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SUR LE ROULEMENT DES COURBES

PAR

M. Buscheguennce (Moscou).

1. — Quand une courbe invariable F (dite roulante) roule
sans glisser sur une courbe fixe donnée (dite base) C, un point
fixe du plan de F parcourt la roulette C. On sait que si Von donne
arbitrairement deux quelconques de ces trois courbes T, C, C', la
troisième est définie. Le roulement a été étudié en coordonnées
ordinaires ou intrinsèques par Haton de la Goupillière 1 et
divers autres géomètres.

Nous allons donner une solution du problème en utilisant la
représentation des vecteurs dans un plan par des nombres complexes.

2. — La base C peut être représentée par l'équation rapportée
à deux axes fixes 0xy

x + iy ='z z(u) (1

La courbe roulante F est définie par l'équation

5 + Î7J Ç Ç(p) (2)

rapportée à des axes rectangulaires 0£yj invariablement liés au
plan mobile de cette courbe F.

Si la courbe F roule, sans glissement, sur la base C, ces deux
courbes sont constamment tangentes en des points associés, de
sorte que l'on a

dz dÇe10 (3)

vîi EtuâfJé°mêtriqUe et dynamique des roulettes planes ou sphériquest Paris, Gauthier-viiiars, 1910.
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0 étant l'angle de rotation de l'axe mobile 0£, à savoir

0 (Ox, OÇ); désignons par z le nombre complexe définissant

l'origine mobile 0 par rapport aux axes fixes. On a

S I + Ç

ce que nous pouvons écrire

z — z — Z • - ^
En prenant sur le plan mobile un point déterminé Ç', ce point

parcourt sur le plan fixe la roulette C représentée, par rapport
aux axes fixes, par l'équation

Z' z + eiô Ç'

que nous pouvons, en vertu de (4), écrire

s' a+ (Ç'-Ç)ei# (5)

ou encore

*' S+(Ç'-Ç)|(5')
Les équations (3) et (5) sont fondamentales pour toutes les

considérations qui suivent.

3. — En premier lieu, supposons que Von donne la base G et la

roulante V représentées respectivement par les équations (1)

et (2); soient z0, les nombres complexes conjugués

respectivement de z, Ç,

Il s'agit de déterminer la roulette.

En égalant les modules des deux membres de l'équation (3)

on obtient la relation

\/dzdz0 's/d^d^Q (6)

OU

\/t- Pdu± \/lrihd(6,)
y du du V dv dv

qui, tenant compte de la condition initiale, donne les points
associés des courbes C et V; le paramètre c sera une fonction
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déterminée de u et alors la roulette C' sera représentée par

l'équation (5').

4. — Supposons, en second lieu, données la base G par l'équation

(l)'et la roulette C
z' z'(w)

rapportée, elle aussi, aux axes fixes; cherchons la roulante T.

L'équation (5) donne

Ç Ç'- : (8)

En substituant cette valeur de Ç dans la condition (3) on

trouve
dz' i(z' — z) dQ (9)

et, par suite,
dzQ — i (z0 — z0) dû (9')

Les équations (9) et (9') donnent donc

fi 7^ dZnd +-^-=.0 (10)
•«0 *0

OU

£ + ^J_£_o. (,»)rirxf ri (xi v 'z' — zdw / 7 dw
zo

Cette relation en termes finis donne w en fonction de u. En
intégrant ensuite la relation

m ;r=T7 (dl)

nous trouvons une fonction 0 0 (u) effectivement réelle, car
le second membre est, en vertu de (10), une quantité
imaginaire pure. Ensuite l'équation (8) détermine la
roulante T, Ç étant une constante arbitraire (complexe).
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5- — Proposons-nous de résoudre le troisième problème: étant
données la roulette (7) et la roulante (2) trouver la courbe base.
Dans ce cas nous déduisons des équations (5) et (3)

dz'»(£'— (12)

en même temps que la relation conjuguée

dz'0*= — i(C- Ç0)e-UdO.(12')
Ces deux équations nous donnent, d'abord, la relation

(différentielle) entre les paramètres c, w et ensuite 0 en fonction de
l'un de ces deux paramètres. Nous pouvons opérer ainsi:
écrivons

^ \/dz'dz'0j/(C - Ç) - y
dz' _ .m (13>

dz„ ^0 Ko

et éliminons 0; on obtient l'équation différentielle liant cet w:

dlog(^) + JK-=\dZr K' — K i —t~ 77<14)
Ço j/ß/_ g (Ço _ y

La fonction w (v) étant ainsi trouvée, nous obtenons 0 par
une quadrature et enfin l'équation

s z' —(X! —

définit la courbe base cherchée.


	SUR LE ROULEMENT DES COURBES

