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SUR LE ROULEMENT DES COURBES

PAR

M. BuscHEGUENNCE (Moscou).

1. — Quand une courbe invariable T' (dite roulante) roule
sans glisser sur une courbe fixe donnée (dite base) C, un point
fixe du plan de I parcourt la roulette C’. On sait que si on donne
arbitrairement deux quelconques de ces trois courbes T, C, C', la
troisiéme est définie. Le roulement a été étudié en coordonnées
ordinaires ou intrinséques par HATON DE LA GOUPILLIERE ! et
divers autres géométres.

Nous allons donner une solution du probléme en utilisant la
représentation des vecteurs dans un plan par des nombres complezes.

2. — La base C peut étre représentée par l’equatlon rapportée
a deux axes fixes Ozy ~

x4+ 1wy =7z = z(u) . (1)
La courbe roulante T' est définie par I’équation
E+in=¢ = ¢ (2)

rapportée & des axes rectangulaires Oé’::n invariablement liés au
plan mobile de cette courbe I'.

Si la courbe T roule, sans glissement, sur la base C, ces deux
courbes sont constamment tangentes en des points associés, de
sorte que I'on a

dz = die¥ (3)

1 Etude géométrique et dynamique des roulettes planes ou sphérigues. Paris, Gauthier-
Villars, 1910. .
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0 étant Pangle de rotation de I’axe mobile Of, a savoir
6 = (Ox, O%); désignons par z le nombre complexe définissant
’origine mobile O par rapport aux axes fixes. On a |

+ e?¢

w |

z ==

ce que nous pouvons écrire
z=2z—e"¢ .. (4)
En prenant sur le plan mobile un point déterminé C’, ce point

parcourt sur le plan fixe la roulette C’ représentée, par rapport
aux axes fixes, par I’équation

/:2+810C/

que nous pouvons, en vertu de (4), écrire

Z’ :Z+ (C,—"C)eio (5)
ou éencore

z':z—l—(C'——C)g%.

Les équations (3) et (5) sont fondamentales pour toutes les
considérations qui suivent.

3. — En premier lieu, supposons que l'on donne la base C et la
roulante T' représentées respectivement par les équations (1)
et (2); soient 3z, G, ... les nombres complexes conjugués res-

pectivement de z, C, .
Il s’agit de determmer la roulette.
En égalant les modules des deux membres de ’équation (3)

on obtient la relation
Vidzdz, = V/dCdT, (6)

dz dzo ac dCo ‘ p
\/du du T F \/do o’ (6)

qui, tenant compte de la condition initiale, donne les points
associés des courbes C et I'; le paramétre ¢ sera une fonction

ou




SUR LE ROULEMENT DES _COUBBES 197

déterminée de u et alors la roulette C’ sera représentee par
I’équation (5).

4. — Supposons, en second lieu, données la base C par ’équa-

tion (1) et la roulette C’ :
7 = z'(w) (7)

rapportée, elle aussi, aux axes fixes, cherchons la roulante I.
L’équation (5) donne
(=0—@—2ae": ®

En substituant cette valeur de ¢ dans la condition (3) on

trouve
dz’ = 1(z’ — 2)d6 (9)

et, par suite,
' dzg = — i(zg — 2,)d0 . (97)

Les équations'(Q) et (9') donnent donc

! dz,
. B (10)
& — & Tp — % ‘
ou
r dz, ‘
1 4l 1 Ty (107)
3 —z dw Zo — % dw ‘

Cette relation en termes finis donne w en fonction de u. En
intégrant ensuite la relation
ido — % (11)

2 — 2z

nous trouvons une fonction 0 = 0 (u) effectivement réelle, car

’

le second membre Z,d_z_z est, en vertu de (10), une quantité

imaginaire pure. Ensuite 1’équation (8) détermine la rou-
lante T, { étant une constante arbitraire (complexe).
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5. — Proposons-nous de résoudre le troisiéme probléme: étant
données la roulette (7) et la roulante (2) trouver la courbe base.
Dans ce cas nous déduisons des équations (5) et (3)
dz’ = (¢ — ¥)e do 1)
en méme temps que la relation conjuguée

dzg = — (g — ) do . (12')

Ces deux équations nous donnent, d’abord, la relation (diffé-
rentielle) entre les paramétres ¢, w et ensuite 6 en fonction de
I'un de ces deux paramétres. Nous pouvons opérer ainsi:
écrivons

KV&%%=PQC—OK&—@d9

‘ dz' _ T —T o | (13)
( dz, % — & |

et éliminons 6; on obtient ’équation différentielle liant ¢ et w:

dz’ ac dz, 2}/ dz ds,

slgl—|+ a5 — = = ’
) T g Vie—oit—u

. (14)

La fonction w (¢) étant ainsi trouvée, nous obtenons 6 par
une quadrature et enfin 1’équation

ZZZ’—(C’—-C)eiO

définit la courbe base‘ cherchée.
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