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Résultat qui généralise la formule donnée par M. Boulanger
(N.A., 1919, p. 22). | ’

III. — SYSTEMES CONVERGENTS.
7. — Soient 1, m, n, des constantes proportionnelles aux
éléments homologues des trois divisions du n°® I.
Si ’on a
al + bm + en = 0, (1)

il existe toujours, en vertu du theoreme des projections, une
droite D et un angle ¢, tels que les projections () sur les cotes,
d’un point S de cette droite, déterminent les trois divisions
proposées. |

S, S,, étant les intersections de D avec le cercle circonscrit,
les droites A;, A, du systéme sont les droites de Simson (@) de
ces points. | ~

Si S se transporte & U'infini, en vertu du n° 11-4, le cercle de
rayon infini correspondant, se compose de la droite de 'infini et
de 1a droite de Simson (x — ¢) d’un point Sz tel que AS; soit
antiparallele & D par rapport a ’angle B.A.C.

Désignons par & cette droite de Simson. On voit qu’elle est
la méme, que S s’éloigne indéfiniment dans un sens ou dans
'autre. |

L’équation (1) constitue donc une condition suffisante de conver-
“gence du systéme. |
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8. — Soient A/, u’, v’ les angles dirigés de D avec a, b, ¢. On a
sin- (N —g) _ sin- (p—¢) _ sin- v —q) . ‘
= = , : (2)
[ m n

Soient dans un systéme quelconque suppose convergent Ay ey V
les seconds points d’intersections de I' avec a, b, ¢; on a

A, w, v sont alors en ligne droite, désignons par les mémes lettres
les angles que fait cette droite avec les cOtés, on a

sinyv _ Ap _ n
simp Ay m
On aurait de méme
sin A - i
sin @ m’
sin A sin sin
=80 (3)
l m n
Or-
asin: A+ bsin-p+esin-v=20,
done ‘

al + bm + ¢cn = 0,

ce qui prouve que la condition (1) du n° 7 est nécessaire.

La droite A wv est la droite 3 du systéme.

La comparalson de (2) avec (3) montre que & est parallele &
toute droite qui fait avec les cOtés, les angles (A — o), (1" — 9),

(v' — o¢), done
(D, 3) =

9. — La formule (1) est la condition nécessaire et suffisante
pour que le moment de la vitesse du barycentre L.M.N., par
rapport au point de Lemoine soit nul. La condition nécessaire
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et suffisante de convergence est donc que le barycentre L. M. N.
décrive une droite qui passe par le point de Lemoine.
La condition peut encore s’écrire

Isin-A+msin-B +nsin-C =0

et sous cette forme, elle s’applique au cas o les cdtés passent par
un meme point.

10. — Nous arrivons, maintenant, & la propriété capitale des
systémes convergents.

Soient, V un point quelconque du plan; L, . M, .N;., trois points
homologues fixes du systéme; L, M, N, trois points homologues - §
quelconques.

Je fais une inversion de péle V, en adoptant les notations du
n° I —L’.M’., M".N’. enveloppent respectivement les coniques
(C) et (A).

Soit zz’, zz" les positions limites de ces droites quand L est a
Pinfini, A, yy, les angles de zz’, avec a et b; ., v, les angles de zz’
avec b et c. On a

L,L L,V

=7 T ) (1)
L,L I.V.

M, M _ MYV @)
M, M’ MV’ |
SIS (3)
N, N N'V

(1) et (2) donnent

MYV LV _ MM LT
L'V M,V MM L

H

MV M,V x M;M ! ~
L’V == 7R X ;l ? (4)
L,V x L, L
or, a la limite, si L est & I’infini
LL =TV, | (5)
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d’un autre coté

/N ‘
sindy _ o sinMLYV L MV o)
sin o, * - L'V

N sin L’'M’'V
et d’apres (4), (5), (6)

osind . MV-MV 11 ”
sin y, LV-LV m m )
A=X, g =g - (9)

On aurait de méme p, = w, v, = v, done zz’ et zz’ se confondent
avee une paralléle & 9. |

Les-deux coniques (C) et (A) ont cette paralléle pour tangente
commune. Le cercle I' correspondant est une ligne droite qui.
passe par V et se confond avec xz; il peut étre exclu du groupe
des quatre cercles I' qui passent en général par V.

Donc: dans tout systéme convergent, Uenveloppe de la corde
commaune au cercle variable I" et a une position fixe T, quelconque
de ce cercle est une conique X tangente o A,, A, et 3.

IV. — SYSTEMES ORTHOGONAUX.

11. — SiA;, A’et & passent par un méme point Qla conique X
se réduit & Q et, par suite, la corde commune & I' et I'y passe
constamment par ce point.

Donc dans tout systéme convergent, si Ay, A" et 3 passent par
un méme point, le cercle I' reste orthogonal & un cercle fixe, ayant
pour centre le point d’intersection de ces trois droites.

Nous dirons alors que le systéme est orthogonal.

12. — Soient I, m, n, les trois parametres définis au n° 7, et
satisfaisant & ’équation (1) de ce numéro. |

Proposons-nous de construire un systéme convergent ortho-
gonal, I'angle ¢ étant arbitraire. - :

La direction 3 est donnée par les equations (3) n° 8 et § se

trouve comme étant une droite de Simson (r — ¢) de direction
donnée.
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