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d'où

CB — CSÎ 29 s3 —CS2 —S2Si 29

2 9 — BA — ASi — CS3 — S2Sj — BA — sx + CA + AC — s3

tsso. — BA + AC — s2 ^3

et

Si + s2 + ss + 2 9 AB + BA' AA' a

«i + 52 + 53 + 29 a 0

Résultat qui généralise la formule donnée par M. Boulanger

(N.A., 1919, p. 22).

III. — Systèmes convergents.

7. — Soient Z, m, n, des constantes proportionnelles aux

éléments homologues des trois divisions du n° I.

Si l'on a
al + bm + en — 0 (1)

il existe toujours, en vertu du théorème des projections, une

droite D et un angle <p, tels que les projections (cp) sur les côtés,

d'un point S de cette droite, déterminent les trois divisions

proposées.
S, S2, étant les intersections de D avec le cercle circonscrit,

les droites A1} A2 du système sont les droites de Simson (9) de

ces points.
Si S se transporte à l'infini, en vertu du n° II-4, le cercle de

rayon infini correspondant, se compose de la droite de l'infini et

de la droite de Simson (n — 9) d'un point S3 tel que AS3 soit

antiparallèle à D par rapport à l'angle B.A.C.
Désignons par S cette droite de Simson. On voit qu'elle est

la même, que S s'éloigne indéfiniment dans un sens ou dans

l'autre.
Uéquation (1) constitue donc une condition sufßsante de convergence

du système.
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8. _ Soient X', p', v' les angles dirigés de D avec a, b, On a

sin • (X' —, <f) _ sin • (p' — 9) _ sin • (v' — 9) (2)

l _ m n

Soient dans un système quelconque supposé convergent X, p.,

les seconds points d'intersections de T avec a, b, c; on a

Ajx _ AN
Av ~~ AM

v

et si S se transporte à l'infini

All n
lim -v— — —

Av m

X, p, v sont alors en ligne droite, désignons par les mêmes lettres

les angles que fait cette droite avec les côtés, on a

sinv Apt n

sin p Av m

On aurait de même
sin X _ l
sin p m,

Or

donc

sin X _ sin p. _ sinv ^l ~~
m n

a sin • X + b sin • p + c sin • v 0

al + bm + en 0

ce qui prouve que la condition (I) du n° 7 est nécessaire.

La droite X piv est la droite S du système.

La comparaison de (2) avec (3) montre que S est parallèle à

toute droite qui fait avec les côtés, les angles (X — cp), (pi/ — <p),

(v' — 9), donc
(D 8) cp

9. — La formule (1) est la condition nécessaire et suffisante

pour que le moment de la vitesse du barycentre L.M.N., par
rapport au point de Lemoine soit nul. La condition nécessaire
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et suffisante de convergence est donc que le barycentre L.M.N,
décrive une droite qui passe par le point de Lemoiïie.

La condition peut encore s'écrire

I sin • A + m sin • B + n sin • G 0

et sous cette forme, elle s'applique au cas où les côtés passent par
un même point.

10. Nous arrivons, maintenant, à la propriété capitale des
systèmes convergents.

Soient, V un point quelconque du plan ; L±. Mx. Nx., trois points
homologues fixes du système; L, M, N, trois points homologues
quelconques.

Je fais une inversion de pôle V, en adoptant les notations du
n° I L'.M'., M'.N'. enveloppent respectivement les coniques
(G) et (A).

Soit zz', xx' les positions limites de ces droites quand L est à
1 infini, \ p^, les angles de zz', avec a et b; p2, v2 les angles de xx'
avec b et c. On a

LXL LiY
i/v •

Mi M MXV

Mi'M'
~

Wv

NtN Nj V
N;N' Wv

(1)

(2)

(3)

(1) et (2) donnent

M'Y v JL,V _ MtM L^L
L'v mTV

~~ ïpî £^7
M'Y Mx V x Mi M

L'V LtV x L, L m

or, à la limite, si L est à l'infini

x ' (4)

LjL L'V (5)

M, M' MÎV (6)
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d'un autre côté

sin \ v sin M'L'V M'Y——- lim 7^— lim • 7—7sin pi-, /\ L'Y v '^ \ sinL'M'V
et d'.après (4), (5), (6)

sin \ M^V • M'Y l_ _ l
sin^ L^y L^y m m ^

\ ^ (9)

On aurait de même [x2 [x, v2 — v, donc zz' et xx' se confondent
avec une parallèle à S.

Les deux coniques (C) et (A) ont cette parallèle pour tangente
commune. Le cercle F correspondant est une ligne droite qui,
passe par V et se confond avec xz; il peut être exclu du groupe
des quatre cercles T qui passent en général par V.

Donc: dans tout système convergent, Venveloppe de la corde
commune au cercle variable F et à une position fixe T0 quelconque
de ce cercle est une conique S tangente à A1? A2 et S.

IV. — Systèmes orthogonaux.

11. — SiA1? A'et S passent par un même point O la conique S
se réduit à O et, par suite, la corde commune à F et T0 passe
constamment par ce point.

Donc dans tout système convergent, si A1? A7 et S passent par
un même point, le cercle V reste orthogonal à un cercle fixe, ayant
pour centre le point d'intersection de ces trois droites.

Nous dirons alors que le système est orthogonal.

12. Soient Z, m, n, les trois paramètres définis au n° 7, et
satisfaisant à l'équation (1) de ce numéro.

Proposons-nous de construire un système convergent orthogonal,

l'angle <p étant arbitraire.
La direction S est donnée par les équations (3) n° 8 et S se

trouve comme étant une droite de Simson (n — <p) de direction
donnée.
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