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CONFÉRENCES INTERNATIONALES DE TOPOLOGIE *

(suite et fin)

LE ROLE DE LA THÉORIE DES GROUPES

EN GÉOMÉTRIE INFINITÉSIMALE DIRECTE1

PAR

Georges Bouligand (Poitiers).

1. — Avec M. Karl Menger, on peut lier aux fonctions réelles
les recherches que j'ai faites ou conduites pour soumettre la
Géométrie différentielle aux méthodes directes. En 1925, j'avais
obtenu ce théorème, que j'énonce ici pour trois dimensions:
« Une suite de fonctions harmoniques, bornées dans leur ensemble

sur le domaine ouvert D, y converge vers une fonction harmonique
s'il y a convergence en une infinité de points de D, ayant un
point 0 de D pour point d'accumulation, pourvu que, dans un
cône droit de sommet 0, tout autre cône droit de sommet 0, d'ouverture

et de hauteur arbitrairement petites contienne des points de

convergence »2.

Cette condition se distingue de celle d'une suite de fonctions
holomorphes fn(z), assurée dans le domaine D du plan (z) dès

qu'elle se produit en une infinité de points de D ayant le point 0
de D comme point d'accumulation 3. Il existe en ce dernier cas

(contrairement au cas précédent) une condition purement
topologique de convergence, ce qui sollicite déjà l'attention vers
les champs d'invariance.

* Ces conférences ont eu lieu à l'Université de Genève, du 21 au 25 octobre 1935,
sous la présidence de M. Elie Cartan, Membre de l'Institut.

1 Conférence faite le 25 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à
Quelques questions de Géométrie et de Topologie.

2 G. Bouligand, Fonctions harmoniques (Mémorial Sc. Math., XI, p. 20).
s Cf. P. Montel, Leçons sur les familles normales (Gauthier-Villars, 1927, n° 16, p. 30).

Le n° 121 de cet ouvrage énonce une condition de convergence pour une suite de fonctions

holomorphes in (zl5 z2), indépendamment de mon résultat ci-dessus. Je suis revenu
sur ce sujet au Bull. Ac. Roy. des Se. de Belgique, t. XXI, séances des 2 février et 6 avril
1935.
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un autre titre, les fonctions réelles intervinrent quand

pour l'étude de propriétés locales (tangence, courbure généralisées),

j'attachai dans l'espace euclidien, à tout point d'accumulation
d'un ensemble ponctuel, certaines collections de demi-droites,

droites, plans, cercles, autant de fonctions multiformes4 au
sens actuel très large de ce terme; M. C. Kuratowski en a défini
la semi-continuité sous ses diverses espèces. Indépendamment,
1 une des collections citées (le paratingent), par rapprochement
avec les résultats de Mue Charpentier sur les intégrales de
U /(#? y) dans leur dépendance vis-à-vis du point dont elles
partent, me fit rencontrer la semi-continuité supérieure
d'inclusion 5.

3. — Je définis maintenant les collections citées. Soit 0 un
point d'accumulation de l'ensemble ponctuel E. Une demi-
droite OT est dite demi-tangente en 0 à E, s'il existe une suite
infinie { M^} de points de E telle que les distances OM^ et les

angles MtOT tendent en même temps vers zéro. Une droite T'T
passant par 0 est dite paratingente si elle est limite d'une suite
infinie de droites T.-T, portant chacune une corde M, N,: dont
les extrémités appartiennent à E et tendent vers 0. La collection

des demi-tangentes est le contingent (ctg.), celle des para-
tingentes le paratingent (ptg.).

Tout plan passant par 0 et limite de plans contenant chacun
trois points Lu Mt, Nj, non alignés de E tendant vers 0 sera
dit biparatingent. Sur la collection de ces plans, le biptg
M. J. Mirguet a montré l'intérêt de prélever ceux provenant
de triplets dont les trois accouplements engendrent au moins
deux ptgtes distinctes. La collection ainsi filtrée est le biptg.
réduit 6.

Toute droite passant par 0, limite de droites portant chacune
trois points de E tendant vers 0 sera dite une ptgte seconde.

4 G-. Bouligand, C. R. Ac. Sc. Paris, 12 juin 1933 (t. 196, p. 1767 et ss.).s G-. Bouligand, Sur l'idée d'ensemble d'accumulation (Ens. math., t. 29, 1931,
p. 246); Sur la semi-continuité d'inclusion (Ens. math., t. 31, 1933, p. 14-22) Unebibliographie plus complète est donnée au fasc. LXXI du Mémorial (n° 6), p 10-15 etnote II, p. 53).

6 J. Mirguet, Nouvelles recherches sur les notions infinitésimales directes du premierordre (Thèse, Paris, 1934 ou Ann. Ec. Norm., 3, LI, 1934, p. 199-243).
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D'où une nouvelle collection, le ptg. second. Ces notions sont
valables en géométrie affine (espace cartésien).

Dans l'espace euclidien, on peut former des collections de

figures plus variées (cercles, sphères, hélices circulaires,
•Retenons ici le ctg. circulaire relatif au point 0 et à la demi-

tangente OT : il comprend les cercles limites de cercles tangents
en 0 à OT et portant un point de E tendant vers 07 ; et le ptg.
circulaire relatif au point 0, formé des cercles limites de cercles

passant par trois points de E tendant vers 0.

4. — Apparentées dans leur essence aux plus grande et plus
petite limites d'une suite et aux nombres dérivés d'une fonction,
ces notions s'appliquent comme le point d'accumulation, à tout
ensemble ponctuel8. Il est important d'en déterminer les champs
d'invariance.

En effet, devant l'abondance des résultats mathématiques,
une œuvre de coordination se poursuit, pour préciser les
hypothèses et dégager le pourquoi des faits. Cette œuvre a fini par
s'imposer, en Géométrie infinitésimale, après la découverte par
M. Lebesgue (1899) des surfaces qui sans contenir la moindre
portion de droite sont isométriques au plan, et la découverte

par Juel de classes étendues de variétés jouissant de propriétés
qu'on croyait réservées aux variétés algébriques 9.

Pour les questions de causalité ainsi posées, l'idée de groupe
donne un guide. Dans un champ défini de prémisses (l'espace
euclidien, par exemple) soit P une proposition tirant d'un
faisceau h d'hypothèses, non toutes essentielles, une conclusion c

préalablement stipulée. Réduire A, ou encore, trouver les conditions

les plus larges pour P çraie, c'est prendre toutes les
modifications (des objets soumis à P) menant d'un cas d'exactitude

7 On pourra remplacer circulaire par hémi-circulaire lorsqu'il sera commode de se
limiter .à la demi-conférence qui, par rapport au plan normal en 0, est du même côté
que OT.

s Les deux premières d'entre-elles (ctg. et ptg.) ont été considérées indépendamment
par M. .F. Seyeri en vue d'un prolongement de la Topologie (voir ses indications
bibliographiques aux Annali di Mat., 4, XIII, 1934-35, p. 1-35). La considération
des cordes impropres remonte d'ailleurs à M.B.Levi, dans le cas d'une courbe algébrique
(Acc. R. Sc., Torino, 1898). Mais tout l'intérêt se porte vers le recours constant à des
notions de ce genre, à titre universel, pour la formation d'un système.

9 Voir l'exposé de M. Paul Montél {Bull. Sc. Math., mars 1924, 2, XLVIII, p. 109-
128). ~



8 G, BOULIGAND
à un autre. Leurfamille est un gr,étendant le champ d'exactitude

et refoulant les hypothèses accessoires, groupe qu'on peutdonc appeler: domaine de causalité de P (notion extensible à
plusieurs propositions simultanées)10. On peut concevoir le
fractionnement de l'activité géométrique vers des énoncés
disjoints, en vue d'une extension du domaine de causalité de
chacun d eux, extension qui peut comporter une revision de
prémisses, comme le suggèrent les énoncés euclidiens trans-
posables sans spécification de la métrique aux variétés de
Riemann ou de Finsler (exemple: constance de la longueur d'un
arc minimum restant orthogonal aux déplacements de ses
extrémités). Mais la méthodologie disjonctive ralentirait le
travail. Il vaut mieux encadrer les résultats dans des groupes
familiers, inclus dans le groupe topologique général G des
transformations ponctuelles continues et biunivoques opérant entre
portions d'espaces cartésiens (on se limite ici au point de vue
local, ce qui dispense de distinguer G du groupe analogue
extrait d'une variété de Riemann). C'est avec René Baire qu'on
prit conscience du groupe G, en distinguant les propriétés
descriptives de caractères (rectificabilité d'un arc, annulation de la
mesure d'ordre ndansl'espace à n dimensions) altérables
dans G.

5. — A ce tournant se présente le sous-groupe Gx de G, qui
en retient les transformations douées d'une transformation
linéaire tangente, non dégénérescente, continûment répartie.
De ce groupe G1 (groupe de la topologie restreinte du premier
ordre) nous prendrons encore le modele concret fourni par la
représentation analytique dans l'espace cartésien.

Quant à Gx, sont invariantes les propriétés suivantes, en un
point d accumulation de deux ensembles ponctuels: a)
communauté du ctg. ; b) communauté du ptg. ; c) communauté du
biptg. réduit n. De ces propriétés, la première est invariante,

J0ir début de VIntT0d• à la Gé°- inf. directe (OID) et des Premières leçons surla Theorie des groupes (Paris, Vuibert).

r -I1 PT a^ b^\ Cf' GdD' n°S 69 et 74' et pour c)' ma communication de juillet 1935 kLiège « Sur quelques notions topologiques restreintes » (Bull. Soc. Roy. Se. Liège4me année, p. 219-223). y *
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par le groupe, englobant Gl7 des transformations de G ayant
au sens de Stolz une transformation linéaire tangente non
dégénérescente, continue ou non : soit le groupe Gftolz 12. Demander
l'existence de la transformation linéaire tangente, au sens de
Stolz revient à supposer les coordonnées (X, Y, Z) du point
conséquent fonctions differentiables au sens de Stolz13 des
coordonnées (rr, ?/, z) du point antécédent ; cette condition est plus
restrictive que l'existence (sans intérêt, faute d'invariance) de
dérivées partielles du premier ordre.

La propriété c) du biptg. réduit n'appartient pas au biptg.
excluant les triplets alignés sans exclure les triplets singuliers
(ceux où l'existence d'une direction limite pour un côté impose
la même direction limite aux deux autres). Le biptg. ainsi défini
est invariant, non plus par G1? mais seulement par les
transformations localement bicontinues du groupe projectif. Ce même
biptg. englobe toutes directions de plans, quand E est une
surface z f(x, y) dont le ptg. en chaque point est l'ensemble
des droites d'un plan: cette indétermination de la direction
limite du plan d'un triplet permet la formation des polyèdres
que Schwarz faisait tendre vers une portion 20 de cylindre de
révolution sans que les aires polyédrales avoisinent l'aire de
Par contre, pour une surface de la classe précédente, le biptg.
réduit est-il formé de l'unique plan des ptgtes 14.

En un point d'accumulation commun à deux ensembles
ponctuels, le rôle des triplets alignés dans la définition du ptg.
second entraîne son caractère projectif: son application la plus
importante est la définition locale d'une surface convexe, par
la condition que le ptg. second est vide 15.

6- — Ayant étudié l'invariance du ctg., du ptg., du biptg.,
du biptg. réduit, notions concernant le contact du premier ordre,
examinons les notions relatives à des contacts du second ordre

Sur laTopologie restreinte du

Cette imp0rtante notion Annales

Tïio^A1^ fm+du t^vail cité de Mibguet, voir des conditions suffisantes nour laplanéité du ptg., obtenues par l'entremise du biptg. réduit" G. I.D., ch. XIV et Mirguet, C. R. 7 décembre 1936
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et dont le champ d'invariance dépasse le groupe projectif où
se localise le ptg. second 16.

M. E. Vessiot m'écrivait, fin 1930: «Ce que vous faites
consiste à effectuer, avec S. Lie, des prolongements différentiels
successifs d'ensembles considérés comme des multiplicités
ponctuelles, en élargissant convenablement le sens du mot
différentiel ». En fait, ce sont bien des prolongements du premier
ordre de E qu'on obtient, du point de vue de Stolz, en prenant
le ctg., du point de vue de la différentielle classique, en prenant
le ptg. On peut assimiler ces prolongements à de nouveaux
ensembles ponctuels d'un espace obtenu en adjoignant à un
point de l'espace initial un vecteur issu de ce point, ce qui donne
un élément qu'on peut appeler un point-vitesse. A chaque
homéomorphie 0 extraite de Gx ou de G®tolz dans l'espace initial S

est attachée dans l'espace S' des points-vitesses une nouvelle
homéomorphie 0' définie comme suit:

X /(ara yf z\ Y g(x, y z) Z h (x, y z) (1)

pour le cas où S est à trois dimensions17. Pour que 0' appartienne
au groupe G'± qui joue dans S' le même rôle que G2 dans S, il
faut et suffit que les différentielles de U, V, W existent et soient
continues quant au point (%, y, z), c'est-à-dire que /, g, h aient
des dérivées secondes continues. Le jacobien de notre transformation

à six dimensions, étant le carré de celui de 0, n'introduit
pas de condition. A côté du groupe G2 ainsi défini, on aperçoit
le groupe Gftolz, obtenu en soumettant les" dérivées premières
de /, g, h à la différentiabilité stolzienne.

La topologie restreinte du second ordre énonce des propriétés
invariantes par G2 ou Gft0lz, suivant les problèmes. Au mouvement

d'un point dont la vitesse, bien déterminée à chaque

16 Citons aussi, dans le groupe projectif, le ctg. planaire (ou d'osculation), dont
M. B. Segre vient de préciser la définition (R. Acc. d'Italia, vol. VI, p. 1209).

17 Dans Grftolz, cela résulte du n° 8, p. 396-398, du mémoire cité de M. Fréchet.
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instant, est continue, une transformation de Gx fait correspondre

un mouvement pour lequel sont garanties l'existence et la continuité

de la vitesse; sa continuité disparaîtrait pour Gftolz. Si

la transformation provient de G2, l'existence et la continuité se

conservent pour l'accélération comme pour la vitesse. Dans
(jstoiz ja continuité de l'accélération n'est plus invariante.

7. — Supposons que les équations (1) définissent une
transformation M %{m) de Gftolz. Les quantités /*, fy, fz ont
chacune une différentielle au sens de Stolz: le tableau des neuf
coefficients différentiels de ces trois formes est alors symétrique
par rapport à sa diagonale principale 18. De plus, on peut écrire

f(x + p, y+ q, Z + r)

/(*, y, z) + pfx + qfy + rfz + 9a (p, q, r) (3)

92 désignant un polynôme homogène quadratique dont les

coefficients ont des limites quand p, r tendent vers zéro.
Ces limites sont respectivement les dérivées secondes

fx2 fy% fz2 fyz fzx fxy

dont l'existence au point isolé x\ y, z ne justifierait pas la relation

(3).
Soit a un point d'accumulation de l'ensemble e dans l'espace

(%, y, z). Par M cS(m), on passe de e à un ensemble E de

l'espace (X, Y, Z), avec A %(a) pour point d'accumulation.
Appliquons (3) à/, g, h: les trois relations obtenues^ se condensent
dans l'égalité géométrique

AM ©(m) — *fë(a) £(am) + ^ jS(am) + x(aw)j »' G)

£ étant l'opérateur de la transformation linéaire tangente, et %

un autre opérateur faisant passer de am (p, gr, r) au vecteur
dont la première composante serait

P2f& + ffy* + r2fz* + 2 y fyz + 2rPfzx + 2Plfxy •

«.

is Voir aux Nouv. Ann. de 1912, dans le mémoire cité de M. Fréchet, le n° 15,
p. 440-443.

19 La première de ces relations, par exemple, se- déduit par intégration des trois
relations obtenues en évaluant l'accroissement de fx, celui de fy et celui de fz, compte
tenu de ce que chacune de ces fonctions est différentiable au sens de Stolz.
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Quant à x? c'est un opérateur analogue, à coefficients non plus
constants, mais infiniment petits avec am.

Soit maintenant une suite j mi j de points de e tendant vers a.
A chaque point de cette suite attachons une valeur Si du
paramètre temporel t. Supposons qu'il existe une suite évanescente
{ zi | permettant d'écrire pour tout entier i

^2

ami ^ / + co.) avec lim co - 0 (5)

Ce cas est celui où la suite des positions mi du mobile aux
instants £i détermine univoquement au temps zéro une vitesse et
une accélération, circonstance invariante dans G2stolz 20. Il est
alors facile de voir que le contingent circulaire en a, pour la
demi-tangente portant c, de la suite (m{J est formé d'un
cercle unique. Inversement, si le contingent circulaire pour la
suite | Mi j, douée en a d'une seule demi-tangente, est formé d'un
cercle unique, de rayon di ^ 0, on peut attacher aux points mi des
instants q assurant une vitesse et une accélération (uniques) au
temps zéro. Car l'hypothèse équivaut à l'existence d'égalités
géométriques

—2—CLÏYl< • / s.am,am,\ tH n+ w. avec llm «, 0
« I »i 2dv V »/ »» 1

en appelant t le vecteur unitaire de la demi-tangente, n celui
de la demi-normale allant de a vers le centre; il suffit donc de
prendre zi | ami | pour avoir un mouvement de vitesse 1

-
et d'accélération ~ (c.q.f.d.).

CK

8. — En cinématique du mouvement continu, on conçoit sur
une trajectoire divers horaires. A un même instant, pour une
position et une vitesse e données du mobile, si / est une
détermination possible de l'accélération, les autres seront / -j- Xe,
où X est un scalaire.

20 Introduite dans mon article « Sur la topologie restreinte du second ordre » {Bull.Soc. Math., t. LX, 1932, p. 228-239), cette généralisation de notions cinématiquesdans des conditions abandonnant la continuité du mouvement pour ne retenir que des
suites de positions du mobile, heurte un peu les habitudes acquises. Elle est cependantconforme à l'esprit de notre étude.
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Pareillement, dans le cas actuel, soit {m»} une suite de

points donnant lieu aux relations (5). On aura indifféremment

55 «;? + $(/' + «;)• (0

où ej est un infiniment petit équivalent à puisqu'on a même

vitesse en a.En outre, le plan (V,f)coïncide avec le plan (e, /'),

qui a le rôle d'unique plan osculateur pour la suite. D où

y / + x 9

où X est un scalaire. Un horaire donnant lieu à l'accélération y

s'obtient en prenant

De ces accélérations, une seule est orthogonale à v. Prenons

l'unité de temps de manière que _soit équivalent à | ami \ ;

nous aurons v2 1; dans le plan y),soit n le vecteur unitaire

orthogonal à aet faisant un angle aigu _avec tout vecteur

/+ Xe, le cercle tangent en a au vecteur c^contenu^ dans le

plan (e, y) et ayant son centre c donné par ac dv n où t*v

est l'inverse du produit scalaire n • y, sera l'unique cercle

osculateur de notre suite.
Finalement pour toutes les suites de positions mt ayant en a

une même demi-tangente at et qu'on soumet à un horaire faisant

correspondre au point a une vitesse v bien déterminée portée

par at, il y aura un seul et même cercle osculateur dans l'unique

cas où toutes accélérations relatives à des suites partielles

arbitrairement prélevées sur les suites données sont de la forme

y + X v, le coefficient X étant seul indéterminé.

9. — Lorsqu'on effectue la transformation M. %{m) du

I
groupe Gftolz, à la vitesse v correspond la vitesse Y i?(c),
à l'accélération y, pour la vitesse correspond l'accélération

J £{J) 4- &(c), où & est l'opérateur homogène quadratique
déjà rencontré dans la relation (4) du n° 1. Si donc au temps
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deux mobiles occupant la même position et animés de la même

vitesse, ont les accélérations j1 et /2, leurs transformés auront
des accélérations Jx et J2 telles que

Dans les conditions indiquées, la différence géométrique des

accélérations subit donc la transformation linéaire tangente.

10. — Ces diverses remarques montrent d'abord l'invariance
par G2stolz (a fortiori par G2) de la communauté du contingent
circulaire (restreint à des cercles de rayon non nul) pour deux
ensembles ponctuels, relativement à un point d'accumulation
et une demi-tangente qui leur sont communs. Il suffit d'observer

que la suite des mi donnant lieu aux relations (5) se transforme
en la suite des M* donnant lieu aux relations analogues

2

AMi Y + J J + fi,) lim ht 0
L v 1 ' l -+<x>

avec

v j j?(7) + â(?)

On s'achemine vers le théorème de Meusnier en considérant

un ensemble ponctuel e sur lequel le passage avec une vitesse

donnée v d'un mobile au point d'accumulation a, mobile qui
reste sur l'ensemble, ne donne d'autres accélérations que celles

représentées par des vecteurs d'origine a et d'extrémités situées

dans un plan m parallèle à v. Alors, pour le correspondant E
de e par la transformation M %{m) de Gftolz, nous aurons

au point d'accumulation A cg(a), pour chaque mobile y
passant avec la vitesse X'(c), la propriété analogue avec un

plan II transformé de m par la transformation linéaire tangente

pour le couple (a, A).
D'où un genre de propriété invariante, que nous allons

interpréter. Lorsque dans le plan ®, l'extrémité de l'accélération /
reste sur une parallèle à c, on a un cercle osculateur fixe. Et ce

cercle se déplace sur une sphère or, inverse du plan m par rapport

au point a (eu égard à la relation n / du n° 8), quand
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l'extrémité de l'accélération varie ad libitum dans ©. La propriété
invariante en question est donc encore le fait pour le contingent
circulaire de se composer de cercles tangents en a du vecteur c,
sur la surface d'une même sphère g.

Cette sphère g sera dite sphère de Meusnier de l'ensemble e,

pour a et la demi-tangente at portant c. D'après cette définition,
on peut énoncer la propriété d'invariance qui précède sous la
forme suivante : un ensemble e pour lequel la sphère de Meusnier
relative à [a, ç] est unique se transforme dans le groupe Gftolz
en un ensemble E pour lequel la sphère de Meusnier relative
à [®(a), i?(p)] est encore unique.

L'inverse du rayon de la sphère de Meusnier va continuer à

s'appeler: courbure normale.

IL — J'ai donné en 1932 pour l'unicité de la sphère de
Meusnier relative à (a, at) la condition suivante: il passe par a
une perpendiculaire z'z à at telle que le demi-plan (z'z, at) ne
contienne qu'une seule position limite, avec rayon non nul,
pour un demi-cercle Cm ayant son diamètre ab porté par z'z
et passant par un point m de e qui tend vers a 21.

La condition précédente est invariante par G2stolz, ce que
M. Elie Cartan a démontré comme suit: «Considérons un
ensemble ponctuel rapporté à trois axes de coordonnées
rectangulaires 0xyz, 0 étant un point d'accumulation de l'ensemble,
Ox une demi-tangente en 0. La condition de M. Bouligand
revient à supposer que, si pour différentes suites de points de
l'ensemble tendant vers 0, les trois quantités y/x, z/x, z/(x2+y2+z2)
tendent les deux premières vers zéro et la troisième vers une
quantité finie l, cette dernière limite est unique. Il revient
évidemment au même de substituer à la quantité z\(x2 + y2 + z2)
la quantité zjx2, et alors l'énoncé ne fait plus intervenir la
propriété des axes d'être rectangulaires. — Cela posé, effectuons
une transformation de la topologie restreinte du second ordre 22.

B^yLIGAfAD' Journ• de Math-> 9, t. XI, 1932, p. 385-387. A cette forme deondition d unicité, on rattache le théorème de Meusnier pour les .courbes intégralesdune équation de Monge (C. R. des Séances de la Soc. Math., 1934, p. 32-34).
22 Ou .plus précisément de oftoIz, comme je le signalais au début de ce paragraphe.
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Nous pouvons supposer que l'origine 0 est conservée, que la
droite Ox est transformée en une ligne admettant OX pour
tangente et que le plan z 0 est transformé en une surface
admettant Z 0 pour plan tangent. Toute suite de points de
l'ensemble pour laquelle yjx et zjx tendent vers zéro est
transformée en une suite de points pour laquelle Y/X et Z/X tendent
vers zéro. On a de plus

où A, a, è, c sont des constantes, P et R des polynômes homogènes
du second degré dont les coefficients tendent vers des limites
déterminées lorsque (x, 2/, z) tendent vers zéro. Si oc est la limite
du coefficient de x2 dans R, on voit que yjx et zjx tendant vers
zéro et z/x2 tendant vers Z, la quantité Z/X2 tend vers la limite
(hl + oc)/oc2. Ou bien dans l'ensemble donné et son transformé
satisfont simultanément à la condition de M. Bouligand, ou bien
aucun d'eux n'y satisfait. » 23

12. — Tel que je l'ai formulé en 1932, le théorème de Meusnier
est donc invariant dans Gftolz. Il serait d'ailleurs superflu,
avec certains auteurs, de supposer que le plan normal à z'z
contient le paratingent de e en a 24. On peut enrichir ad libitum
le paratingent à l'origine d'un ensemble e admettant ce point
pour point d'accumulation et situé tout entier entre les surfaces

condition d'après laquelle pour une demi-tangente à l'origine,
l'ensemble e a même sphèré de Meusnier que chacune des
surfaces précédentes. Cette remarque se généralise aisément.

13. — Si le contingent à l'origine de la surface z f(x, ?/),

passant en ce point, comprend toute demi-droite du plan z 0
et si la condition d'unicité de la sphère de Meusnier a lieu pour

23 E. Cartan, C. R. Ac. Sc., t. XXI, séance du 21 oct. 1935.
24 b. Segre, Il teorema di Meusnier nella geometria degli insiemi (R. Acc. d'Italia,

vol. VI, 1935, p. 1205-1220, cf. n00 5 et 8); H. Busemann et Feller, Kriimmungseigen-
schaften Konvexer Flächen (Acta Math., t. 66 ; voir le second énoncé du £ 2).

_Z

X [_ax + by -f cz + P (x, y, *)]2

hz -f R (x, y z)

2z x2 + y2, et 2z x2 + y2 -f- z2
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chacune de ces demi-tangentes avec un rayon non nul, on déduit
d'un théorème de Janiszewski que la courbure normale est

fonction continue de la demi-tangente correspondante. En
même temps, l'on justifie pour f(x, y) la forme suivante:

1 r • 1f(x, y) -p2[c(<o) + s] {x p cos co, y p sin cd)

c étant continue et de période 2iz\ quant à s, c'est une fonction
continue d'un point, infiniment petite avec la distance p de

l'origine à ce point.
La courbe p2c(co) ± 1 est la limite d'une courbe obtenue

en prenant la section de la surface z f(x, y) par le plan 2 z h
et la soumettant à une homothétie de rapport \h\~1/2 et de centre 0.
Cette courbe p2c(co) ± 1 s'obtiendrait encore en portant
sur chaque demi-tangente issue de 0, la racine carrée du rayon
de la sphère de Meusnier correspondante. Pour que cette courbe
se réduise à une conique, il suffit comme je l'ai montré en 193225

que sur une portion or de la surface z, /(#, y), dont le paratin-
gent se réduit en chaque point à un plan, il corresponde à chaque
élément semi-linéaire une courbure normale dépendant
continûment de cet élément linéaire, ou encore du point et de la demi-
tangente correspondante pris en bloc.

La route suivie pour cette démonstration consiste à prouver
que toute courbe de la portion cr de surface qui, sur l'un de ses

plans tangents, se projette suivant un arc à courbure continue
possède elle-même une courbure continue. On quitte ici le
champ d'invariance de Gftolz pour celui de G2.

La démonstration citée apporte d'ailleurs, pour les
transformations particulières conservant les parallèles à l'axe des z
et les longueurs sur ces droites, une réponse affirmative au
second des deux problèmes suivants, que nous rapprochons
à dessein :

Probleme Px. — On considère le groupe G' des transformations
M ©(m) qui de tout arc ayant une seule ptgte en chaque

25 G-. Bouligand, Journ. de Math., 9, t. XI, 1932, p. 137-141. L'indicatrice généraliséedéfinie par MM. H. Busemann et W. Feller dans leur mémoire cité des Acta Mathematica,ou les auteurs considèrent une surface convexe, est un cas particulier de la courbe
f2 c (w) ± 1 à laquelle conduit l'unicité de la sphère de Meusnier pour chacune
des demi-tangentes issues d'un point de la surface. -

L'Enseignement mathém., 36me année, 1937. 2
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point mènent à un arc ayant une seule ptg^e en chaque point,
cela de telle manière qu'à un élément (point, ptgte) du premier
espace corresponde un élément (point, ptgte) du second, suivant
une loi biunivoque et continue. Le groupe G', qui contient G1?
se réduit-il à Gx

Probleme P2. On considère le groupe G" des transformations
M % (m) qui de tout arc à courbure continue mènent

à un arc à courbure continue, cela de telle manière qu'à un
élément (point, cercle osculateur) du premier espace corresponde
un élément analogue du second, suivant une loi biunivoque et
continue. Le groupe G", qui contient G2, se réduit-il à G2

H y a Heu de nous arrêter un peu sur les notions
envisagées dans Px et P2. Lorsqu'on prend d'emblée le groupe Gl7
1 attention se porte sur le ptg. et les classes de courbes qu'il
permet de distinguer: courbes dont les ptgtes sont intérieures
à un cône réel non dégénérescent du second ordre; courbes dont
le ptg. ne contient qu'une seule droite28. Mais si, parti de Gftolzy
on revient à son sous-groupe G1? on envisagera d'abord le ctg.
Un type de condition invariante dans Gftolz est le fait pour le
ctg. en un point de se trouver dans quelque demi-cône réel,
non dégénérescent du second ordre, ou ce qui revient au même,
de rester dans un demi-cône strictement convexe, c'est-à-dire se
laissant inclure aussi dans un demi-cône non dégénérescent du
second ordre, de même sommet. Pour un champ continu de
tels demi-cônes yM, il y a identité entre les deux classes suivantes
d'arcs simples:

1° Ceux dont le ctg. postérieur est formé de demi-droites
situées dans ou sur yM ;

2° Ceux dont les ptgtes portent une demi-droite située dans
ou sur yM, cela a lieu pour chacune d'elles.

En particulier, ainsi que l'avait établi aux termes près, dès
1927, M. G. Valiron par un principe donnant sans restriction

26 Un continu possédant une de ces propriétés est nécessairement une courbe, en
vertu des lemmes d'univocité. Pour l'énoncé général de ces lemmes, cf. G. Bouligand,
« Sur quelques applications de la théorie des ensembles à la géométrie infinitésimale »

(Bull. Ac. volon. des Sc. et des Lettres, série A, 1930, p. 410-411).
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la clef de l'identification précédente27, un arc simple dont le ctg.

postérieur est formé d'une seule demi-droite continûment

répartie a aussi son ptg. réduit à une droite (cela, en chaque

point).
Comme il était à prévoir, une restitution convenablement

conduite de la continuité nous ramène donc d'éléments invariants

dans Gftolz à des éléments invariants dans Gx.

15. — Pareillement, si l'on étudie dans G?tolz un arc à ptgte

unique en chaque point, on prendra son ctg. circulaire. Supposons

que le ctg. circulaire postérieur28 se réduise à un seul cercle

dont le rayon dépasse une longueur fixe, cela de manière qu'en

prenant le point de contact M comme pôle d'inversion et une

puissance constante, la droite transformée du cercle dans cette

inversion soit continûment répartie en fonction du point M.

Cela revient à dire que les trois coordonnées donnent lieu, pour
chaque valeur particulière s0 de l'abscisse curviligne et pour
chaque valeur courante s la dépassant, à une relation de la
forme

x(s) x(s0) + (s — s0)x*(s0) H~
^ [gfeo) + s]

où % est continue en s0 tout le long de l'arc, et où s tend vers
zéro pour chaque s0. La continuité de £, exige alors que s tende
uniformément vers zéro le long de l'arc: sinon, il existerait une
infinité de couples (s^ s1 H- hx \ s2l $2 + A2), et h2 étant positifs,
et arbitrairement petits, aussi bien que | s2 — s11, tels que la
différence

x(s2 + h2) — x{s2) — h2x' (s2) x(s1 + kj) — x(s±) — h^x'(st)
7 2 7 2

27 G-. Valiron, Sur les courbes à tangente continue qui admettent une tangente en
chaque point (Nouv. Ann., 4me série, t. II, 1927, p. 48-50). Pour une étude plus
systématique, voir A. Marchaud (Journ. de Math., 9me série, t. XII, 1933, pp. 415 et ss.).
Voir aussi un mémoire de S. K. Zaremba, Bull, des Sciences math., mai 1936.

28 L'introduction d'un contingent circulaire unilatéral est naturelle lorsque ayant
supposé l'unicité de la sphère de Meusnier pour chaque demi-tangente, on cherche à

prouver ensuite le théorème d'Euler sur l'indicatrice des courbures, dans la voie suivie
en 1932 au^ Journ. de Math, et reprise ici pour rattacher ce dernier théorème à la théorie
des groupes.
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demeure supérieure à un nombre positif fixe; cela donnerait au
voisinage d'un point d'accumulation de tels couples, une inégalité
incompatible avec la continuité de £(s). Posons

s

X(s) x (s) — x(0) — s x' (0) — | '(s — t)% (t) dt
0

'

-

Pour h positif infiniment petit, la quantité

hr2 [x (s + h) — X (s) — hX' (s)]

tend uniformément vers zéro. En changeant X (5) en

± X(s) + k2s2, on obtiendra la limite k2. Dans le plan (s, X)
le diagramme de l'une des fonctions ± X(s) + k2s2 part de

l'origine tangentiellement à l'axe des s, avec une concavité
tournée vers les X positifs : donc chacune des fonctions
db X(s) + k2 s2 sera positive, le long de notre arc, si petit que
soit A:2, ce qui ne peut avoir lieu que pour X (s) 0. 29 On en
conclut que Ç (5) est la dérivée seconde de x, à titre bilatéral.

Ces considérations sont importantes lorsqu'on veut montrer
l'équivalence de diverses définitions pouvant convenir aux
courbes à courbure continue, lesquelles jouent naturellement un
rôle indispensable dans ma démonstration de 1932 du théorème
d'Euler (existence d'une conique indicatrice), dont j'ai donné la
référence au cours du n° 14. Le procédé d'unification le plus
commode est celui qui ramène la continuité de la courbure à

l'existence et à la continuité de la dérivée seconde droite de

chaque coordonnée par rapport à l'arc (ce que nous venons de

justifier).
Voici par exemple une propriété caractéristique des courbes

à courbure continue30, laquelle est d'ailleurs invariante dans G2:
c'est la réduction à un cercle unique de rayon non nul du ptg.
circulaire en chacun de leurs points.

Une autre propriété caractéristique des mêmes courbes se

29 ce principe de raisonnement est celui que Schwarz utilisait pour l'étude de la
dérivée secondé généralisée introduite en théorie des séries trigonométriques. Cf.
Picard, Traité d'Analyse, t. I, 3me éd., p. 355-356.

'

30 Les courbes à courbure continue sont des cas particuliers des courbes à courbure
bornée qu'on peut caractériser de diverses manières. Voir C. Carathéodory, Kurven
mit beschränkten Biegungen (Sitzungsberichte der preussischen Akademie, 1933).
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présente du fait qu'on peut définir le ctg. circulaire, second mode,

en recourant à l'espace des points-vitesses et y ramenant la

notion du ctg. circulaire de l'espace (x, y, %) à celle du ctg.
ordinaire d'un ensemble de points (#, y, 2, », c, w) 31. Une suite

génératrice d'un cercle unique du ctg. circulaire second mode

donne aussi un cercle unique du ctg. circulaire premier mode

sans que la réciproque ait lieu. Toutefois, pour une ligne à

courbure continue où le ctg. circulaire premier mode se réduit
à un cercle unique continûment réparti, on a la même propriété

pour le ctg. circulaire second mode.

16. — Abordons maintenant, Px. On peut voir que la
correspondance biunivoque et continue reliant les éléments (point,
ptgte) lorsque le point m décrit un arc à ptgte unique reste

valable quand les dits éléments proviennent d'un ensemble

ponctuel quelconque. Il suffit de montrer que chaque suite de

couples ponctuels tendant simultanément vers un point a,

en donnant une ptgte unique, conserve cette propriété; ce qu'on
déduit de la considération des droites mini et de leurs
transformées; au voisinage du point ®(a), toutes les ptgtes à ces

transformées prennent une même direction limite, vu la continuité

de la correspondance des éléments (point, ptgte). Soient

n{1 n\ quatre points tendant vers a, de manière que

mini et mini donnent une seule et même ptgte, le même fait
se produisant pour mimi et nini^ la direction de la seconde ptgte
ainsi obtenue étant distincte de celle de la première. Supposons
enfin que les couples min'i donnent aussi une ptgte unique et
distincte de la précédente. Dans ces conditions, nous pourrons
dire que le quadruplet m^mlnl est un micro-parallélogramme
non dégénérescent. Si nous continuons à raisonner dans l'espace
à trois dimensions, nous pourrons définir pareillement des

micro-parallélépipèdes non dégénérescents et qui tendent vers m,
de manière que l'on ait pour leurs arêtes trois directions limites
non coplanaires 32. On pourra donc faire correspondre aux
propriétés de géométrie affine des propriétés qui seront vérifiées à

la limite pour des figures infiniment voisines du point a. Et

31 Gr. Bouligand, Bull. Soc. Math., t. LX, 1932, p. 239-241.
32 G. Bouligand, Bull. Soc. Roy. des Se. de Liège, -4me année, p. 219-223.
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d'après nos hypothèses, ces propriétés micro-affines seront
conservées par la transformation ®. Cela montre déjà que la loi
de correspondance entre une ptgte issue de a et sa transformée
issue de ©(a) est celle qui relie les directions de deux droites
liées par une transformation linéaire non dégénérescente.

Cela posé, pour s'assurer que G' se réduit à G1? on va d'abord
montrer qu'il n'existe qu'une seule valeur limite pour le rapport,
au volume d'un domaine infiniment voisin du point a, du volume
transformé [domaine infiniment voisin de ©(a)]. Puis on montrera

que cette limite est une fonction continue de a.
La première de ces propriétés se démontre par l'absurde:

l'existence de deux valeurs limites distinctes pour notre rapport
de volumes entraînerait celle de couples de volumes infiniment
petits équivalents dont les transformés ne seraient pas des
infiniments petits équivalents, ce qui serait incompatible avec
l'existence des propriétés micro-affines. Il n'y a donc qu'une
seule valeur j(a) du jacobien. Et cette valeur eut été régie, si
sa pluralité eût été possible, par la semi-continuité supérieure
d'inclusion: vu son unité, elle est donc continue (c.q.f.d.).

La transformation linéaire tangente existe et est continue.
D'où G' Gx.

17. — Le problème Px est donc résolu par l'affirmative.
D'après les remarques du n° 14, ce problème ne serait pas altéré
si au lieu d'envisager la conservation des arcs à ptgte unique,
on envisageait celle des arcs à demi-tangente postérieure unique
et continue de manière qu'un élément (point, demi-tangente)
se change en un autre élément de la même classe suivant une loi
biunivoque et continue. L'invariance demandée n'a lieu que
dans le groupe Gr Même résultat si l'on envisageait la conservation

des mouvements qui s'accomplissent avec une vitesse
déterminée et non nulle, de manière qu'il y ait correspondance
biunivoque et continue des points-vitesses.

Occupons-nous maintenant des transformations du groupe G2

qui satisfont aux conditions du problème P2. Nous pourrons
encore énoncer ce dernier sous diverses formes équivalentes.
Par exemple, on peut regarder un arc doué d'une ptgte unique,
dans l'espace (x, y, z), servant de trajectoire à un point ayant à
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chaque instant une vitesse déterminée, non nulle, avec une

accélération tangentielle continue. Après construction d un

hodographe, nous aurons la trajectoire d'un nouveau mouvement

dans l'espace (x,y,z,u,o, lequel est représenté dans

l'espace {x, y, z,u,e,w,t)parun arc rencontrant en un seul

point chaque variété tconst. Résoudre le problème P2, c'est

trouver parmi les transformations considérées de 1 espace

(x, y, z)celles qui se laissent prolonger dans l'espace

(,x, y, z,u, c, w,t) suivant le mode indiqué de manière qu un

arc de ce dernier espace, doué d'une demi-tangente unique et

continue, et soumis aux conditions u(t), v(t),

^ w (t), donne par la transformation prolongée, un arc

jouissant de la même propriété, la correspondance entre les

éléments (point, demi-tangente) étant toujours biunivoque et

continue.
Puisque nous sommes dans Gx, nous avons entre les composantes

de la vitesse dans le mouvement antécédent et dans le

mouvement conséquent les relations

U Ufx ++ (VfZ

V Ugx+ Vgy + WgZ.W uhx+ vhy +

Si u, c, <v admettent des dérivées premières continues par
rapport à t,la même propriété doit appartenir à U, V, W. Cela

aura lieu notamment quand chacune des quantités e, w

restera constante. Donc, la quantité

ufx + vfy+ wfz

devra posséder une dérivée par rapport à quels que soient les

coefficients constants u, e, w. Nous aurons donc à exprimer cette

propriété pour chacune des dérivées partielles du premier ordre

de /, g, h,quand le point x,y,z décrit une trajectoire suivant

une loi impliquant l'existence d'une vitesse continue. De la
solution du problème Px appliquée à la transformation

X x Y y Z z XS — u + <f[x, y, z)
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ou <preprésente l'une des dérivées partielles on conclut
à 1 existence et à la continuité des dérivées secondes de /, h
ce qui résout par l'affirmative le problème P2.

Le théorème d'Euler sur l'indicatrice des courbures est donc
un cas particulier d'un, énoncé G2 G" extrait de la Théorie
des groupes.

^8. Terminons par des remarques concernant la réalisation
des groupes que nous avons introduits. Pour obtenir une
représentation concrète de G1; nous nous sommes limités à des
transformations ponctuelles opérant dans un espace cartésien.
Par l'intermédiaire de ces transformations, on peut atteindre
les correspondances entre deux variétés à un même nombre pde dimensions, baignant dans un espace cartésien à n + pdimensions (m1? u2, un+p), pour ne retenir que les propriétés
de ces correspondances pouvant se lier d'une manière intrinsèque

aux variétés considérées. Nous prendrons exclusivement
des variétés admettant une représentation paramétrique

ui uiixi,...,xp) avec 2, + (E)

où les seconds membres ont des dérivées premières continues
par rapport à l'ensemble des variables, cela de telle manière
que le tableau des 'àu.J'dXj contienne au moins un déterminant
d'ordre p non nul. D'après le théorème des fonctions implicites,
on peut alors définir le voisinage d'un point sur la variété par
néquations exprimant, sur l'ensemble des coordonnées w,,..., m

de 1 espace ambiant, n d'entre elles par des fonctions continûment
dérivables du premier ordre des p autres. Au point de vue

intrinsèque dans En+p, ces variétés sont .encore celles dont le
ptg. en chaque point contient toutes directions d'une variété
linéaire Lp d'ordre p. Nous dirons en abrégé que ces variétés
sont régulières du premier ordre. Sur ces variétés-mêmes, on
pourra donner un sens aux notions de micro-équipollence, de
micro-parallélogramme, notions qu'on peut rassembler sous
la dénomination de micro-affines. Toutes sont solidaires des
suites de couples ponctuels mi5 donnant naissance à une
ptgte unique. On pourra donc concevoir les transformations de
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G, comme opérant entre deux variétés à un même nombre de

dimensions V' et V" de la classe précédente et en conservant

les propriétés micro-affines. Au mouvement d'un point admettant

sur V' à chaque instant une vitesse déterminée, continue

et non nulle, va correspondre sur V" un mouvement doue des

mêmes caractères. De cette correspondance purement ponctuelle,

nous pourrons encore passer à la correspondance entre les

points-vitesses, linéaire relativement aux vitesses affectant une

même position. Nous aurons

_ dx^, djüv(E')Vi~0% dt dxp dt

En considérant les quantités
dxk

comme de nouvelles variables, il pourra se faire que les 2n équations

(E, E') définissent dans l'espace à 2 + p) dimensions

une variété régulière du premier ordre. Nous dirons alors que

dans l'espace K, un+p)leséquations (E) définissent une

variété régulière du second ordre. Soient V et Y" deux variétés

de cette classe. On pourra concevoir des transformations de^ G2

opérant entre V' et V". A un mouvement sur V' dont l'accelera-

tion est bien déterminée sur Y', va correspondre un mouvement

analogue sur V", la correspondance purement ponctuelle pouvant

cette fois se prolonger par une autre correspondance biunivoque

et continue, celle des éléments point-vitesse-accélération.

Si deux mobiles, à un certain instant, passent au même point

de V' avec la même vitesse, chacun d'eux ayant une accélération

déterminée, la différence géométrique de leurs accélérations sera

un vecteur de la variété linéaire L'p portant le ptg. de V' au

point considéré. En outre, lors d'une transformation de G2,

opérant de V' à V", cette différence d'accélération subira la

transformation linéaire tangente. Par cette différence géométrique,

nous atteignons une propriété intrinsèque de la variété.

On peut y rattacher la notion de suite ponctuelle tendant vers

un point de V' pour lequel elle admet une demi-tangente unique

et un cercle de courbure unique: une telle suite sera réalisée
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lorsqu'il sera possible d'attacher à ses divers points des valeurs
temporelles, la vitesse au point limite étant un vecteur bien
déterminé porté par la demi-tangente, toute différence géométrique

éventuelle entre deux déterminations de l'accélération
étant colinéaire à la vitesse. Le théorème de Meusnier n'est rien
de plus que ce résultat immédiat de la comparaison des
accélérations pour diverses suites de V' tendant vers un même point
avec une même demi-tangente, quand on choisit les temps
attachés aux points de chacune d'elles de manière à réaliser la
même vitesse au point limite : les différences de ces accélérations
prises deux à deux sont des vecteurs de la variété V' au point
considéré. Sous cette forme, le théorème de Meusnier préexiste
à l'établissement d'une métrique de Riemann ou de Finsler sur
la variété. Ou, si l'on préfère, le théorème de Meusnier tel qu'on
le formule avec une de ces métriques est réductible à la forme
que nous venons d'indiquer 33.

19. Dans les considérations ci-dessus, l'espace cartésien
intervient encore, au moins à titre d'échafaudage. Pour s'en
passer, il faudrait prendre une variété topologique compacte P,
à chaque point de laquelle seraient attachés des vecteurs dont
1 ensemble forme une variété vectorielle linéaire à un nombre
constant de dimensions, ces vecteurs étant jusqu'à présent
sans autre relation avec V que l'appartenance à V de l'origine
de chacun d'eux. Il faudrait postuler que l'ensemble W des
éléments (point-vecteur) est encore une multiplicité à
voisinages, elle-même compacte. Une axiomatique convenable
dévrait introduire la notion d'un couple de points infiniment
voisins d'un point fixe et tendant à déterminer une direction34

33 Cf. E. Cartan, Les espaces de Finsler, fasc. 79 des Actualités, Hermann, p. 21.
34 Le processus de détermination limite d'une telle direction peut se concrétiser en

admettant que dans la variété, la lumière, au lieu de se propager entre deux points
par un rayon rectiligne (comme il advient pour une variété affine) se diffuse, l'imaged'une source ponctuelle perçue d'un autre point de la variété ayant un diamètre apparent
non nul, mais qui tend vers zéro lorsque ce d°ernier point tend vers la source. L'un
des postulats de l'axiomatique envisagée dans le texte énoncerait donc qu'un couple
de points de la variété étant donné, on peut attacher à l'un de ces points un pinceau
conique de directions (correspondant à des vecteurs de la variété en ce point), pinceau
dont la section droite sphérique donnerait le contour de l'image diffuse de l'autre point.
En échangeant les deux points et admettant le voisinage indéfini de chaque génératrice
du premier pinceau avec chaque génératrice du second quand les points sont infiniment
voisins, on aurait la notion d'une direction limite.
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qui soit celle de l'un des vecteurs de ce point: ce serait le premier

pas fait en vue de conférer à V une microstructure affine et

d'apprendre à y définir, en chaque point d'accumulation, le ptg.
d'un ensemble ponctuel, ou ce qui peut être plus commode, le

ptg. mixte de deux ensembles ponctuels ayant un point
d'accumulation commun35. Pour être utile, une telle théorie devrait
aboutir à l'existence de systèmes réguliers de coordonnées

curvilignes dans la variété, systèmes dont la représentation
analytique rencontrée au n° 18 admet a priori l'existence.

Ces indications suggèrent l'importance de tout ce qui reste
à faire en pareille matière. Et cependant avons-nous ici laissé
de côté bien des questions essentielles, telles les relations de la
théorie des surfaces avec la théorie de la mesure, relations dont
l'importance apparaît de plus en plus nette 36.

SUR LES PROPRIÉTÉS INFINITÉSIMALES
DES ENSEMBLES FERMÉS ET LE PRINCIPE INDUCTIF

DE L'ENLACEMENT 1

PAR

B. Kaufmann (Leeds).

I. — Propriétés locales d'origine intégrale.

1. — Essayons de donner les caractéristiques de la topologie
générale. Etant donné ce que cette science représente aujourd'hui
on serait porté à considérer comme son problème principal
l'examen par les méthodes de la topologie combinatoire des

espaces les plus généraux et en particulier des ensembles fermés.

35 On devrait respecter la condition d'après laquellede ptg. mixte de E et de F1 + F2
est la réunion des ptg. mixtes de E, Fx d'une part, et de E, F2 d'autre part.

33 Voir sur ce point la thèse de M. Georges Durand (Paris, 1931, ou Journ. de Math.,
9me série, t. XI, 1931) et l'important mémoire déjà cité de MM. H. Busemann et
W. Feller (Acta Math., t. 66, paragraphes 4, 5, 6). —Pour l'élimination des espaces

Iusuels, voir Pauc, Bull. Ac. Sc. Belg., août 1936.
j 1 Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à
Quelques questions de Géométrie et de Topologie.
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En effet, ces dernières années la topologie générale s'est très
sensiblement rapprochée de la topologie combinatoire. Cependant,

une différence importante subsiste entre ces deux disciplines
très liées et c'est une différence de principe. On peut facilement
la réduire à un seul fait.

La topologie combinatoire construit ses objets d'après certaines
règles d'incidence à partir d'un nombre fini ou dénombrable
d'éléments que l'on appelle des simplexes ou des cellules. Pour
la plupart des problèmes il est indifférent si ces éléments sont
géométriquement définis ou conçus d'une manière abstraite
comme des schémas combinatoires. En tous cas cette
construction fournit d'une manière univoque: les relations d'incidence
ou de frontière, les possibilités de subdivisions successives ou
de triangulations des configurations en d'autres équivalentes
(ou homologues), etc.

La situation dans la topologie générale est tout à fait différente.
Les ensembles fermés ne sont d'abord que des assemblages

amorphes et essentiellement continus de points; il n'y a point
d'éléments du genre des simplexes à l'exception de ceux à

0 dimensions, à savoir des points. Par conséquent il n'existe

pas de subdivisions simples, de relations d'incidence, etc. Les

subdivisions usuelles fournissent des éléments qui eux-mêmes

n'ont pas de forme non plus, moins encore que l'ensemble
lui-même. Cette différence fondamentale quoique évidente est

décisive pour la mise en problèmes de la topologie générale,
elle explique même son développement actuel.

Il est bien connu que la possibilité d'une application des

méthodes combinatoires subsiste malgré cela. Elle se base sur
l'idée d'approximations. On part des subdivisions suffisamment
fines d'un ensemble F, subdivisions qui découlent des théorèmes
de recouvrement, ou encore d'un réseau fini (ou dénombrable)
de points (simplexes O-dimensionnels) distribués régulièrement
sur F; une seule règle, à savoir celle qui affirme que r + 1

éléments ayant un point commun 1 déterminent un simplexe
à r dimensions, permet de construire les complexes d'approxima-

i Dans le cas d'un réseau ponctuel c'est un réseau partiel formé de r + 1 points
et dont l'enveloppe convexe a un diamètre donné, qui détermine un simplexe
r-dimensionnel.
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tion (les nerfs). Les subdivisions successives de l'ensemble F

donnent une suite de complexes d'approximation. Alors, une

approximation suffisamment poussée permet de déceler la

parenté entre les complexes et l'ensemble lui-même. Le succès

de ces méthodes est bien connu. Elles ont permis de définir

pour les ensembles fermés les relations d'homologie, les ordres

de connexion et les nombres de Betti pour un nombre arbitraire

de dimensions, de généraliser les relations d'intersection et

d'enlacement, d'établir et de démontrer les théorèmes

correspondants de dualité et, enfin, d'obtenir plusieurs propriétés

nouvelles des ensembles les plus généraux.

2. — J'ai voulu rappeler le développement de la topologie
des ensembles fermés pour souligner quelques-uns de ses

caractères auxquels on ne pense pas souvent.

L'un de ces caractères est l'existence de nombreux problèmes

qui ne peuvent pas se présenter en topologie combinatoire et qui
dans le cadre de cette dernière deviennent des énoncés évidents

et triviaux bien qu'ils découlent en topologie des ensembles de

théorèmes combinatoires de toute importance.
Ces problèmes spécifiques à la topologie générale peuvent être

très intéressants et très profonds sans avoir de pendant dans la

topologie cellulaire. Le problème de la dimension en est un

exemple: Représentons-nous, par exemple, les énoncés suivants

pour le complexe r-dimensionnel Kr : Kr contient un cycle

(r — l)-dimensionnel homologue à 0, Kr est un « obstacle

d'homologie » à r dimensions, Kr contient une multiplicité de

Cantor à r dimensions, etc. A tous ces énoncés qui sont bien

triviaux dans le cadre de la topologie cellulaire correspondent
des résultats importants et intéressants dans la topologie
générale. Songeons seulement que ces résultats découlent des

théorèmes de dualité ou peuvent être ramenés à eux.
Une autre propriété remarquable de la topologie générale se

rapporte à son développement et se manifeste par la prépondérance

de résultats globaux. Les complexes d'approximation
permettent d'appliquer les invariants combinatoires à l'ensemble
et puisque ces invariants sont des propriétés globales pour les

complexes, ils le sont à plus forte raison pour les ensembles.
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La parenté mentionnée ci-dessus entre les ensembles et les
complexes d'approximation est une parenté globale. Même les
transformations d'un ensemble F à r dimensions en un complexe
K à r dimensions — d'après le théorème de transition de
M. Alexandroff — transformations qui sont certainement des
processus localement définis, expriment uniquement une parenté
globale. Généralement Vapproximation ne confère pas les propriétés
locales des complexes à Vensemble.

3. — Pour cette raison il semble désirable de distinguer
nettement entre elles les propriétés locales d'un ensemble F
donné dans un espace R. P étant un point de F il est d'usage
d appeler local un énoncé ou une propriété E de F se rapportant
à un voisinage U de P dans l'espace R. Si le même énoncé E se
rapporte à un voisinage arbitrairement petit du point P, on
pourrait l'appeler une propriété infinitésimale de F. Mais d'avoir
formé ces notions ne permet pas encore d'obtenir les caractères
distinctifs des propriétés locales d'un ensemble. Je crois
cependant qu'il existe deux types essentiellement différents
de ces propriétés.

Nous voulons ici nous restreindre aux énoncés qui sont des
théorèmes, c'est-à-dire à des énoncés qui se démontrent.

Soit (B) un système d'hypothèses dont, par une démonstration,
découle un énoncé ou une propriété E; désignons la

démonstration par (B) —>- E(F).
U étant un voisinage dans R d'un point P de F, nous appellerons1

E (U) une propriété locale ordinaire de F si sa démons-
tration (B) E (F) ne contient pas non plus d'hypothèses
essentielles dans R — U. Si Un même énoncé E (Un) reste vrai
pour une suite (Un) de voisinages convergeant en un point V de ¥
et si la démonstration (B) E (Un) reste pour chaque n intérieure
à Un, alors nous parlerons d'une propriété infinitésimale
ordinaire de ¥ relatif à P.

Dans les cas suivants cependant on se trouve en présence
de faits tout à fait différents.

1 Si un énoncé ou une propriété E se rapporte à un ensemble F nous écrivons aussi
brièvement E (F). Si U est un voisinage dans l'espace R, E (U) désigne que l'énoncé
E (F) contient au moins un énoncé essentiel pour U.
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Si la démonstration (B)—^E(U) nécessite des hypothèses

essentielles dans R — Ü et en particulier jsi elle doit se servir

essentiellement d'endroits intérieurs à R — U, alors nous appellerons

E (U) une propriété locale {de F) d'origine intégrale. Et,
d'une façon analogue, si E (Un) est un énoncé vrai pour un

voisinage arbitrairement petit Un de P et s'il existe un voisinage

fixe U§ tel que (B) E (Un) reste vrai pour chaque n, des hypothèses

essentielles étant données dans R — Us, alors nous appelons

E une propriété infinitésimale {de F) d'origine intégrale.

Les propriétés locales (ou infinitésimales) d'origine intégrale

peuvent notamment s'exprimer (totalement ou en partie) par
les énoncés dans R — Û, malgré qu'elles se rapportent
immédiatement1 à U. Si c'est le cas, alors nous parlons d'énoncés

locaux (ou infinitésimaux) de caractère intégral. Evidemment,
ces énoncés peuvent être en même temps envisagés comme des

énoncés globaux. L'on constate aisément qu'un énoncé de

caractère intégral doit être nécessairement d'origine intégrale
(mais pas réciproquement).

Les propriétés locales et notamment les propriétés infinitésimales

d'origine intégrale sont caractéristiques pour la topologie
des ensembles fermés. Mais on voit immédiatement qu'il s'agit
seulement d'une formation relative des notions. La distinction

entre les propriétés ordinaires ou d'origine intégrale
dépend non seulement d'un certain système (B) d'hypothèses,
mais aussi des démonstrations elles-mêmes2. Je crois cependant

qu'il est un principe de travail utile et de grande actualité
de former ces notions malgré qu'elles ne requièrent pas, au
moins sous cette forme, de rigueur mathématique ou même

philosophique.

4. — Je voudrais encore compléter ces considérations sur
les propriétés locales et infinitésimales des ensembles fermés en

soulignant les deux (ou trois) attitudes qu'on peut prendre

1 La définition de propriété localeji'exclue point que l'énoncé E (U) contienne en
même temps des énoncés dans R — U. Cela n'est.exclu que pour le cas des propriétés
locales ordinaires. Considérons par exemple l'énoncé suivant: « (B) entraîne que
tous les couples de points dans_U peuvent être reliés par un arc dans F tel qu'il
rencontre des points dans R — U ».

2 Seuls les énoncés de caractère intégral sont indépendants des démonstrations.
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vis-à-vis -d'elles, attitudes entraînées par les problèmes
eux-mêmes.

L'une de ces attitudes est déterminée par le désir de caractériser
entre les ensembles et les espaces les plus généraux ceux qui
présentent les propriétés déjà connues des formations cellulaires
(des multiplicités, des espaces de Poincaré, des sphères). Ces

problèmes sont aussi très importants pour la topologie combina-
toire puisqu'ils permettent d'étendre son domaine de validité.
La résolution de ces problèmes s'obtient en posant des conditions
nécessaires et suffisantes de genre généralement local, qui
garantissent la possibilité de la structure cellulaire. On a une
très grande liberté dans le choix de ces conditions et l'intuition
est d'un grand secours. A priori au moins, ces conditions peuvent
aller des tautologiques jusqu'aux très profondes. Le principe
directeur est évidemment le suivant, si l'on envisage un but
concret: moins on pose d'hypothèses, plus la portée des conditions
s''étend. Comme exemple citons le problème de la généralisation
de la notion de multiplicité, dont on s'est beaucoup occupé ces

dernières années (Van Kampen, Pontrjagin, Alexander,
Lefschetz) ou encore le problème de caractériser la sphère
à n dimensions. On peut aujourd'hui poser des conditions
nécessaires et suffisantes pour l'homéomorphie d'un espace et
d'une sphère, mais on pourrait aussi en poser assez peu pour
rendre le problème extrêmement difficile, comme c'est le cas

avec l'hypothèse de Poincaré. Comme problème très relié à

ce dernier, mais plus profond encore, citons le problème de la
réciproque du théorème Jordan-Brouwer dans les espaces à

quatre ou plus dimensions (à savoir de caractériser la sphère

par les propriétés de l'espace complémentaire).
Une attitude foncièrement différente doit être adoptée si l'on

se donne un objet géométrique (aussi général que possible) et
si l'on cherche des propriétés nouvelles de cet objet. Si, dans

cette attitude, nous définissons la propriété d'une façon abstraite

ou bien si nous formons de nouvelles notions, le critère est

opposé: plus la notion formée, qui exprime des propriétés
nouvelles de l'objet, est tranchante, plus sa portée est grande.
Dans la topologie des ensembles on trouve tant d'exemples de

ce fait qu'il nous semble inutile d'insister. Ce critère oblige aussi
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à justifier une notion nouvellement introduite et cela par

l'indication de sa signification pour une classe d'objets donnée

indépendamment de cette notion et aussi générale que possible.

Enfin, je mentionnerai encore une troisième attitude: par

des définitions (des axiomes) on peut déterminer une nouvelle

classe d'objets satisfaisant aux conditions données. Ensuite

on examine d'autres propriétés de l'objet. Pour cette attitude

il ne faut pas oublier que le nouvel objet dépend généralement

des définitions. Cette attitude est d'usage pour établir une

théorie abstraite nouvelle et le développement cohérent de cette

théorie doit la justifier. Pratiquement, elle est suggérée par
le désir d'étudier les problèmes difficiles d'homéomorphie èt

d'homotopie au moins dans des conditions plus spéciales et

plus faibles. Les trois attitudes sont courantes dans la topologie.

II. — Le principe inductif de l'enlacement.

5. — Les pages suivantes seront consacrées à un bref exposé

de la théorie infinitésimale des ensembles les plus généraux.

Il s'agira sans exception de propriétés d'origine intégrale dans

le sens du critère énoncé plus haut. Ce sont, d'ailleurs, les

résultats d'une suite de recherches que j'avais abordées dans les

dernières années et qui, je crois, font connaître pour le moment

plusieurs nouvelles relations importantes pour la structure

infinitésimale des ensembles. Je voudrais d'ailleurs me restreindre

aux questions de principe de ces recherches. La compréhension

et la classification de ces principes nous sera facilitée si nous

retenions quelques phases du développement de la topologie

générale. On peut noter, je crois, trois moments critiques,
décisifs pour ce développement.

Le premier moment critique s'est présenté le jour où l'on
s'est rendu compte de Y importance des relations d'enlacement

pour la topologie générale. On avait reconnu notamment .que la
décomposition d'un espace par un ensemble n'était qu'un cas

particulier d'enlacement de l'ensemble avec un cycle de dimension
duelle. On sait que cette découverte est due à MM. Lebesgue

L'Enseignement mathém., 36me année, 1937. 3
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et Brouwer1. En topologie combinatoire ce sont les théorèmes

de dualité qui relèvent le mieux l'importance de cette découverte.

Ce sont les relations d'intersection et notamment les

indices de Kronecker dont la théorie complète est due à

M. Lefschetz qui forment leur outil le plus important.
En particulier, cette conception a permis d'introduire la

notion de la multiplicité générale qui est fondamentale pour
l'exposé qui suit.

Soit U un voisinage sphérique dans Rn. Un ensemble fermé

à r dimensions F dans U est appelé une multiplicité générale

s'il existe un cycle algébrique rn_r_1 dans U irréductiblement
enlacé avec F; c'est-à-dire rn"r_1 0 dans U —F tandis qu'on

a pn-r-i ^ o dang u — F' pour chaque vrai sous-ensemble F'
de F 2.

La grande importance de ces multiplicités s'explique par leur

valeur universelle. Comme M. Alexandroff a pu le montrer,
chaque ensemble fermé à r dimensions contient une multiplicité
générale à r dimensions 3.

Un second point de vue qui — au moins pendant quelques

années de suite — a fortement influencé la topologie, était
le suivant: on conçoit la nature de la dimension d'un ensemble

comme un invariant à définir inductivement, l'induction se

rapportant à une suite de décompositions d'un ensemble par
des ensembles à un nombre inférieur de dimensions. Ce principe
aussi est dû à M. Brouwer.

Le troisième pas est fait par la théorie de que

nous avons déjà mentionnée et dont le développement est dû

notamment à MM. Alexandroff et Lefschetz.
Le principe que je voudrais indiquer maintenant apparaissait

de plus en plus au cours de mes recherches; il s'agit ici d'une

synthèse du principe de l'enlacement et du principe de la

séparation. J'appellerai ce principe le principe inductif de

l'enlacement et la configuration des cycles et des ensembles à

laquelle il donne lieu le système inductif de l'enlacement.

1 Voir L. PoNTRJAGriN, Math. Annalen, 105 (1931), pp. 166-167.

2 La notation ~ 0 désignera désormais l'existence d'un complexe

jçn—r pW—1.

3 Voir P. Alexandroff, Dimensionstheorie, Math. Annalen, 106 (1932), pp. 161-238.
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6. — Décrivons tout d'abord deux opérations très simples
qui, formellement, s'appliquent à des ensembles aussi bien qu'à
des cycles.

Soit, dans R, Ar un ensemble fermé à dimensions. Nous
appelons décomposition de Ar la détermination d'un ensemble
A(r_1) à (r — 1) dimensions au plus, et tel que Ar puisse être
représenté comme somme de deux ensembles fermés 1Ar et 2Ar,
1Ar 2Ar A(r_1), ce que nous écrivons A1' xAr +A(r_1) -f- 2Ar.
Nous appelons extension d'un ensemble l'opération inverse; un
ensemble donné A^' ' ' subit l'extension à un ensemble à r dimensions

si l'on parvient à déterntiner deux ensembles 1Ar et 2Ar
tels que 1A + A(r_1> 4- 2Ar Ar soit une décomposition de Ar.

Nous pouvons définir les opérations correspondantes pour les
cycles algébriques. Soit F un cycle algébrique à r dimensions.
La décomposition de F en deux complexes 1Cr, 2(7 sera déterminée

si nous indiquons un cycle F"1 à r — 1 dimensions tel
que F x(7 + 2Cr, — F"1, - 2(7 — F"1. Etant donné
un cycle F"1 nous appelons extension de F-1 la détermination
ou la construction de deux complexes 1F et 2Cr tels que
1Cr + 2Cr F soit décomposé par F"1.

Soit F Br un ensemble fermé à r dimensions — dans le
sens de M. Brouwer — intérieur à un voisinage sphérique U
borné dans R" par une sphère à — 1) dimensions. Soient

Br, B^1, Br"3, B",

une suite d'ensembles fermés à (r — /') dimensions (j 0,1,..., r)
tels que chaque ensemble Br-:M décompose l'ensemble Br~3 en
deux sous-ensembles 1Br^ et 2Br~3,

Br~3 iß'"3 + Br~3_1 + 2B2"3

Soit rn~r_1 un cycle algébrique (mod. 0) à (n — r 1)
dimensions, satisfaisante la condition

et soient
T" r 1

o dans U — Br

Tn~r rn~r+1
} pn-r-f j pn-r-l
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une suite d'extensions du cycle rn-r-1

pn-r+j ^ lQW-^+i _|_

où l'on a pour chaque / 0, 1, 2, r

iQn-r+j rn-r-3-l dang y _ igr-i
>

_ iÇf-r+j __pn-r+j-1 dang y _ igr-J _

Si les suites { P r '-M }jV M et { B^'},r satisfont

à ces conditions, nous dirons qu'elles forment un système inductif
d'enlacement relatif à l'ensemble F.

Etant donné un système inductif d'enlacement, nous appelons

les suites { Yn~r+i~i } une suite fondamentale de cycles et la

suite {Br~5 } une suite fondamentale densembles du système

d'enlacement en question.

7. — Etant donné un système inductif d'enlacement, on en

tire d'abord une extension inductive de l'important théorème

Phragmen-Brouwer-Alexandrofï. Conformément à l'hypothèse,
l'ensemble F Br est un obstacle d'homologie par rapport

au cycle r n~r-\c'est-à-dire que l'on a, dans U —Br, r"-'"-1 ~/-0.
De ce fait le théorème Phragmen-Brouwer généralisé affirme

qu'il existe dans Br rel S-1 un vrai cycle enlacé avec rn"r_1

(mod. mk) et totalement non homologue dans Br

Zr /, zr,...,zl,
1 ' 2 ' R

où l'on a pour chaque k

zl

et où
Z'-1 P"1 P1 4"1

1
7 2 K

est un cycle dans Br_1 et totalement non homologue 0 dans Br_1.

Le cycle Zr peut être supposé de position générale par rapport
à rn~r-i de façon que les indices de Kronecker (de module

variable mk) puissent être déterminés pour chaque k.
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La généralisation inductive du théorème Brouwer-Alexandroff.

Soit
-pn-r+j-l \ f T*r~j \l1 Jj 0,l,...,r > t15 )j=0,1,r

un système inductif d'enlacement relatif à F. Nous affirmons

que :

1° Il existe une suite de cycles entiers

(Z^- /r"3, },-=0,w (mod- "*> >

telle que, pour chaque /, Zr~j soit un cycle entier dans Br~3,

totalement non homologue 0 dans Br~?, où

ç* - icuj + 2cr,

^ dans

— 2Cjy3 zr^-{ dans 2B£~3 ;

2° On a, pour chaque /, rn~r+j~i -/w 0 dans U — Br_J.

Ce théorème se démontre aisément par induction; l'on
démontre les propriétés 1° et 2° alternativement pour des j
croissants. De la validité de la relation 2° pour / 0 découle

— d'après la définition du système d'enlacement — la validité
de 2° pour chaque j 1, 2, r. De ce fait, chaque ensemble
Br~3 est un obstacle d'homologie du cycle rn~r+3_1 étendu / fois,
ce qui explique le nom de « système d'enlacement » pour la
configuration formée des suites {pi~r+î'~1} et {Br~3}.

En construisant encore les cycles entiers {Zr~3} qui
correspondent univoquement aux ensembles décomposants {Br~3 },
nous obtenons une configuration efficace au point de vue
combinatoire. Pour chaque / elle satisfait aux relations 1° et 2°

et, pour préciser, nous la notons dans le tableau suivant. Nous
appelons cette configuration un « système combinatoire
d'enlacement ».

Soit
Y71-7"1 ^ 0 dans U — Br
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Les relations suivantes (mod. mk) sont vraies pour chaque

/ 0, 1, r:

pn-r+3-1 iQn-r+j-l _j_ 2Qn-r+j-l
^

gr-j igr-j _j_ gr-j-l + 2gr-j
^

iqn-r+j rn-r+j-1 dans y _ iBr-j

_ 2Qn-r+3 pn-r+i-l dang y _ sgr-j
>

ZM 1CM + «C^}fcB,lf2f... dans Br~3

{^ Wl,2,... ^ns 1Br~3 2Br~3

{ x ecr*. rn~r+j) x (- 2cr rn~r+j) 7* 0 }fe=1>2_

Tn-r+j-1 ^ 0 dang y __ gr-j

8. — L'importance du système inductif d'enlacement repose
sur le fait suivant: l'on peut, en retenant les suites {Br~3} et

{Zr~3}, remplacer la suite fondamentale de cycles {rn"r+3~1}
par une suite fondamentale { yn~r+^~i j de cycles arbitrairement
petits qui forme avec les suites {Br~3} et {Zr~3} un système
combinatoire d'enlacement équivalent. En d'autres termes1:

Pour chaque s arbitrairement petit il existe une suite de

cycles { yn-r+3'-i J.

.n-r+j-1 _ i-n-1 + j-i i 2„n-r+3-l
l ~~ 7 "t" U 5

iqn-r+j yn-r+j-1 dans y _ igM
^

_ 2qn-r+j yn-r+M dang n __ 2BM

atr^xs,
qui a les mêmes relations d'intersection et d'enlacement avec
les cycles Zr~3 que les cycles { rn~r+3-1}.

Il est essentiel pour la construction des cycles { yn~r+3-1 j. de

ramener un cycle donné à une « position générale » par rapport
à un ensemble de dimension complémentaire.

Nous appelons Kn_r> un complexe en position générale par
rapport à un ensemble Br, si son « échafaudage » à (n — r — 1)

dimensions ne rencontre pas l'ensemble Br.

i Voir [7] et surtout [9]. Les chiffres gras entre crochets se rapportent à la bibliographie
indiquée à la fin.
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Nous dirons qu'un complexe Kn_1 se trouve en position

générale par rapport à la suite fondamentale {Br •'}, si chaque

échafaudage à (n — r+j—1) dimensions de K"1 est en

position générale par rapport à l'ensemble Un complexe

K"1 peut toujours être ramené à un complexe équivalent *K
qui serait en position générale par rapport au système {Br 5 }
La construction de *Kr'M se fait par une généralisation de la

méthode des modifications infinitésimales de complexes de

M. Alexandrofî. Remarquons encore que les complexes habituels

de simplexes étant beaucoup trop « rigides » ne se prêtent guère

à la solution du problème de la position générale d'un complexe

et d'un ensemble et, surtout, pas dans le cas d'un système

d'ensembles {Br~j}.Pour cette raison l'on construit les

complexes modifiés d'éléments qui sont eux-mêmes des

complexes correspondant d'une façon univoque et réciproque

aux simplexes du complexe donné.

Les invariants d'intersection et d'enlacement nous permettent
de construire les cycles {yn r+' 1} sur un complexe à (n 1)

dimensions et en position générale par rapport au système

d'ensembles {Br_î}. Cette construction découle du simple

principe de décompositions « disjonctives » de cycles, qui

correspondent aux décompositions d'ensembles de dimension

complémentaire et sont déterminées par ces dernières [9].

Nous pouvons maintenant formuler le lemme fondamental
de cette théorie.

Si les cycles {rn_r+:M} et les ensembles {Br~3} forment un

système inductif d'enlacement, alors pour chaque nombre

h 0, 1, r,ilexiste dans F une multiplicité à h dimensions

arbitrairement petite fh,contenantdes points de l'ensemble B°.

Il existe, en plus, dans B° un point de multiplicités à h dimensions

Ph,c'est-à-dire il existe dans F° une suite de multiplicités
(générales) à h dimensions 3 /[' 3 décroissantes et

convergeant en un point Ph intérieur à B°.

Dans la définition du système inductif d'enlacement la suite

fondamentale était donnée d'une façon purement formelle. Par

conséquent, les théorèmes énoncés ci-dessus sont valables d'une
manière générale pour une multiplicité arbitraire F ou, plus
généralement encore, pour un ensemble F Br satisfaisant par
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exemple aux hypothèses du théorème Phragmen-Brouwer. Le
système inductif d'enlacement doit avoir une construction
correspondante au problème concret. L'on construit
alternativement les cycles et les ensembles de suites
fondamentales { rn-T+M j e^. I Br;/} pour les j croissants et l'on fait
sur les ensembles Br_:/ des hypothèses qui autorisent des
conclusions inductives. L'on voit ainsi que ce sont seulement
les démonstrations des théorèmes exposés brièvement dans la
suite qui font voir toute la fécondité des systèmes inductifs
d'enlacement.

III. — La structure d'ensembles à partir de multiplicités
ARBITRAIREMENT PETITES.

Les nouveaux théorèmes de pavage.

9. — C'est l'extension locale du théorème Phragmen-Brouwer-
Alexandroff qui forme le premier échelon de la théorie
infinitésimale des ensembles [1, 2]. Le théorème suivant est valable:

Soit F une multiplicité à r dimensions ou, plus généralement,
un ensemble (dim F r) satisfaisant aux hypothèses du
théorème Brouwer-Alexandroff. Soit F XF + Br_1 + 2F une
décomposition de F par un ensemble Br_1 à (r — 1) dimensions
en deux composants ouverts XF et 2F. Alors, il existe une
multiplicité à r dimensions arbitrairement petite f 1/r + br~{ + 2/r

décompose par un sous-ensemble br~{ de Br_1 en deux parties
ouvertes 1/r. c *F et 2/r c 2F.

La démonstration de ce théorème [6] découle de l'invariance
locale des cycles placés dans les deux premières lignes du
système d'enlacement. Le cas particulier r n — 1 de ce
théorème fut démontré pour la première fois et par des méthodes
très différentes par M. H. D. Ursell et moi-même [2, 3, 4, 5, 8].
Les représentations dites harmoniques de complexes qui
surgissent dans ce cas particulier et leurs invariants sont aussi,
me semble-t-il, intéressantes en elles-mêmes. Ce théorème
entraîne aussi que l'ensemble de tous les points de multiplicités
r-dimensionnels dans F est à une dimension.

Les résultats suivants montrent très nettement que la totalité
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des multiplicités arbitrairement petites de chaque dimension h ^ r
a dans un ensemble à r dimensions la même étendue que les points
de Vensemble lui-même [7, 9]. En d'autres termes, si nous
considérons toutes les multiplicités arbitrairement petites de

diamètre ^ S (S étant arbitrairement petit), nous voyons
qu'elles forment •— dans un sens qui s'impose [9, § 1] =— un
système r-uplement connexe et cela que ce soient des courbes

(h 1), des surfaces (A 2) ou des hypersurfaces de dimension

arbitraire h ^ r. Nous aurons un résultat encore plus
précis en considérant l'extension dimensionnelle des totalités
des points de convergence des systèmes de multiplicités
arbitrairement petites de chacune des dimensions fixes, c'est-à-dire
des points de multiplicités définis plus haut (voir le lemme
fondamental de § II). Mais pour cela une conception appropriée

de la dimension s'impose.
La notion relative de dimension. Soit A un ensemble fermé à

r dimensions, dans Rn. Nous dirons qu'un ensemble donné <ï>

(qui n'est pas nécessairement fermé) dans Rn a la dimension
homogène j relativement à A (horn dim <f> / rel A) si / est le
plus petit entier positif tel que chaque couple A' et A" de sous-
ensembles fermés et disjoints de A peut être séparé par un
ensemble B CI A dans A ayant au plus la dimension (r — 1),

avec horn dim ® / — 1 rel B. Si G est un sous-ensemble
fermé quelconque de A alors on a horn dim <D — 1 rel C si î>

et C sont disjoints. Si G est composé d'un seul point, alors
on a horn dim <D 0 rel C si le point C est intérieur à ®,
horn dim O — 1 rel C s'il ne l'est pas1.

L'on voit immédiatement que cette notion de dimension est
extrêmement intuitive. Nous pouvons maintenant énoncer le
théorème suivant:

Soient F un ensemble à r dimensions dans Rn et <5)h la totalité
des points de multiplicités de dimension h. Alors, pour chaque
valeur de h 0, 1, r Vensemble a la dimension homogène

r relativement à F.

1 II est évident que cette définition spéciale s'impose pour la dimension relative
à un point. Soient A un segment (0, 1) et P;= A. Les ensembles de séparation B sont
formés de points singuliers et ne contiennent pas de. parties disjointes. Pour avoir
horn dim P 1 rel A il faut aussi avoir horn dim P 0 rel B. (pour chaque B).
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Ces théorèmes et aussi ceux que j'exposerai dans la suite

n'ont été démontrés jusqu'à présent que pour les ensembles

formant des obstacles d'homologie pour des sphères à (n — r — 1)

dimensions. Par conséquent, ces théorèmes sont en tous cas

valables pour tous les ensembles à (r —1) dimensions dans Rn.

En général, ils sont valables pour tous les cas où l'ensemble

satisfait aux hypothèses du théorème inductif Phragmen-
Brouwer.

Les moyens dont nous disposons aujourd'hui nous permettent
/ _.j_ 'J \

de démontrer pour chaque entier positif ^I ^

théorème suivant, F étant un ensemble arbitraire à dimensions

et 2r > n+ 1.

La totalité de tous les points de multiplicités à r dimensions

de F, a au moins la dimension homogène r rel F.

10. — Soient F un ensemble à r dimensions dans un voisinage

sphérique U de R" et s71'1"1 une hypersphère à 1)

dimensions et -+ 0 dans U — F. Soit s un nombre positif
arbitrairement petit et soit

F Ft + F2 + + F; + + Fm »(Fj) < e

une décomposition de l'ensemble F. Il est connu qu'il existe,

pour chaque e, des décompositions de F dont chaque

k(k=2, 3, 2+2) parties aient toujours une intersection à

(r — Je -)-l) dimensions. Appelons ces décompositions de F

des décompositions canoniques. Les théorèmes de pavage
suivants sont valables [10] :

Pour chaque s suffisamment petit il existe r + 1 parties de chaque

décomposition canonique de F qui contiennent des points d une

multiplicité générale arbitrairement petite P de chaque dimension

h 0, 1, r.

Il existe, de ce fait, r + 1 parties de chaque décomposition

canonique de F, ayants des points communs sur des courbes,

surfaces et hypersurfaces générales arbitrairement petites de

chaque dimension. Il s'agit ici d'un système fixe de + 1 parties

pour tous les h. L'on voit aisément que le lemme fondamental
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de M. Lebesgue correspond au cas h 0 tandis que, pour
chaque h> 0, nous trouvons un théorème de pavage de

dimension supérieure.
La démonstration des théorèmes de pavage découlant du

principe inductif d'enlacement donne aussi un résultat purement

quantitatif sur les ensembles.

Pour avoir l'effet du théorème de M. Lebesgue ou des nouveaux
théorèmes de pavage, nous devons évidemment supposer le s

de la décomposition de F « suffisamment petit ». Maintenant
nous pouvons reconnaître, au moins en principe, la valeur et la

signification de cet s. Ici de nouveau nous nous restreignons au

cas d'ensembles F (dim F r) formant un obstacle d'homologie
de la sphère à (n — r — 1) dimensions dans un voisinage
sphérique U de Rn.

L?effet de tous les théorèmes de pavage r + 1 se présente pour
I #

chaque z < — D, D étant la distance p (sn r F).
3

Par conséquent, le s des théorèmes de pavage dépend de r
et D. Plus grande peut-on supposer la distance D, plus grand s

peut être choisi. Dans le cas absolu, où F forme un obstacle

d'homologie d'une sphère à (n — r — 1) dimensions Rn, il se

peut évidemment qu'on puisse supposer D arbitrairement grand.
Dans ce cas l'on peut, de ce fait, supposer s arbitrairement
grand, c'est-à-dire ^ M, M étant un entier positif arbitrairement
grand. Il serait intéressant, me semble-t-il, de déterminer le s

pour des classes ,plus spéciales d'ensembles et de figures
géométriques.

Les points de multiplicités de chaque dimension h 0, 1, r
permettent aussi d'apporter plus de précision aux théorèmes de

pavage 1 [7, 10].
F étant dans U un ensemble enlacé avec la sphère sn~r-1

(ou, plus généralement, ayant sn-r~1 0 dans U — F), alors

il existe pour chaque s < -^ p (F, ^r_1) une décomposition

canonique de F avec r .+ 1 parties, qui contiennent un point
de multiplicités commun de chaque dimension h 0, 1, r.

1 La démonstration des nouveaux théorèmes de pavage pour tous les ensembles
satisfaisant aux conditions du théorème inductif Phragmen-Brouwer sera indiquée
clans un travail postérieur.
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IV. — Autres problèmes.

11- — Les résultats indiqués plus haut nous permettent de
considérer les multiplicités générales comme des éléments à
dimension supérieure d'un ensemble. Au moins d'une façon
infinitésimale nous pourrions comparer la composition d'un
ensemble à partir de multiplicités arbitrairement petites à la
composition d'un simplexe à partir de simpléxes arbitrairement
petits.de chaque dimension. Sans doute, ce sont ici les premiers
résultats obtenus dans cette direction; ils permettent cependant
de poser, aussi globalement, plusieurs autres problèmes. Pour
terminer, je voudrais en mentionner quelques-uns 1.

La tâche consiste en la construction d'un système inductif
d'enlacement, correspondant au problème concret donné. En
général, la solution de ce problème est facile pour le cas
d'ensembles formant des obstacles d'homologie des hypersphères.
Dans le cas général d'ensembles enlacés avec des cycles
arbitraires, on peut facilement étendre les cycles / fois, si l'on a

7 < {r — - Ln conséquence, nous ne pouvons établir des

nouveaux théorèmes de pavage que jusqu'à la j-ème dimension.
Pour des / ^ r et des r < n arbitraires la solution générale
n'existe pas encore 2.

1 D'autres problèmes liés immédiatement à la théorie exposée ici sont indiqués dans
les travaux mentionnés dans la bibliographie.

2 Ayant déjà terminé le manuscrit de cette conférence, j'ai pu encore démontrer
les théorèmes de pavage, de même que les théorèmes énoncés dans le paragraphe 9,
pour tous les ensembles fermés à un nombre arbitraire de dimensions dans Rw. En même
temps le problème d'étendre r fois un cycle par rapport à un F arbitraire dans U a
été résolu.

La solution repose sur le lemme suivant:
Soient F un ensemble fermé à r dimensions arbitraire dans TJ et vn~r~^ un cycle

arbitraire (mod. O) à (n — r — 1) dimensions dans U — F; rn~v~^ 0 dans U - F.
Alors il existe une suite de complexes à (n — r) dimensions {K^~f}v==1 g

Kn~r ^ vn-r-1 dang U} v _ ^ 2j _

tels que lim { Kn~r F } soit un ensemble à 0 dimensions.
V 4 OO

V ^
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12. — D'autres problèmes se présentent si l'on veut

caractériser les multiplicités classiques à ce nouveau point de vue.

La définition de l'ordre des points de multiplicités peut être

considérée comme un travail préparatoire dans cette direction.

Soient {/£} et {'/U pour n, » 1, 2, deux suites de

multiplicités décroissantes à h dimensions ayant un point

limite P commun. Si une multiplicité '/!; (pour m p.) contient

toutes les f) pour chaque p arbitrairement grand et si,

réciproquement, une multiplicité f) contient presque toutes les '/m S1

grand que soit nv, alors nous appelons les suites {/„} et {/m}

équivalentes et nous dirons qu'elles définissent le point P comme

un point de multiplicités à hdimensions. Si toutes les suites

qui définissent un point P comme un point de multiplicités à h

dimensions sont équivalentes, nous appelerons P un point de

multiplicités simple. Il est clair que le nombre (fini ou infini)
de suites {/„} non équivalentes définissant le point P comme

un point de multiplicités à h dimensions peut être considéré

comme ordre (à hdimensions) de P.

F étant un ensemble à r dimensions, nous appelons un point P

de F point régulier si, 8 étant un nombre arbitrairement petit,
il existe un v) < S et tel qu'une multiplicité à r dimensions de

diamètre ^ 8 contienne tous les points de F intérieurs à un

voisinage U (?])• Un ensemble F est dit régulier si tous ses points
sont réguliers. Il est clair qu'un point régulier de F doit être

simple dans la dimension r-ème. Il serait intéressant de savoir

si un ensemble fermé F dont tous les points sont des points

simples dans la r-ème dimension est régulier lui-même.

Il serait notamment intéressant de savoir si la notion générale

de multiplicité permettrait à elle seule de caractériser les

multiplicités classiques K L'on pourrait essayer d'appliquer ici
aussi le principe inductif.

Une multiplicité générale à h dimensions (et notamment dans

le sens absolu, c'est-à-dire définie dans U Rn) est appelée

simplement connexe (localement) dans la dimension (h — l)-ème
si chaque point P de F peut être séparé de chaque point R^P
de F par une multiplicité à (h — 1) dimensions fh_1 placée dans

1 En se servant des nombres de Betti généralisés M. Lefschetz a résolu ce problème
pour des ensembles fermés, M. E. Cech pour des espaces topologiques.
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U (P, 8) (pour chaque S) et simplement connexe (localement) dans

la dimension (h—2)-ème. L'induction peut ici commencer par f°
ou Z1, c'est-à-dire par des cercles topologiques. La question qui
se pose est la suivante: les ensembles à r dimensions, localement

simplement connexes dans la (r — 1 )-ème dimension, sont-ils des

multiplicités classiques (dans le sens étendu de MM. van Kampen

et Pontrjagin) ?1.

13. — Cette question ne doit pas être confondue avec le

problème de caractériser les multiplicités classiques par les

propriétés de l'espace complémentaire et notamment avec le

problème de la réciproque du théorème de Jordan dans les

espaces à un nombre supérieur de dimensions. Ce dernier

problème a aujourd'hui de l'intérêt aussi dans R3. Il faut ici

distinguer entre les conditions locales (dans le sens ordinaire) et

les conditions globales qui sont plus essentielles. Les premières

peuvent facilement être indiquées de diverses manières; la
seule solution dans R3 connue jusqu'à présent2 repose sur

l'hypothèse de la connexion simple du domaine complémentaire
d'une surface fermée. Il est naturel que la démonstration se serve

du théorème de dualité de M. Alexander. Mais je voudrais

remarquer ici qu'il existe une forme purement ensembliste de la

réciproque du théorème de Jordan dans R3.

Pour qu'une surface F à deux dimensions dans R3, fermée et

régulière (dans le sens indiqué plus haut) dans chaque point soit

une sphère topologique il faut et il suffit que chaque section

irréductible d'un domaine complémentaire de F soit une multiplicité
de Cantor.

La condition de régularité pourrait être remplacée par une

autre condition, aussi purement ensembliste 3. Bien que la forme

de ce théorème soit purement ensembliste, sa démonstration est

essentiellement combinatoire et ne pourrait guère être ramenée

immédiatement aux théorèmes de dualité. L'on remarque

toujours que les problèmes ensemblistes sous une forme générale

1 L'on sait que cette assertion est vraie pour le cas le plus simple h 2.

2 Voir R. L. Wilder, Math. Annalen, 109 (1933), p. 273.
3 Si l'on voulait se servir de notions plus anciennes, il suffirait d'exiger (localement)-

que la surface F soit accessible et « unbewallt » à partir des domaines complémentaires.
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ne peuvent être résolus que par des moyens combinatoires et

conduisent souvent à des nouveaux problèmes combinatoires.

Je ne saurais indiquer à quel point une surface fermée dans

Rn et satisfaisant à des conditions analogues, doit être une

multiplicité dans le sens classique.

14. — Nous voulons revenir encore à des multiplicités
générales.

La supposition suivante indique un problème global très

intéressant.
Soit F une variété générale à dimensions. Soient Ah et B'(

deux sous-ensembles fermés à h dimensions de F, pour un

h=0,1, r—1fixe. Nous prétendons qu'il existe toujours

une multiplicité de Cantor à (h +1) dimensions Th+1 contenant Ah

et Bh \
Ce problème est très lié au problème du prolongement des

multiplicités arbitrairement petites à h dimensions dans F, et

ce dernier présente des analogies avec les surfaces de Riemann.

En général, la possibilité d'une analogie même globale entre les

ensembles fermés et les espaces de Riemann n'est point absurde.

L'on pourrait, par exemple, envisager les multiplicités générales

comme des surfaces pliées une infinité de fois et les ensembles

comme des totalités de telles surfaces; il n'est pas impossible
d'avoir une vue des éléments d'accumulation qui se présentent
ainsi. Dans R3 l'on connaît ces éléments qu'on pourrait aussi

appeler des « ideal elements ». Il est sûr que les recherches sur la
totalité de ces singularités d'un ensemble se feront par les

méthodes de la topologie combinatoire.

i II est facile de démontrer cette assertion pour h 0.

Dans Rn l'on peut toujours relier un couple Ah et. d'ensembles à h dimensions
par une multiplicité de Cantor Considérons une suite de décompositions en
Simplexes z(ev) de Rw dont les diamètres tendent vers 0. Déterminons à partir des

h-L \(h + 1)—Simplexes de z(vi) une variété de Cantor telle que l'on ait

rf(Ah + kJ-'-1) < Ajoutons à un complexe de tous les {h + 1) —

Simplexes de z(t%) dont la distance de (Ah + BÄ) serait inférieure à etc. L'enveloppe

fermée de pour v » est une multiplicité de Cantor à (h + 1) dimensions,

reliant Ah et Bh-
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NOTES COMPLÉMENTAIRES A MA CONFÉRENCE
SUR LA TOPOLOGIE DES VARIÉTÉS

1. — Au lieu du passage de la Géométrie anallagmatique de
M. J. Hadamard, cité dans ma conférence sur la Topologie des variétés,
t. 35, p. 246, il serait préférable de lire la Note L insérée dans le tome II
de ses Leçons de Géométrie élémentaire (7rae édition, Paris 1932).

2. — Le dernier paragraphe de la page 249 ne concerne que les surfaces
orientables. Car la variété-voisinage d'une surface non-orientable immergée
dans l'espace à quatre dimensions doit être orientable, comme chaque
variété à n — 1 dimensions immergée sans singularités dans l'espace
euclidien à n dimensions. Or, le produit topologique du cercle et d'une
surface non-orientable est non-orientable, lui aussi. — Voir à ce sujet
H. Seifert, Algebraische Approximation von Mannigfaltigkeiten, Math.
Zeitschrift 40 (1936) et W. Hantzsche, Einlagerung von Mannigfaltigkeiten
in euklidische Räume, ibid. 42 (1937).

3. — L'article de M. E. Stiefel, cité à la page 250, vient de paraître:
Comm. math, helv., vol. 8, p. 305-353. Il faudrait le lire également au
sujet des variétés immergées dans des espaces euclidiens.

W. Threlfall.
i Cette bibliographie indique seulement les travaux s'occupant directement de là

théorie exposée ici.
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