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SUR CERTAINES SURFACES

PAR

M. Pierre HumBERT (Montpellier).

On connait toute I'aide que peut apporter la géométrie des-
criptive & I’étude des surfaces, et particulierement des surfaces
réglées: il arrive trés souvent que ’on puisse démontrer sur
I’épure, avec la plus grande facilité, des propriétés que la géo-
métrie pure ou méme ’analyse montreraient d’une facon moins
évidente. On en trouvera plusieurs exemples dans le Cours de
géométrie professé & 1’Ecole polytechnique par M. Maurice
d’Ocagne, ou ce procédé d’étude est appliqué au conoide de
Pliicker, aux hélicoides, etc. En voici encore quelques appli-
cations, conduisant a des résultats peut-étre nouveaux.

I. — Considérons la surface bien connue sous le nom de Coin
de Wallis, conoide du 4me ordre dont les génératrices, paralléles
au plan horizontal, s’appuient sur une droite verticale A et sur
un cercle C dont le plan est vertical. Nous tracerons I’épure
(fig. 1) en supposant le plan du cercle (C, C') debout: soit (w, ')
son centre. La projection horizontale d’une génératrice quel-
~conque (A, A’), s'obtiendra aisément en rabattant sur le plan
vertical de projection le plan du cercle C: la projection horizon-
tale A passe par le point m tel que owm = m'n’.

Cherchons alors & étudier I'intersection du conoide avec la
sphére S; qui a le cercle C comme cercle principal. Ce cercle
étant une ligne double du coin, I'intersection sera du 6m¢ degré
et, par suite, sa projection horizontale — que nous allons cher-
cher & déterminer — sera du 3me degré. On obtiendra un point p.
en coupant la sphére par le plan horizontal qui contient la
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génératrice (A, A’): ce qui donne, en projection horizontale, la
circonférence de centre o et de rayon wm. La cubique cherchée
est donc engendrée de la maniére suivante: par un point a fixe
on méne une sécante variable, rencontrant en m une droite fixe;
et I'on prend sur cette sécante un point p tel que wp = om,
o étant la projection de @ sur la droite. C’est — on le sait —
une des définitions de la strophoide droite.

L’intersection du coin de Wallis avec la sphére S, se projette |
donc horizontalement suivant une strophoide droite.

Soit & présent la sphére S,, de méme rayon que S,, ayant pour
centre le point (a, a’): cherchons aussi son intersection avec le
conoide: la projection horizontale sera, cette fois, une quartique.
La section de S, par le plan horizontal de la génératrice (A, A’)
se projette suivant la circonférence de centre a et de rayon égal
& wm, d’ou le point ¢ de la quartique. Menons en ¢ la tangente
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& cette circonférence, jusqu’a sa rencontre ¢ avec la ligne de
rappel de a: les triangles rectangles awm et agt sont visiblement
semblables, et méme égaux puisque wm = ag. On en tire ¢f = a o,
ce qui montre que le point ¢ est le sommet d’un angle droit dont

Fig. 2.

un coté passe par @, la longueur gt étant constante: on reconnait
la définition classique de la courbe cappa.

Ainsi I'intersection du coin et de la sphére S, se projette
horizontalement suivant une cappa.

II. — Considérons encore la surface réglée dont les trois
directrices sont un cercle C du plan horizontal, 'axe A de ce




SUR CERTAINES SURFACES 213

cercle, et une droite horizontale A, située dans un plan vertical
tangent au cercle. Proposons-nous d’étudier les sections de cette
surface par les plans horizontaux. Faisons I’épure, en prenant
pour plan vertical de projection celui qui contient A (fig. 2).
La projection horizontale ¢d d’une génératrice quelconque passe
par o, centre du cercle; on obtient immédiatement la projection
verticale ¢’d’. Soit maintenant H’ la trace du plan horizontal
considéré: on en déduit le point (m, m’), point courant de 'inter-
section; il faut trouver, dans le plan horizontal, le lieu du
point m. Or ce point partage le segment cd dans un rapport
constant, déterminé par les distances de H” & A’ et & xy. Menons
alors la droite fize D, paralléle & A, partageant dans le méme
rapport le rayon du cercle. Nous pourrons écrire, n étant le
point d’intersection de D avec om,

nm = om — on .
Mais
on = K- od
et
om = oc+cm =R + K-ed
= R + K(od — R)
d’ott

nm = R (1 — K) = constante .

Le lieu de m, ¢’est-a-dire la section horizontale de la surface.
est donc une conchoide de la droite D.
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