositions « disjonctives » de cycles, qui

correspondent aux décompositions d'ensembles de dimension

complémentaire et sont déterminées par ces dernières [9].

Nous pouvons maintenant formuler le lemme fondamental
de cette théorie.

Si les cycles {rn_r+:M} et les ensembles {Br~3} forment un

système inductif d'enlacement, alors pour chaque nombre

h 0, 1, r,ilexiste dans F une multiplicité à h dimensions

arbitrairement petite fh,contenantdes points de l'ensemble B°.

Il existe, en plus, dans B° un point de multiplicités à h dimensions

Ph,c'est-à-dire il existe dans F° une suite de multiplicités
(générales) à h dimensions 3 /[' 3 décroissantes et

convergeant en un point Ph intérieur à B°.

Dans la définition du système inductif d'enlacement la suite

fondamentale était donnée d'une façon purement formelle. Par

conséquent, les théorèmes énoncés ci-dessus sont valables d'une
manière générale pour une multiplicité arbitraire F ou, plus
généralement encore, pour un ensemble F Br satisfaisant par



40 B. KAUFMANN
exemple aux hypothèses du théorème Phragmen-Brouwer. Le
système inductif d'enlacement doit avoir une construction
correspondante au problème concret. L'on construit
alternativement les cycles et les ensembles de suites
fondamentales { rn-T+M j e^. I Br;/} pour les j croissants et l'on fait
sur les ensembles Br_:/ des hypothèses qui autorisent des
conclusions inductives. L'on voit ainsi que ce sont seulement
les démonstrations des théorèmes exposés brièvement dans la
suite qui font voir toute la fécondité des systèmes inductifs
d'enlacement.

III. — La structure d'ensembles à partir de multiplicités
ARBITRAIREMENT PETITES.

Les nouveaux théorèmes de pavage.

9. — C'est l'extension locale du théorème Phragmen-Brouwer-
Alexandroff qui forme le premier échelon de la théorie
infinitésimale des ensembles [1, 2]. Le théorème suivant est valable:

Soit F une multiplicité à r dimensions ou, plus généralement,
un ensemble (dim F r) satisfaisant aux hypothèses du
théorème Brouwer-Alexandroff. Soit F XF + Br_1 + 2F une
décomposition de F par un ensemble Br_1 à (r — 1) dimensions
en deux composants ouverts XF et 2F. Alors, il existe une
multiplicité à r dimensions arbitrairement petite f 1/r + br~{ + 2/r

décompose par un sous-ensemble br~{ de Br_1 en deux parties
ouvertes 1/r. c *F et 2/r c 2F.

La démonstration de ce théorème [6] découle de l'invariance
locale des cycles placés dans les deux premières lignes du
système d'enlacement. Le cas particulier r n — 1 de ce
théorème fut démontré pour la première fois et par des méthodes
très différentes par M. H. D. Ursell et moi-même [2, 3, 4, 5, 8].
Les représentations dites harmoniques de complexes qui
surgissent dans ce cas particulier et leurs invariants sont aussi,
me semble-t-il, intéressantes en elles-mêmes. Ce théorème
entraîne aussi que l'ensemble de tous les points de multiplicités
r-dimensionnels dans F est à une dimension.

Les résultats suivants montrent très nettement que la totalité
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des multiplicités arbitrairement petites de chaque dimension h ^ r
a dans un ensemble à r dimensions la même étendue que les points
de Vensemble lui-même [7, 9]. En d'autres termes, si nous
considérons toutes les multiplicités arbitrairement petites de

diamètre ^ S (S étant arbitrairement petit), nous voyons
qu'elles forment •— dans un sens qui s'impose [9, § 1] =— un
système r-uplement connexe et cela que ce soient des courbes

(h 1), des surfaces (A 2) ou des hypersurfaces de dimension

arbitraire h ^ r. Nous aurons un résultat encore plus
précis en considérant l'extension dimensionnelle des totalités
des points de convergence des systèmes de multiplicités
arbitrairement petites de chacune des dimensions fixes, c'est-à-dire
des points de multiplicités définis plus haut (voir le lemme
fondamental de § II). Mais pour cela une conception appropriée

de la dimension s'impose.
La notion relative de dimension. Soit A un ensemble fermé à

r dimensions, dans Rn. Nous dirons qu'un ensemble donné <ï>

(qui n'est pas nécessairement fermé) dans Rn a la dimension
homogène j relativement à A (horn dim <f> / rel A) si / est le
plus petit entier positif tel que chaque couple A' et A" de sous-
ensembles fermés et disjoints de A peut être séparé par un
ensemble B CI A dans A ayant au plus la dimension (r — 1),

avec horn dim ® / — 1 rel B. Si G est un sous-ensemble
fermé quelconque de A alors on a horn dim <D — 1 rel C si î>

et C sont disjoints. Si G est composé d'un seul point, alors
on a horn dim <D 0 rel C si le point C est intérieur à ®,
horn dim O — 1 rel C s'il ne l'est pas1.

L'on voit immédiatement que cette notion de dimension est
extrêmement intuitive. Nous pouvons maintenant énoncer le
théorème suivant:

Soient F un ensemble à r dimensions dans Rn et <5)h la totalité
des points de multiplicités de dimension h. Alors, pour chaque
valeur de h 0, 1, r Vensemble a la dimension homogène

r relativement à F.

1 II est évident que cette définition spéciale s'impose pour la dimension relative
à un point. Soient A un segment (0, 1) et P;= A. Les ensembles de séparation B sont
formés de points singuliers et ne contiennent pas de. parties disjointes. Pour avoir
horn dim P 1 rel A il faut aussi avoir horn dim P 0 rel B. (pour chaque B).



42 B. KAUFMANN
Ces théorèmes et aussi ceux que j'exposerai dans la suite

n'ont été démontrés jusqu'à présent que pour les ensembles

formant des obstacles d'homologie pour des sphères à (n — r — 1)

dimensions. Par conséquent, ces théorèmes sont en tous cas

valables pour tous les ensembles à (r —1) dimensions dans Rn.

En général, ils sont valables pour tous les cas où l'ensemble

satisfait aux hypothèses du théorème inductif Phragmen-
Brouwer.

Les moyens dont nous disposons aujourd'hui nous permettent
/ _.j_ 'J \

de démontrer pour chaque entier positif ^I ^

théorème suivant, F étant un ensemble arbitraire à dimensions

et 2r > n+ 1.

La totalité de tous les points de multiplicités à r dimensions

de F, a au moins la dimension homogène r rel F.

10. — Soient F un ensemble à r dimensions dans un voisinage

sphérique U de R" et s71'1"1 une hypersphère à 1)

dimensions et -+ 0 dans U — F. Soit s un nombre positif
arbitrairement petit et soit

F Ft + F2 + + F; + + Fm »(Fj) < e

une décomposition de l'ensemble F. Il est connu qu'il existe,

pour chaque e, des décompositions de F dont chaque

k(k=2, 3, 2+2) parties aient toujours une intersection à

(r — Je -)-l) dimensions. Appelons ces décompositions de F

des décompositions canoniques. Les théorèmes de pavage
suivants sont valables [10] :

Pour chaque s suffisamment petit il existe r + 1 parties de chaque

décomposition canonique de F qui contiennent des points d une

multiplicité générale arbitrairement petite P de chaque dimension

h 0, 1, r.

Il existe, de ce fait, r + 1 parties de chaque décomposition

canonique de F, ayants des points communs sur des courbes,

surfaces et hypersurfaces générales arbitrairement petites de

chaque dimension. Il s'agit ici d'un système fixe de + 1 parties

pour tous les h. L'on voit aisément que le lemme fondamental



SUR LES PROPRIÉTÉS INFINITÉSIMALES 43

de M. Lebesgue correspond au cas h 0 tandis que, pour
chaque h> 0, nous trouvons un théorème de pavage de

dimension supérieure.
La démonstration des théorèmes de pavage découlant du

principe inductif d'enlacement donne aussi un résultat purement

quantitatif sur les ensembles.

Pour avoir l'effet du théorème de M. Lebesgue ou des nouveaux
théorèmes de pavage, nous devons évidemment supposer le s

de la décomposition de F « suffisamment petit ». Maintenant
nous pouvons reconnaître, au moins en principe, la valeur et la

signification de cet s. Ici de nouveau nous nous restreignons au

cas d'ensembles F (dim F r) formant un obstacle d'homologie
de la sphère à (n — r — 1) dimensions dans un voisinage
sphérique U de Rn.

L?effet de tous les théorèmes de pavage r + 1 se présente pour
I #

chaque z < — D, D étant la distance p (sn r F).
3

Par conséquent, le s des théorèmes de pavage dépend de r
et D. Plus grande peut-on supposer la distance D, plus grand s

peut être choisi. Dans le cas absolu, où F forme un obstacle

d'homologie d'une sphère à (n — r — 1) dimensions Rn, il se

peut évidemment qu'on puisse supposer D arbitrairement grand.
Dans ce cas l'on peut, de ce fait, supposer s arbitrairement
grand, c'est-à-dire ^ M, M étant un entier positif arbitrairement
grand. Il serait intéressant, me semble-t-il, de déterminer le s

pour des classes ,plus spéciales d'ensembles et de figures
géométriques.

Les points de multiplicités de chaque dimension h 0, 1, r
permettent aussi d'apporter plus de précision aux théorèmes de

pavage 1 [7, 10].
F étant dans U un ensemble enlacé avec la sphère sn~r-1

(ou, plus généralement, ayant sn-r~1 0 dans U — F), alors

il existe pour chaque s < -^ p (F, ^r_1) une décomposition

canonique de F avec r .+ 1 parties, qui contiennent un point
de multiplicités commun de chaque dimension h 0, 1, r.

1 La démonstration des nouveaux théorèmes de pavage pour tous les ensembles
satisfaisant aux conditions du théorème inductif Phragmen-Brouwer sera indiquée
clans un travail postérieur.
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IV. — Autres problèmes.

11- — Les résultats indiqués plus haut nous permettent de
considérer les multiplicités générales comme des éléments à
dimension supérieure d'un ensemble. Au moins d'une façon
infinitésimale nous pourrions comparer la composition d'un
ensemble à partir de multiplicités arbitrairement petites à la
composition d'un simplexe à partir de simpléxes arbitrairement
petits.de chaque dimension. Sans doute, ce sont ici les premiers
résultats obtenus dans cette direction; ils permettent cependant
de poser, aussi globalement, plusieurs autres problèmes. Pour
terminer, je voudrais en mentionner quelques-uns 1.

La tâche consiste en la construction d'un système inductif
d'enlacement, correspondant au problème concret donné. En
général, la solution de ce problème est facile pour le cas
d'ensembles formant des obstacles d'homologie des hypersphères.
Dans le cas général d'ensembles enlacés avec des cycles
arbitraires, on peut facilement étendre les cycles / fois, si l'on a

7 < {r — - Ln conséquence, nous ne pouvons établir des

nouveaux théorèmes de pavage que jusqu'à la j-ème dimension.
Pour des / ^ r et des r < n arbitraires la solution générale
n'existe pas encore 2.

1 D'autres problèmes liés immédiatement à la théorie exposée ici sont indiqués dans
les travaux mentionnés dans la bibliographie.

2 Ayant déjà terminé le manuscrit de cette conférence, j'ai pu encore démontrer
les théorèmes de pavage, de même que les théorèmes énoncés dans le paragraphe 9,
pour tous les ensembles fermés à un nombre arbitraire de dimensions dans Rw. En même
temps le problème d'étendre r fois un cycle par rapport à un F arbitraire dans U a
été résolu.

La solution repose sur le lemme suivant:
Soient F un ensemble fermé à r dimensions arbitraire dans TJ et vn~r~^ un cycle

arbitraire (mod. O) à (n — r — 1) dimensions dans U — F; rn~v~^ 0 dans U - F.
Alors il existe une suite de complexes à (n — r) dimensions {K^~f}v==1 g

Kn~r ^ vn-r-1 dang U} v _ ^ 2j _

tels que lim { Kn~r F } soit un ensemble à 0 dimensions.
V 4 OO

V ^
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12. — D'autres problèmes se présentent si l'on veut

caractériser les multiplicités classiques à ce nouveau point de vue.

La définition de l'ordre des points de multiplicités peut être

considérée comme un travail préparatoire dans cette direction.

Soient {/£} et {'/U pour n, » 1, 2, deux suites de

multiplicités décroissantes à h dimensions ayant un point

limite P commun. Si une multiplicité '/!; (pour m p.) contient

toutes les f) pour chaque p arbitrairement grand et si,

réciproquement, une multiplicité f) contient presque toutes les '/m S1

grand que soit nv, alors nous appelons les suites {/„} et {/m}

équivalentes et nous dirons qu'elles définissent le point P comme

un point de multiplicités à hdimensions. Si toutes les suites

qui définissent un point P comme un point de multiplicités à h

dimensions sont équivalentes, nous appelerons P un point de

multiplicités simple. Il est clair que le nombre (fini ou infini)
de suites {/„} non équivalentes définissant le point P comme

un point de multiplicités à h dimensions peut être considéré

comme ordre (à hdimensions) de P.

F étant un ensemble à r dimensions, nous appelons un point P

de F point régulier si, 8 étant un nombre arbitrairement petit,
il existe un v) < S et tel qu'une multiplicité à r dimensions de

diamètre ^ 8 contienne tous les points de F intérieurs à un

voisinage U (?])• Un ensemble F est dit régulier si tous ses points
sont réguliers. Il est clair qu'un point régulier de F doit être

simple dans la dimension r-ème. Il serait intéressant de savoir

si un ensemble fermé F dont tous les points sont des points

simples dans la r-ème dimension est régulier lui-même.

Il serait notamment intéressant de savoir si la notion générale

de multiplicité permettrait à elle seule de caractériser les

multiplicités classiques K L'on pourrait essayer d'appliquer ici
aussi le principe inductif.

Une multiplicité générale à h dimensions (et notamment dans

le sens absolu, c'est-à-dire définie dans U Rn) est appelée

simplement connexe (localement) dans la dimension (h — l)-ème
si chaque point P de F peut être séparé de chaque point R^P
de F par une multiplicité à (h — 1) dimensions fh_1 placée dans

1 En se servant des nombres de Betti généralisés M. Lefschetz a résolu ce problème
pour des ensembles fermés, M. E. Cech pour des espaces topologiques.
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U (P, 8) (pour chaque S) et simplement connexe (localement) dans

la dimension (h—2)-ème. L'induction peut ici commencer par f°
ou Z1, c'est-à-dire par des cercles topologiques. La question qui
se pose est la suivante: les ensembles à r dimensions, localement

simplement connexes dans la (r — 1 )-ème dimension, sont-ils des

multiplicités classiques (dans le sens étendu de MM. van Kampen

et Pontrjagin) ?1.

13. — Cette question ne doit pas être confondue avec le

problème de caractériser les multiplicités classiques par les

propriétés de l'espace complémentaire et notamment avec le

problème de la réciproque du théorème de Jordan dans les

espaces à un nombre supérieur de dimensions. Ce dernier

problème a aujourd'hui de l'intérêt aussi dans R3. Il faut ici

distinguer entre les conditions locales (dans le sens ordinaire) et

les conditions globales qui sont plus essentielles. Les premières

peuvent facilement être indiquées de diverses manières; la
seule solution dans R3 connue jusqu'à présent2 repose sur

l'hypothèse de la connexion simple du domaine complémentaire
d'une surface fermée. Il est naturel que la démonstration se serve

du théorème de dualité de M. Alexander. Mais je voudrais

remarquer ici qu'il existe une forme purement ensembliste de la

réciproque du théorème de Jordan dans R3.

Pour qu'une surface F à deux dimensions dans R3, fermée et

régulière (dans le sens indiqué plus haut) dans chaque point soit

une sphère topologique il faut et il suffit que chaque section

irréductible d'un domaine complémentaire de F soit une multiplicité
de Cantor.

La condition de régularité pourrait être remplacée par une

autre condition, aussi purement ensembliste 3. Bien que la forme

de ce théorème soit purement ensembliste, sa démonstration est

essentiellement combinatoire et ne pourrait guère être ramenée

immédiatement aux théorèmes de dualité. L'on remarque

toujours que les problèmes ensemblistes sous une forme générale

1 L'on sait que cette assertion est vraie pour le cas le plus simple h 2.

2 Voir R. L. Wilder, Math. Annalen, 109 (1933), p. 273.
3 Si l'on voulait se servir de notions plus anciennes, il suffirait d'exiger (localement)-

que la surface F soit accessible et « unbewallt » à partir des domaines complémentaires.
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ne peuvent être résolus que par des moyens combinatoires et

conduisent souvent à des nouveaux problèmes combinatoires.

Je ne saurais indiquer à quel point une surface fermée dans

Rn et satisfaisant à des conditions analogues, doit être une

multiplicité dans le sens classique.

14. — Nous voulons revenir encore à des multiplicités
générales.

La supposition suivante indique un problème global très

intéressant.
Soit F une variété générale à dimensions. Soient Ah et B'(

deux sous-ensembles fermés à h dimensions de F, pour un

h=0,1, r—1fixe. Nous prétendons qu'il existe toujours

une multiplicité de Cantor à (h +1) dimensions Th+1 contenant Ah

et Bh \
Ce problème est très lié au problème du prolongement des

multiplicités arbitrairement petites à h dimensions dans F, et

ce dernier présente des analogies avec les surfaces de Riemann.

En général, la possibilité d'une analogie même globale entre les

ensembles fermés et les espaces de Riemann n'est point absurde.

L'on pourrait, par exemple, envisager les multiplicités générales

comme des surfaces pliées une infinité de fois et les ensembles

comme des totalités de telles surfaces; il n'est pas impossible
d'avoir une vue des éléments d'accumulation qui se présentent
ainsi. Dans R3 l'on connaît ces éléments qu'on pourrait aussi

appeler des « ideal elements ». Il est sûr que les recherches sur la
totalité de ces singularités d'un ensemble se feront par les

méthodes de la topologie combinatoire.

i II est facile de démontrer cette assertion pour h 0.

Dans Rn l'on peut toujours relier un couple Ah et. d'ensembles à h dimensions
par une multiplicité de Cantor Considérons une suite de décompositions en
Simplexes z(ev) de Rw dont les diamètres tendent vers 0. Déterminons à partir des

h-L \(h + 1)—Simplexes de z(vi) une variété de Cantor telle que l'on ait

rf(Ah + kJ-'-1) < Ajoutons à un complexe de tous les {h + 1) —

Simplexes de z(t%) dont la distance de (Ah + BÄ) serait inférieure à etc. L'enveloppe

fermée de pour v » est une multiplicité de Cantor à (h + 1) dimensions,

reliant Ah et Bh-
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NOTES COMPLÉMENTAIRES A MA CONFÉRENCE
SUR LA TOPOLOGIE DES VARIÉTÉS

1. — Au lieu du passage de la Géométrie anallagmatique de
M. J. Hadamard, cité dans ma conférence sur la Topologie des variétés,
t. 35, p. 246, il serait préférable de lire la Note L insérée dans le tome II
de ses Leçons de Géométrie élémentaire (7rae édition, Paris 1932).

2. — Le dernier paragraphe de la page 249 ne concerne que les surfaces
orientables. Car la variété-voisinage d'une surface non-orientable immergée
dans l'espace à quatre dimensions doit être orientable, comme chaque
variété à n — 1 dimensions immergée sans singularités dans l'espace
euclidien à n dimensions. Or, le produit topologique du cercle et d'une
surface non-orientable est non-orientable, lui aussi. — Voir à ce sujet
H. Seifert, Algebraische Approximation von Mannigfaltigkeiten, Math.
Zeitschrift 40 (1936) et W. Hantzsche, Einlagerung von Mannigfaltigkeiten
in euklidische Räume, ibid. 42 (1937).

3. — L'article de M. E. Stiefel, cité à la page 250, vient de paraître:
Comm. math, helv., vol. 8, p. 305-353. Il faudrait le lire également au
sujet des variétés immergées dans des espaces euclidiens.

W. Threlfall.
i Cette bibliographie indique seulement les travaux s'occupant directement de là

théorie exposée ici.
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