Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 36 (1937)
Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE
Rubrik: CONFERENCES INTERNATIONALES DE TOPOLOGIE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

CONFERENCES INTERNATIONALES DE TOPOLOGIE *

(sutte et fin)

LE ROLE DE LA THEORIE DES GROUPES
EN GEOMETRIE INFINITESIMALE DIRECTE'!

PAR

Georges Bouricanp (Poitiers).

1. — Avec M. Karl MENGER, on peut lier aux fonctions réelles
les recherches que j’ai faites ou conduites pour soumettre la
Géométrie différentielle aux méthodes directes. En 1925, j’avais
obtenu ce théoréme, que j’énonce ici pour trois dimensions:
« Une suite de fonctions harmoniques, bornées dans leur ensemble
sur le domaine ouvert D, y converge vers une fonction harmonique
s'il y a convergence en une infinité de points de D, ayant un
potnt O de D pour point d’accumulation, pourvu que, dans un
cone droit de sommet O, tout autre céne droit de sommet O, d’ouver-
ture et de hauteur arbitrairement petites contienne des poinis de
convergence » 2.

Cette condition se distingue de celle d’une suite de fonctions
holomorphes f,(z), assurée dans le domaine D du plan (z) des
qu’elle se produit en une infinité de points de D ayant le point O
de D comme point d’accumulation 3. Il existe en ce dernier cas
(contrairement au cas précédent) une condition purement
topologique de convergence, ce qu1 sollicite déja ’attention vers
les champs d’invariance. |

* Ces conférences ont eu lieu 4 I’Université de Genéve, du 21 au 25 octobre 1935,
sous la présidence de M. Elie CARTAN, Membre de I’Institut.

1 Conference faite le 25 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par I’Université de Genéve; série consacrée 3
Quelques questions de Géomélrie et de Topologie.

2 G. BourieAND, Fonctions harmoniques (Mémorial Sc. Math., XI, p. 20).

8 Cf. P. MONTEL, Lecons sur les familles normales (Gauthler-Vllla.rs 1927 n° 16, p. 30).
Le n° 121 de cet ouvrage énonce une condition de convergence pour une suite de fonc-
tions holomorphes fx (2, z,), indépendamment de mon résultat ci-dessus. Je suis revenu

igg ce sujet au Bull. Ac. Roy. des Sc. de Belgique; t. X X1, séances des 2 février et 6 avril
5.
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2. — A un autre titre, les fonctions réelles intervinrent quand
pour I’étude de propriétés locales (tangence, courbure générali-
sées), j’attachai dans ’espace euclidien, a tout point. d’accumula-
tion d’un ensemble ponctuel, certaines collections de demi-droites,
droites, plans, cercles, ..., autant de fonctions multiformes * au
sens actuel trés large de ce terme; M. C. KuraTowski en a défini
la semi-continuité sous ses diverses espéces. Indépendamment,
I'une des collections citées (le paratingent), par rapprochement
avec les résultats de MUe CHARPENTIER sur les intégrales de
y" = f(z, y) dans leur dépendance vis-a-vis du point dont elles
partent, me fit rencontrer la semi-continuité supérieure din-
clusion .

3. — Je définis maintenant les collections citées. Soit O un
point d’accumulation de Pensemble ponctuel E. Une demi-
droite OT est dite demi-tangente en O a E, §’il existe une suite
infinie { M; } de points de E telle que les distances OM; et les

AN

angles M; OT tendent en méme temps vers zéro. Une droite T'T
passant par O est dite paratingente si elle est limite d’une suite
infinie de droites T;T; portant chacune une corde M; N, dont
les extrémités appartiennent a E et tendent vers O. La collec-
tion des demi-tangentes est le contingent (ctg.), celle des para-
tingentes le paratingent (ptg.).

Tout plan passant par O et limite de plans contenant chacun
trois points L;, M;, N;, non alignés de E tendant vers O sera
dit biparatingent. Sur la collection de ces plans, le biptg.,
M. J. MirGUuET a montré I'intérét de prélever ceux provenant
de triplets dont les trois accouplements engendrent au moins
deux ptgtes distinctes. La collection ainsi filtrée est le biptg.
réduit S, o

Toute droite passant par O, limite de droites portant chacune
trois points .de E tendant vers O sera dite une ptgte seconde.

!

4 G. BouLiganDp, C. R. Ac. Sc. Paris, 12 juin 1933 (t. 196, p. 1767 et ss.).

5 G. BouLlegAND, Sur l'idée d’ensemble d’accumulation (Ens. math., t. 29, 1931,
P. 246); Sur la semi-continuité d’inclusion (Ens. math., t. 31, 1933, p. 14-22). Une
bibliographie plus compléte est donnée au fasc. LXXI du Mémorial (n° 6), p. 10-15 et
note II, p. 53). ‘

6 J. MirGUET, Nouvelles recherches sur les notions infinitésimales directes du premier
ordre (Thése, Paris, 1934 ou Ann. Ec. Norm., 3, LI, 1934, p. 199-243). :
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D’ott une nouvelle collection, le ptg. second. Ces notions sont
valables en géométrie affine (espace cartésien).

Dans 1’espace euclidien, on peut former des collections de
figures plus variées (cercles, spheres, hélices circulaires, ).
“Retenons ici le ctg. circulaire relatif au point O et & la demi-
tangente OT: il comprend les cercles limites de cercles tangents
en O & OT et portant un point de E tendant vers O7; et le pig.
circulaire relatif au point O, formé des cercles limites de cercles
passant par trois points de E tendant vers O.

4. — Apparentées dans leur essence aux plus grande et plus
petite limites d’une suite et aux nombres dérivés d’une fonction,
ces notions s’appliquent comme le point d’accumulation, a tout
ensemble ponctuel 8. 11 est important d’en déterminer les champs
d’invariance. ‘
 En effet, devant ’abondance des résultats mathématiques,
une ceuvre de coordination se poursuit, pour préciser les hypo-
theses et dégager le pourquoi des faits. Cette ceuvre a fini par
s'imposer, en Géométrie infinitésimale, apres la découverte par
M. LeBESGUE (1899) des surfaces qui sans contenir la moindre
portion de droite sont isométriques au plan, et la découverte
par JutL de classes étendues de variétés jouissant de propriétés
qu’on croyait réservées aux variétés algébriques °.

Pour les questions de causalité ainsi posées, I’idée de groupe
donne un guide. Dans un champ défini de prémisses (’espace
euclidien, par exemple) soit P une proposition tirant d’un
faisceau & d’hypothéses, non toutes essentielles, une conclusion ¢
préalablement stipulée. Réduire A, ou encore, trouver les condi-
tions les plus larges pour P oraie, ¢’est prendre toutes les modi-
fications (des objets soumis & P) menant d’un cas d’exactitude

7 On pourra remplacer circulaire par hémi-circulaire lorsqu’il sera commode de se
limiter & la demi-conférence qui, par rapport au plan normal en O, est du méme coté
que OT. o

8 Les deux premiéres d’entre-elles (ctg. et ptg.) ont été considérées indépendamment
par M. F. SEVEr! en vue d’un prolongement de la Topologie (voir ses indications
bibliographiques aux Annali di Mat., 4, XIII, 1934-35, p. 1-35). La considération
des cordes impropres remonte d’ailleurs & M. B. LevI, dans le cas d’une courbe algébrique
(Acc. R. Sc., Torino, 1898). Mais tout I’intérét se porte vers le recours constant & des
notions de ce genre, 4 titre universel, pour la formation d’un systéme.

1‘)9;3)Voir Pexposé de M. Paul MoNTEL (Bull. Sc. Math., mars 1924, 2, XLVIII, p. 109-
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a un autre. Leur famille est un groupe, étendant le champ d’exac-
titude et refoulant les hypothéses accessoires, groupe qu’on peut
donc appeler: domaine de causalité de P (notion extensible &
plusieurs propositions simultanées) 20, On peut concevoir le
fractionnement de Pactivité géométrique vers des énoncés
disjoints, en vue d’une extension du domaine de causalité de
chacun d’eux, extension qui peut comporter une revision de
prémisses, comme le suggérent les énoncés euclidiens trans-
posables sans spécification de la métrique aux variétés de
Riemann ou de Finsler (exemple: constance de la longueur d’un
arc minimum restant orthogonal aux déplacements de ses
extrémités). Mais la méthodologie disjonctive ralentirait le
travail. Il vaut mieux encadrer les résultats dans des groupes
familiers, inclus dans le groupe topologique général G des trans-
formations ponctuelles continues et biunivoques opérant entre
portions d’espaces cartésiens (on se limite ici au point de vue
local, ce qui dispense de distinguer G du groupe analogue
extrait d’une variété de Riemann). C’est avec René Baire qu’on
prit conscience du groupe G, en distinguant les propriétés des-
criptives de caractéres (rectificabilité d’un arc, annulation de la
mesure d’ordre n dans I'espace & n dimensions) altérables
dans G.

5. — A ce tournant se présente le sous-groupe G, de G, qui
en retient les transformations douées d’unme transformation -
linéaire tangente, non dégénérescente, contintiment répartie.
De ce groupe G, (groupe de la topologie restreinte du premier
ordre) nous prendrons encore le modéle concret fourni par la
représentation analytique dans ’espace cartésien.

Quant & G,, sont invariantes les propriétés suivantes, en un
point d’accumulation de deux ensembles ponctuels: a) com-
munauté du ctg.; b) communauté du ptg.; ¢) communauté du
biptg. réduit ™. De ces propriétés, la premiére est invariante,

10 Voir le début de 1’ Introd. & la Géom. inf. directe (GID) et des Premiéres lecons sur
la Théorie des groupes (Paris, Vuibert).

11 Pour a), b), c¢f. GID, n°s 69 et 74, et pour ¢), ma communication de juillet 1935 &
Liége «Sur quelques notions topologiques restreintes » (Bull. Soc. Roy. Sc. Liédge,
4me année, p. 219-223). i
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par le groupe, englebant-G,, des transformations-de G ayant
au sens de Stolz une transformation linéaire tangente non
dégénérescente, continue ou non: soit le groupe G*°%12, Demander
'existence de la transformation linéaire tangente, au sens de
Stolz revient & supposer les coordonnées (X, Y, Z) du point
consequent fonctions différentiables au sens de Stolz'® des coor-
données (z, y, z) du point antécédent; cette condition est plus
restrictive que ’existence (sans intérét, faute d’invariance) de
dérivées partielles du premier ordre.

La propriété c) du biptg. réduit n’appartient pas au biptg.
excluant les triplets alignés sans exclure les triplets singuliers
(ceux ou Dexistence d’une direction limite pour un cdté impose
la méme direction limite aux deux autres). Le biptg. ainsi défini
est invariant, non plus par G;, mais seulement par les trans-
formations localement bicontinues du groupe projectif. Ce méme
biptg. englobe toutes directions de plans, quand E est une
surface z = f(z, y) dont le ptg. en chaque point est 'ensemble
des droites d’un plan: cette indétermination de la direction
limite du plan d’un triplet permet la formation des polyédres
que ScHwARZ faisait tendre vers une portion @ de cylindre de
révolution sans que les aires polyédrales avoisinent 1’aire de .
Par contre, pour une surface de la classe précédente, le biptg.
réduit est-il formé de I'unique plan des ptgtes 14,

En un point d’accumulation commun a deux ensembles
ponctuels, le role des triplets alignés dans la définition du ptg.
second entraine son caractére projectif: son application la plus
importante est la définition locale d’une surface convexe, par
la condition que le ptg. second est vide 15.

6. — Ayant étudié Iinvariance du ctg., du ptg., du biptg.,
du biptg. réduit, notions concernant le contact du premier ordre,
examinons les notions relatives a des contacts du second ordre

12 J’ai signalé ce groupe au début de mon memoire « Sur la Topologie restreinte du
second ordre » (Bull. Soc. Math., t. LX, 1932, p. 228).

18 M. Maurice FRECHET a traité de cette importante notion aux Nouvelles Annales
(1912, p. 385 et 433; 1919, p. 215).

14 A la fin du travail cité¢ de J. MIrGUET, voir des conditions suffisantes pour la
planéité du ptg., obtenues par ’entremise du biptg. réduit. :

15 G, 1. D., ch. XIV et MIRGUET, C. R. 7 décembre 1936.
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et dont le champ d’invariance dépasse le groupe progectlf ou
se localise le ptg. second 16,

M. E. VEssior m’écrivait, fin 1930: « Ce que vous faites
consiste & effectuer, avec S. Lie, des prolongements différentiels
successifs d’ensembles conmderes comme des multiplicités
ponctuelles, en élargissant convenablement le sens du mot
différentiel ». En fait, ce sont bien des prolongements du premier
ordre de E qu’on obtient, du point de vue de Stolz, en prenant
le ctg., du point de vue de la différentielle classique, en prenant
le ptg. On peut assimiler ces prolongements & de nouveaux
ensembles ponctuels d’un espace obtenu en adjoignant a un
point de I’espace initial un vecteur issu de ce point, ce qui donne
un élément qu’on peut appeler un poini-vitesse. A chaque
homéomorphie 6 extraite de G, ou de G>'°'* dans I’espace initial S
est attachée dans I’espace S’ des points-vitesses une nouvelle
homéomorphie 0’ définie comme suit:

X =flx, vy, s, Y = gz, ¥, 3), Z =hx,y,z . (1)

|

g U uf,, + vfy + wf, ,
/ V = ug, + 79 + wg, , (2)
. W = uhx “| vky -+ sz

pour le cas ou S est & trois dimensions'?. Pour que 6’ appartienne
au groupe G, qui joue dans S’ le méme role que G, dans S, il
faut et suffit que les différentielles de U, V, W existent et soient
continues quant au point (z,y, z), ¢’est-a-dire que f, g, & aient
des dérivées secondes continues. Le jacobien de notre transfor-
‘mation & six dimensions, étant le carré de celui de 6, n’introduit
pas de condition. A cdté du groupe G, ainsi défini, on apercoit
le groupe GJtolz, obtenu en soumettant les’ dérivées premiéres
de f, g, h a la différentiabilité stolzienne.

La topologie restreinte du second ordre énonce des propriétés
invariantes par G, ou Gt suivant les problémes. Au mouve-
ment d’'un point dont la vitesse, bien déterminée & chaque

16 Citons aussi, dans le groupe projectif, le ctg. planaire (ou d’osculation), dont
M. B. Seere vient de préeciser la deéfinition (R. Acc. d’Italia, vol. VI, p. 1209).

17 Dans GO | cela résulte du ne 8, p. 396-398, du mémoire cité de M. FRECHET.
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instant, est continue, une transformation de G, fait correspondre
un mouvement pour lequel sont garanties I’existence et la conti-
nuité de la vitesse; sa continuité disparaitrait pour GS%!Z. Si
la transformation provient de G,, I'existence et la continuité se
conservent pour l’accélération comme pour la vitesse. Dans
GStolz ]a continuité de I’accélération n’est plus invariante.

7. — Supposons que les équations (1) définissent une trans-
formation M = G (m) de GStolz, Les quantités fx, fy, f. ont
chacune une différentielle au sens de Stolz: le tableau des neuf
coefficients différentiels de ces trois formes est alors symétrique
par rapport & sa diagonale principale 8. De plus, on peut écrire

fle + p,y+q, 2+ 71 =
=flz,y, s + pf, + afy + rf, + 90, ¢, 1) , (3)

¢y désignant un polynﬁme‘ homogéne quadratique dont les
coefficients ont des limites quand p, ¢, r tendent vers zéro.
Ces limites sont respectivement les dérivées secondes

T fp e fp T fay
dont I’existence au point isolé z, ¥, z ne justifierait pas la rela-
tion (3). | '
Soit @ un point d’accumulation de 'ensemble e dans I’espace
(%, y, z). Par M = ®(m), on passe de ¢ & un ensemble E de
Iespace (X, Y, Z), avec A = T(a) pour point d’accumulation.

Appliquons (3) & f, g, h: les trois relations obtenues®® se condensent,
dans 1’égalité géométrique

AN = B(m) — Bla) = Lm) + 5 [@m) + 2m] @

L7 étant opérateur de la transformation linéaire tangente, et 2

un autre opérateur faisant passer de am (p, ¢, r) au vecteur
dont la premiére composante serait

P*fe + '-(_]2fy2 + r2f, + 2qr'fyz + 2rpf,, + 2pqfy, -

® .
18 Voir aux Nouv. Ann. de 1912, dans le mémoire cité de M. FRECHET, le n° 15,
p. 440-443.

19 La premiére de ces relations, par exemple, se deéduit par intégration des trois
relations obtenues en évaluant I’accroissement de Ty, celui de fy et celui de f,, compte
tenu de ce que chacune de ces fonctions est différentiable au sens de Stolz.
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Quant & y, c’est un .opérateur analogue, & coefficients non plus
constants, mais infiniment petits avec am. - |
Soit maintenant une suite { m; } de points de e tendant vers a.
A chaque point de cette suite attachons une valeur ¢; du para-
metre temporel . Supposons qu'’il existe une suite évanescente
{ i } permettant d’écrire pour tout entier i |
2

am, = & ¢ + %(7+ Z,?) avec gn:oal =0 . (5)
Ce cas est celui ou la suite des positions m; du mobile aux ins-
tants ¢; détermine univoquement au temps zéro une vitesse et
une accelération, circonstance invariante dans GStolz20 ] egt
alors facile de voir que le contingent circulaire en a, pour la
demi-tangente portant (-;, de la suite {m;i} est formé d’un
cercle unique. Inversement, si le contingent circulaire pour la
suite { m; }, doude en a d’une seule demi-tangente, est formé d’un
cercle unique, de rayon R == 0, on peut attacher auz points m; des
instants e; assurant une vitesse et une accélération (uniques) au

temps zéro. Car I'’hypothése équivaut & lexistence d’égalités

‘géométriques
‘ —9
— -p am. Y - N g .
“mi:lamil"+ ’(n+m‘) avec limw, = 0
! 2R k B

en appelant ¢ le vecteur unitaire de la demi-tangente, n celui
de la demi-normale allant de @ vers le centre; il suffit donc de

-
prendre ¢; = |am;| pour avoir un mouvement de vitesse ¢
.-

et d’accélération (% (c.q.f.d.).
A%

8. — En cinématique du mouvement continu, on concoit sur
une trajectoire divers horaires. A un méme instant, pour une

-> . M 1 .
position et une vitesse ¢ données du mobile, si j est une déter-
. . 1 r e _ =+ >
mination possible de Paccélération, les autres seront j + Av,
ou A est un scalaire. |

20 Introduite dans mon article « Sur la topologie restreinte dut second ordre » (Bull.
- Soc. Math., t. LX, 1932, p. 228-239), cette genéralisation de notions cinématiques
dans des conditions abandonnant la continuité du mouvement pour ne retenir que des
suites de positions du mobile, heurte un peu les habitudes acquises. Elle est cependant
conforme a ’esprit de notre étude. :
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Pareﬂlement dans le cas actuel, soit {mz} une suite de
points donnant lieu aux relations (5). On aura indifféremment

i -

. -
am:ac+8'(f7+$;), 16)

ol ¢, est un infiniment petit equwalent A ¢;, puisqu’on a meme

v1tesse en a. En outre, le plan (0 ] ) coincide avec le plan (o ])
qui a le réle d’unique plan osculateur pour la suite. D’ou

-

F=T7+2

->
v

-
ol ) est un scalaire. Un horaire donnant lieu a P’accélération j’
s’obtient en prenant

De ces accélérations, une seule est orthogonale & 9. Prenons
'unité de temps de maniére que &; smt eqmvalent a |am;|;
nous aurons (72 = 1; dans le plan (V ]) soit 7 le vecteur unitaire
orthogonal 4 ¢ et faisant un angle aigu avec tout vecteur
»-i— 7\0 le cercle tangent en a au vecteur v Contenu dans le .
plan (0 ]) et ayant son centre c donne par ac = J{n ou R
est 'inverse du produit scalaire ) ], sera 1'unique cercle oscu-
lateur de notre suite. :

Finalement pour toutes les suites de positions m; ayant en a
une méme demi-tangente at et qu'on soumet & un horaire faisant

correspondre au point a une vitesse ¢ bien déterminée portée
par at, il y aura un seul et méme cercle osculateur dans 'unique
cas ou toutes accélérations relatives a des suites partielles
arbitrairement prélevées sur les suites données sont de la forme

j + Ao, le coefficient A étant seul indéterminé.

9. — Lorsqu’on’ effectue la transformation M = @(m) du
groupe GStolz, a_’la vitesse ¢ correspond la vitesse V = L’(v)
a l’acceleratlon ], pour la vitesse ¢, correspond l’accélération

I = £(] ) + Q,(v) ou & est l’operateur homogene quadratique
déja rencontré dans la relation (4) du n° 7. Si donc au temps T,
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deux mobiles oceupant la meme pOSlthIl et animés de la méme
vitesse, ont les aeceleratlons ]1 et j,, leurs transformés auront
des accélérations J et J telles que

cag > 3 2,7
Jz_ Iy = ﬁ(]z) — L) -
Dans les conditions indiquées, la différence géométrique des
accélérations subit donc la transformation linéaire tangente.

10. — Ces diverses remarques montrent d’abord I'invariance
par G5tz (a fortiori par G,) de la communauté du contingent
circulaire (restreint a des cercles de rayon non nul) pour deux
ensembles ponctuels, relativement & un point d’accumulation
et une demi-tangente qui leur sont communs. Il suffit d’observer
que la suite des m; donnant lieu aux relations (5) se transforme
en la suite des M; donnant lieu aux relations analogues

2
AM-zaV—I—%(j—i—ﬁi) llmQ

1 =00

avec

= L) I =£0)+20)

On s’achemine vers le théoréme de Meusnier en considérant
un ensemble ponctuel e sur lequel le passage avec une vitesse
donnée ¢ d’un mobile au point d’accumulation a, mobile qui
reste sur ’ensemble, ne donne d’autres accélérations que celles
représentées par des vecteurs d’omgme a et d’extrémités situées
dans un plan @ paralléle & 0. Alors, pour le correspondant E
de e par la transformation M = G (m) de G5z, nous aurons
au point d’accumulation A = (), pour chaque mobile y
passant avec la vitesse 13((7), la. propriété analogue avec un
plan II transformé de @ par la transformation linéaire tangente
pour le couple (a, A).

"D’ou un genre de propriété invariante, que nous allons 1nter_:
preter Lorsque dans le plan @, 'extrémité de l’accélération j
reste sur une paralléle a () on a un cercle osculateur fixe, Et ce
cercle se déplace sur une sphére o, inverse du plan @ par rapport

au point @ (eu égard a la relation 31_{— = ﬁ; du n° 8), quand
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l’extremlte de Paccélération varie ad libitum dans . La propriété
invariante en question est donc encore le fait pour le contingent
circulaire de se composer de cercles tangents en a du vecteur 0
sur la surface d’une méme: Sphere c. :

Cette sphére o sera dite sphére de Meusmer de I'ensemble e,
pour a et la demi-tangente at portant 0. D’ apres cette définition,
on peut énoncer la propriété d’invariance qui précéde sous la
forme sulvante un ensemble e pour lequel la sphére de Meusnier
relative a [a, (J] est unique se transforme dans le groupe GJwlz
en un ensemble E pour lequel la sphére de Meusnier relatlve
a [G(a), L(v )] est encore unique.

L’inverse du rayon de la sphére de Meusnier va contlnuer a

S appeler courbure normale.

11. — J’ai donné en 1932 pour I'unicité de la sphére de
Meusnier relative & (a, at) la condition suivante: il passe par a
une perpendiculaire z'z a at telle que le demi-plan (z'z, at) ne
contienne qu’une seule position limite, avec rayon non nul,
pour un demi-cercle C,, ayant son diamétre ab porté par z'z
et passant par un point m de e qui tend vers a 2.

La condition précédente est invariante par Gtz ce que
M. Elie CarTaN a démontré comme suit: « Considérons un
ensemble ponctuel rapporté a trois axes de coordonnées rectan-
gulaires Ozxyz, O étant un point d’accumulation de I’ensemble,
Oz une demi-tangente en O. La condition de M. Boullgand
revient & supposer que, si pour différentes suites de points de

Pensemble tendant vers O, les trois quantités y/, z/x, z/(x2+y2+22) -

tendent les deux premiéres vers zéro et la troisiéme vers une
quantité finie [, cette derniére limite est unique. Il revient évi-
demment au méme de substituer a la quantité z/(2® + y? + 22)
la quantité z/z%, et alors 1’énoncé ne fait plus intervenir la
propriété des axes d’étre rectangulaires. — Cela posé, effectuons
une transformation de la topologie restreinte du second ordre 22.

21 G. BOULIGAND, Journ. de Math 9, t. XI, 1932, p. 385-387. A cette forme de
condmon d’unicité, on rattache le théoréme de Meusnier pour les courbes 1ntégrales
d’une équation de Monge (C. R. des Séances de la Soc. Math., 1934, p. 32-34).

22 Qu .plus précisément de G?tOIZ, comme je le signalais au début de ce paragraphe
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Nous pouvons supposer que ’origine O est conservée, que la
droite Oz est transformée en une ligne admettant OX pour
tangente et que le plan z'="0 ‘est transformé en une surface
admettant Z = 0 pour plan tangent. Toute suite de points de
I’ensemble pour laquelle y/x et z/x tendent vers zéro est trans-
formée en une suite de points pour laquelle Y/X et Z/X tendent
vers zéro. On a de plus :

Z hz + Rz, vy, 3)
X [ax—l—.by+cz+P(x,y,z)]2

H

ou h, a, b, c sont des constantes, P et R des polynémes homogeénes
du second degré dont les coefficients tendent vers des limites
déterminées lorsque (z, y, z) tendent vers zéro. Si « est la limite
du coefficient de 22 dans R, on voit que y/z et z/z tendant vers
zéro et z/x? tendant vers [, la quantité Z/X2 tend vers la limite
(hl + &)/« Ou bien dans ’ensemble donné et son transformé
satisfont simultanément & la condition de M. Bouligand, ou bien
aucun d’eux n’y satisfait. » 23

12. — Tel que je I’ai formulé en 1932, le théoréme de Meusnier
est donc invariant dans Gz, Il serait d’ailleurs superflu,
avec certains auteurs, de supposer que le plan normal a z'z
contient le paratingent de e en a 2% On peut enrichir ad libitum
le paratingent & l’origine d’un ensemble e admettant ce point
pour point d’accumulation et situé tout entier entre les surfaces

2z = x% + y? et 2z = 2% + y? + 2%

condition d’aprés laquelle pour une demi-tangente & l’origine,
I’ensemble e a méme sphéré de Meusnier que chacune des
surfaces précédentes. Cette remarque se généralise aisément.

13. — Si le contingent & l’origine de la surface z = f(z, y),
passant en ce point, comprend toute demi-droite du plan z = 0
et si la condition d’unicité de la sphére de Meusnier a lieu pour

23 E. CArTAN, C. R. Ac. Sc., t. XXI, séance du 21 oct. 1935,

24 B, SEGRE, Il teorema di Meusnler nella geometria degli insiemi (R. Acc. d’Italza
vol. VI, 1935, p. 1205-1220, cf. no° 5 et 8); H. BuseMANN et FELLER, Krimmungseigen-
schaften Konvexer Fléchen (Acta Math., t. 66; voir le second énoncé du £ 2).
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chacune de ces demi-tangentes avec un rayon non nul, on déduit
d’un théoréme de Janiszewski que la courbure normale est
fonction continue de la demi-tangente correspondante. En
méme temps, 'on justifie pour f(z, y) la forme suivante:

fla, y)=%92[6(w)+€] (# = pcosw, y = psinw) .

¢ étant continue et de période 2n; quant a e, ¢’est une fonction
continue d’un point, infiniment petite avec la distance p de
Porigine & ce point. | | |

La courbe p2%c(w) = =+ 1 est la limite d’une courbe obtenue
en prenant la section de la surface z = f(x, y) par le plan 2z = £
et 1a soumettant & une homothétie de rapport |h|" et de centre O.
Cette courbe p2c(w) = -+ 1 s’obtiendrait encore en portant
sur chaque demi-tangente issue de O, la racine carrée du rayon
de la sphére de Meusnier correspondante. Pour que cette courbe
se réduise & une conique, il suffit comme je I’ai montré en 193225
que sur une portion o de la surface z = f(z, y), dont le paratin-
gent se réduit en chaque point & un plan, il corresponde & chaque
élément semi-linéaire une courbure normale dépendant conti-
nument de cet élément linéaire, ou encore du point et de la demi-
tangente correspondante pris en bloc.

La route suivie pour cette démonstration consiste & prouver
que toute courbe de la portion ¢ de surface qui, sur I'un de ses
plans tangents, se projette suivant un arc & courbure continue
possede elle-méme une courbure continue. On quitte ici le
champ d’invariance de G5%" pour celui de G,. N

La démonstration citée apporte d’ailleurs, pour les. trans-
formations particuliéres conservant les paralléles & Paxe des z
et les longueurs sur ces droites, une réponse affirmative au

second des deux problémes suivants, que nous rapprochons
a dessein: |

ProsriEmME P;. — On considére le groupe G’ des transforma-
tions M = @ (m) qui de tout arc ayant une seule ptgte en chaque

25 G. BOULIGAND, Journ. de Math., 9, t. XTI, 1932, p. 137-141. L’indicatrice géhéralisée
définie par MM. H. Busemann et W. Feller dans leur mémoire cité des Acta M athematica,
ou les auteurs considérent une surface convexe, est un cas particulier -de la courbe

¢2¢c(w) = 4 1 & laquelle conduit I’unicité de la sphére de Meusnier pour chacune
des demi-tangentes issues d’un point de la surface. -

L’Enseignement mathém.,- 36me année, 1937. : ‘ A




18 G. BOULIGAND

point ménent & un arc ayant une seule ptgt® en chaque point,
cela de telle maniére qu’a un élément (point, ptgte) du premier
espace corresponde un élément (point, ptgte) du second, suivant
une loi biunivoque et continue. Le groupe G', qui contient G,
se réduit-il & G, ?

ProBLEME P,. — On considére le groupe G’ des transforma-
tions M = @ (m) qui de tout arc & courbure continue meénent
a un arc a courbure continue, cela de telle maniére qu’a un
élément (point, cercle osculateur) du premier espace corresponde -
un élément analogue du second, suivant une loi biunivoque et
continue. Le groupe G, qui contient G, se réduit-il a Gy ?

14. — 11 y a lieu de nous arréter un peu sur les notions envi-
sagées dans P, et P,. Lorsqu’on prend d’emblée le groupe Gy,
Pattention se porte sur le ptg. et les classes de courbes qu’il
permet de distinguer: courbes dont les ptgtes sont intérieures
a un cone réel non dégénérescent du second ordre; courbes dont
le ptg. ne contient qu’une seule droiteZ26. Mais si, parti de G512,
on revient & son sous-groupe Gy, on envisagera d’abord le ctg.
Un type de condition invariante dans GF*'* est le fait pour le
ctg. en un point de se trouver dans quelque demi-cone réel,
non dégénérescent du second ordre, ou ce qui revient au meéme,
de rester dans un demi-cone strictement convexe, c’est-a-dire se
laissant inclure aussi dans un demi-céne non dégénérescent du
second ordre, de méme sommet. Pour un champ continu de
tels demi-cones v, , il y a identité entre les deux classes suivantes
d’arcs simples: ' "

1o Ceux dont le ctg. postérieur est formé de demi-droites

- situées dans ou sur vy, ;
20 Ceux dont les ptgtes portent une demi-droite située dans
ou sur vy,, cela a lieu pour chacune d’elles.

En particulier, ainsi que I'avait établi aux termes prés, dés
1927, M. G. Valiron par un principe donnant sans restriction

26 Un continu possédant une de ces propriétés est nécessairement une courbe, en
vertu des lemmes d’univocité. Pour ’énoncé général de ces lemmes, cf. G. BOULIGAND,
"« Sur quelques applications de la théorie des ensembles 4 la géométrie infinitésimale »
(Bull. Ac. polon. des Sc. et des Lettres, série A, 1930, . 410-411). :
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la clef de Pidentification précédente?’, un arc simple dont le ctg.
postérieur est formé d’une seule demi-droite continiment
répartie a aussi son ptg. réduit a une droite (cela, en chaque
point). ;

Comme il était & prévoir, une restitution convenablement
conduite de la continuité nous raméne donc d’éléments invariants
dans G5t 3 des éléments invariants dans G;.

15. — Pareillement, si Pon étudie dans G$*'” un arc & ptgte
unique en chaque point, on prendra son ctg. circulaire. Suppo-
sons que le ctg. circulaire postérieur? se réduise & un seul cercle
dont le rayon dépasse une longueur fixe, cela de maniére qu’en
prenant le point de contact M comme pdle d’inversion et une
puissance constante, la droite transformée du cercle dans cette
inversion soit contintiment répartie en fonction du point M.
Cela revient & dire que les trois coordonnées donnent lieu, pour
chaque valeur particuliére s, de ’abscisse curviligne et pour
chaque valeur courante s la dépassant, & une relation de la
forme -

(s — 5¢)?

x(s) = @ (sy) + (5 — s0)% (so) + 9

[Elso) + €] .

ou £ est continue en s, tout le long de I'arc, et ol ¢ tend vers
zéro pour chaque s,. La continuité de & exige alors que ¢ tende
uniformément vers zéro le long de ’arc: sinon, il existerait une
infinité de couples (sq, $; + k3 Ss, Sa + hy), By €t hy étant positifs,
et arbitrairement petits, aussi bien que |s, —s;|, tels que la
différence |

-

(sp + hy) — m{sy) — hy@' (sy) . z(sy + hy) — x(sy) _“’h1,$’ (s4)
hy : hy

a

27 (. VALIRON, Sur les courbes & tangente continue qui admettent une tangente en
chaque point (Nouv. Ann., 4me gérie, t. II, 1927, p. 48-50). Pour une étude plus systé-
matique, voir A. MARCHAUD (Journ. de Math., 9™e série, t. XII, 1933, pp. 415 et ss.).
Voir aussi un mémoire de S. K. ZAREMBA, Bull. des. Sciences math., mai 1936.

28 Iintroduction d’un contingent circulaire unilatéral est naturelle lorsque ayant
supposé l'unicité de la sphére de Meusnier pour chagque demi-tangente, on cherche a
prouver ensuite le théoréme d’Euler sur ’indicatrice des courbures, dans la voie suivie

en 1932 au Journ. de Math. et reprise ici pour rattacher ce dernier théoréme 4 la théorie
des groupes. ‘
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demeure supérieure & un nombre positif fixe; cela donnerait au
voisinage d’un point d’accumulation de tels couples, une inégalité
incompatible avec la continuité de £(s). Posons

X (s) = als) — 2(0) — 52 (0) — [ fs — NE(dr .

L5

0
Pour A positif infiniment petit, la quantité
h”Q{X(s + h) — X(s) —hX'(s)]

tend uniformément vers zéro. En changeant X (s) en
+ X (s) + k2s2, on obtiendra la limite k2. Dans le plan (s, X)
le diagramme de I'une des fonctions + X (s) + k2s2 part de
Porigine tangentiellement & Paxe des s, avec une concavité
tournée vers les X positifs: donc chacune des fonctions
+ X (s) + k2 s sera positive, le long de notre arc, si petit que
soit k%, ce qui ne peut avoir lieu que pour X (s) = 0.2° On en
conclut que £ (s) est la dérivée seconde de z, & titre bilatéral.

Ces considérations sont importantes lorsqu’on veut montrer
I’équivalence de diverses définitions pouvant convenir aux
- courbes a courbure continue, lesquelles jouent naturellement un
role indispensable dans ma démonstration de 1932 du théoréme
d’Euler (existence d’une conique indicatrice), dont j’ai donné la
référence au cours du n° 14. Le procédé d’unification le plus
commode est celui qui ramene la continuité de la courbure a
Pexistence et a la continuité de la dérivée seconde droite de
~chaque coordonnée par rapport & ’arc (ce que nous venons de
justifier). ' |

Voici par exemple une propriété caractéristique des courbes
& courbure continue *°, laquelle est d’ailleurs invariante dans Gy:
c’est la réduction a un cercle unique de rayon non nul du ptg.
circulaire en chacun de leurs points.

Une autre propriété caractéristique des mémes courbes se

29 Ce principe de raisonnement est celui que Schwarz utilisait pour I’étude de la
- dérivée seconde. généralisée introduite en théorie des séries trigonométriques. Cf.
PicArD, Traité d’Analyse, t. I, 3me éd., p. 355-356. ’
' 30 Les courbes & courbure continue sont des cas particuliers des courbes & courbure
bornée qu’on peut caractériser de diverses maniéres. Voir C. CARATHEODORY, Kurven
mit beschrinkten Biegungen (Sitzungsberichte der preussischen Akademie, 1933).
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présente du fait qu’on peut définir le cig. circulare, second mode,
en recourant & ’espace des points-vitesses et y ramenant la
notion du ectg. circulaire de lespace (z,y,2) a celle du ctg.
ordinaire d’un ensemble de points (2, y, 2, u, ¢, w) 3. Une suite
génératrice d’un cercle unique du ctg. circulaire second mode
donne aussi un cercle unique du ctg. circulaire premier mode
sans que la réciproque ait lieu. Toutefois, pour une ligne &
courbure continue ou le ctg. circulaire premier mode se réduit
4 un cercle unique contintiment réparti, on a la méme propriété
pour le ctg. circulaire second mode.

16. — Abordons maintenant. P;. On peut voir que la corres-
pondance biunivoque et continue reliant les éléments (point,
ptgte) lorsque le point m décrit un arc a ptgt® unique reste
valable quand les dits éléments proviennent d’un ensemble
ponctuel quelconque. Il suffit de montrer que chaque suite de
couples ponctuels m;, n; tendant simultanément vers un point «,
en donnant une ptgte unique, conserve cette propriété; ce qu’on
déduit de la considération des droites m;n; et de leurs trans-
formées; au voisinage ¢; du point G(a), toutes les ptgtes & ces
transformées prennent une méme direction limite, vu la conti-
nuité de la correspondance des éléments (point, ptgte). Soient
m;, n;, m;, n; quatre points tendant vers a, de maniére que
m;n; et m;n; donnent une seule et méme ptgte, le méme fait
se produisant pour m;m; et n;n;, la direction de la seconde ptgte
ainsi obtenue étant distincte de celle de la premiére. Supposons
enfin que les couples m;n; donnent. aussi une ptgté unique et
distincte de la précédente. Dans ces conditions, nous pourrons
dire que le quadruplet m;n; m;n; est un micro-parallélogramme
non dégénérescent. Si nous continuons a raisonner dans l’espace
& trois dimensions, nous pourrons définir pareillement des
micro-parallélépipédes non dégénérescents et qui tendent vers m,
de maniére que ’on ait pour leurs arétes trois directions limites
non coplanaires 3. On pourra donc faire correspondre aux pro-
priétés de géométrie affine des propriétés qui seront vérifiées a
la limite pour des figures infiniment voisines du point a. Et

81 G. BOULIGAND, Bull. Soc. Math., t. LX, 1932, p. 239—241. .
82 G. BouLIGAND, Bull. Soc. Roy. des Sc. de Liége, 4™¢ année, p. 219-223.
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d’aprés nos hypothéses, ces propriétés micro-affines seront
conservées par la transformation ®. Cela montre déja que la loi
de correspondance entre une ptgte issue de a et sa transformée
issue de ©(a) est celle qui relie les directions de deux droites
liées par une transformation linéaire non dégénérescente.

Cela posé, pour s’assurer que G’ se réduit a G,, on va d’abord
montrer qu’il n’existe qu’une seule valeur limite pour le rapport,
au volume d’un domaine infiniment voisin du point «, du volume
transformé [domaine infiniment voisin de @ (a)]. Puis on mon-
trera que cette limite est une fonction continue de a.

La premiére de ces propriétés se démontre par I’absurde:
'existence de deux valeurs limites distinctes pour notre rapport
de volumes entrainerait celle de couples de volumes infiniment
petits équivalents dont les transformés ne seraient pas des
infiniments petits équivalents, ce qui serait incompatible avec
I'existence des propriétés micro-affines. Il n’y a donc qu’une
seule valeur j(a) du jacobien. Et cette valeur eut été régie, si
sa pluralité ett été possible, par la semi-continuité supérieure
d’inclusion: vu son unité, elle est done continue (c.q.f.d.).

La transformation linéaire tangente existe et est continue.
D’ou G' = G;.

17. — Le probléme P, est donc résolu par I'affirmative.
D’aprés les remarques du n° 14, ce probléme ne serait pas altéré
si au lieu d’envisager la conservation des arcs & ptgt® unique,
on envisageait celle des arcs & demi-tangente postérieure unique
et continue de maniére qu’un élément (point, demi-tangente)
se change en un autre élément de la méme classe suivant une loi
biunivoque et continue. L’invariance demandée n’a lieu que
dans le groupe ;. Méme résultat si I’on envisageait la conser-
vation des mouvements qui s’accomplissent avec une vitesse
déterminée et non nulle, de maniére qu’il y ait correspondance
biunivoque et continue des points-vitesses.

Occupons-nous maintenant des transformations du groupe G,
qui satisfont aux conditions du probléme P,. Nous pourrons
encore énoncer ce dernier sous diverses formes équivalentes.
Par exemple, on peut regarder un arc doué d’une ptgte unique,
dans P’espace (z, y, z), servant de trajectoire & un point ayant &
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chaque instant une vitesse déterminée, non nulle, avec une
accélération tangentielle continue. Aprés construction d’un
hodographe, nous aurons la trajectoire d’un nouveau mouve-
ment dans l’espace (z, v, 2, u, 0, w), lequel est représenté dans
'espace (2, Y, 2, 4, ¢, w,!) par. un arc rencontrant en un seul
point chaque variété ¢ = const. Résoudre le probléme P,, c’est
trouver parmi les transformations considérées de Despace
(z, y, z) celles qui se laissent prolonger dans Despace
(x; Y, z, U, ¢, w, t) suivant le mode indiqué de maniére quun
arc de ce dernier espace, doué¢ d’une demi-tangente unique et

. . . d d
continue, et soumis aux conditions 2 = u(), d_?tJ = p (i),

dt

% — w(t), donne par la transformation prolongée, un arc
jouissant de la méme propriété, la correspondance entre les
éléments (point, demi-tangente) étant toujours biunivoque et
continue. |

Puisque nous sommes dans Gy, nous avons entre les compo-
santes de la vitesse dans le mouvement antécédent et dans le
mouvement conséquent les relations

U = ufy + ofy +
V = ug, + vg, + wg,
W = uhg + oh, + wh, .

Si u, ¢, w admettent des dérivées premiéres continues par
rapport & ¢, la méme propriété doit appartenir & U, V, W. Cela
aura lieu notamment quand chacune des quantités u, ¢, w
restera constante. Donc, la quantité

ufy + ofy + wf,

devra posséder une dérivée par rapport & ¢ quels que soient les
coefficients constants u, ¢, w. Nous aurons donc a exprimer cette
propriété pour chacune des dérivées partielles du premier ordre
de f, g, k, quand le point z,y, z décrit une trajectoire suivant
une loi impliquant Pexistence d’une vitesse continue. De la
solution du probléme P, appliquée a la transformation

X=u=, Y-A——f’y, 7 =z, U=u-+ olx,y, 3,
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ou ¢ représente I'une des dérivées partielles f,, ..., k,, on conclut
a Dexistence et a la continuité des dérivées secondes de f, g, A,
‘ce qui résout par Iaffirmative le probléme P,. ,

Le théoréme d’Euler sur Iindicatrice des courbures est donc
un cas particulier d’un. énoncé G, — G" extrait de la Théorie
des groupes. '

18. — Terminons par des remarques concernant la réalisation
des groupes que nous avons introduits. Pour obtenir une repré-
sentation concréte de G,, nous nous sommes limités a des
transformations ponctuelles opérant dans un espace cartésien.
Par I'intermédiaire de ces transformations, on peut atteindre
les correspondances entre deux variétés a un méme nombre p
de dimensions, baignant dans un espace cartésien E, , ant+p
dimensions (uy, u,, ..., Unip), POUr ne retenir que les propriétés
de ces correspondances pouvant se lier d’une maniére intrin-
séque aux variétés considérées. Nous prendrons exclusivement
des variétés admettant une représentation paramétrique

u; = u;(xy, &9, ..., avec 1 =1,2, ..,n+ p, (E)

ol
ou les seconds membres ont des dérivées premiéres continues
par rapport a I’ensemble des variables, cela de telle maniére
que le tableau des du;/dx; contienne au moins un déterminant
“d’ordre p non nul. D’aprés le théoréme des fonctions implicites,
on peut alors définir le voisinage d’un point sur la variété par
n équations exprimant, sur ’ensemble des coordonnées gy ooy Upip
de I’espace ambiant, n d’entre elles par des fonctions continii-
ment dérivables du premier ordre des p autres. Au point de vue
intrinséque dans E,, . ces variétés sont.encore celles dont le
ptg. en chaque point contient teutes directions d’une variété
linéaire L, d’ordre p. Nous dirons en abrégé que ces variétés
sont réguliéres du premier ordre. Sur ces variétés-mémes, on
pourra donner un sens aux notions de micro-équipollence, de
micro-parallélogramme, ..., notions qu’on peut rassembler sous
la dénomination de micro-affines. Toutes sont solidaires des
suites de couples ponctuels m,, n; donnant naissance a une
ptgt® unique. On pourra donc concevoir les transformations de
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G, comme opérant entre deux variétés & un méme nombre de
dimensions V’ et V' de la classe précédente et en conservant
les propriétes micro-affines. Au mouvement d’un point admet-
tant sur V' & chaque instant une vitesse déterminée, continue
et non nulle, va correspondre sur V' un mouvement doué des
mémes caractéres. De cette correspondance purement ponctuelle,
nous pourrons encore passer 3 la correspondance entre les
points-vitesses, linéaire relativement aux vitesses affectant une
méme position. Nous aurons

A}

ou; dxp

Ot day Ou; di
O, dr

i T da, dt (E')

9 + +
En considérant les quantites

dxy,
Yo = “ar

comme de nouvelles variables, il pourra se faire que les 2n équa-
tions (E, E’) définissent dans lespace’ & 2 (n + p) dimensions
une variété réguliere du premier ordre. Nous dirons alors que
dans Déspace (uy, ..., Uyyp) les équations (E) définissent une
variété réguliére du second ordre. Soient V' et V' deux variéteés
de cette classe. On pourra concevoir des transformations de G,
opérant entre V' et V. A un mouvement sur V' dont I’accéléra-
tion est bien déterminée sur V’, va correspondre un mouvement
analogue sur V", la correspondance purement ponctuelle pouvant
cette fois se prolonger par une autre correspondance biunivoque
et continue, celle des élements point-vitesse-accélération.

Si deux mobiles, & un certain instant, passent au méme point
de V' avec la méme vitesse, chacun d’eux ayant une accélération
déterminée, la différence géométrique de leurs accélérations sera
un vecteur de la variété linéaire L, portant le ptg. de V' au
point considéré. En outre, lors d’une transformation de Gy,
opérant de V' & V", cette différence d’accélération subira la
transformation linéaire tangente. Par cette différence géomé-
trique, nous atteignons une propriété intrinséque de la variété.
On peut y rattacher la notion de suite ponctuelle tendant vers
un point de V' pour lequel elle admet une demi-tangente unique
et un cercle de courbure unique: une telle suite sera réalisée




26 ‘ G. BOULIGAND

lorsqu’il sera possible d’attacher & ses divers points des valeurs
temporelles, la vitesse au point limite étant un vecteur bien
déterminé porté par la demi-tangente, toute différence géomé-
trique éventuelle entre deux déterminations de 1’accélération
etant colinéaire & la vitesse. Le théoréme de Meusnier n’est rien
de plus que ce résultat immédiat de la comparaison des accélé- |
rations pour diverses suites de V’ tendant vers un méme point
avec une méme demi-tangente, quand on choisit les temps
attachés aux points de chacune d’elles de maniére 4 réaliser la
méme vitesse au point limite: les différences de ces accélérations
prises deux & deux sont des vecteurs de la variété V' au point
considéré. Sous cette forme, le théoréme de Meusnier préexiste
a I'établissement d’une métrique de Riemann ou de Finsler sur
la variété. Ou, si ’on préfére, le théoréme de Meusnier tel qu’on
le formule avec une de ces métriques est réductible a la forme
que nous venons d’indiquer 33,

19. — Dans les considérations ci-dessus, I’espace cartésien
intervient 'encore,_ au moins a titre d’échafaudage. Pour s’en
passer, il faudrait prendre une variété topologique compacte Y,
a chaque point de laquelle seraient attachés des vecteurs dont
Pensemble forme une variété vectorielle linéaire a un nombre
constant de dimensions, ces vecteurs étant jusqu’a présent
sans autre relation avec ) que ’appartenance & ¥ de l’origine
de chacun d’eux. Il faudrait postuler que l’ensemble W des
éléments (point-vecteur) est encore une multiplicité & voisi-
nages, elle-méme compacte. Une axiomatique convenable
deévrait introduire la notion d’un couple de points infiniment
voisins d’un point fixe et tendant & déterminer une direction 4

33 Cf. E. CArTAN, Les espaces de Finsler, fasc. 79 des Actualités, Hermann, p. 21.

8¢ Le processus de détermination limite d’une telle direction peut se concrétiser en
admettant que dans la variété, la lumiére, au lieu de se propager entre deux points
par un rayon rectiligne (comme il advient pour une variéte affine) se diffuse, I’image
d’une source ponctuelle percue d’un autre point de la variété ayant un diamétre apparent
non nul, mais qui tend vers zéro lorsque ce dernier point tend vers la source. L’un
des postulats de I’axiomatique envisagée dans le texte énoncerait donc qu'un couple
de points de la variété étant donneé, on peut attacher & I’un de ces points un pinceau
conique de directions (correspondant & des vecteurs de la variété en ce point), pinceau
dont la section droite sphérique donnerait le contour de I’image diffuse de 1’autre point.
En échangeant les deux points et admettant le voisinage indéfini de chaque génératrice
du premier pinceau avec chaque génératrice du second quand les points sont infiniment
voisins, on aurait 1a notion d’une direction limite.
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qui soit celle de I'un des vecteurs de ce point: ce serait le premier
pas fait en vue de conférer a Y une microstructure affine et
d’apprendre & y définir, en chaque point d’accumulation, le ptg.
d’un ensemble ponctuel, ou ce qui peut étre plus commode, le
ptg. mixte de deux ensembles ponctuels ayant un point d’accu-
mulation commun3%. Pour étre utile, une telle théorie devrait
aboutir & Dexistence de systémes réguliers de. coordonnées
curvilignes dans la variété, systémes dont la représentation
analytique rencontrée au n° 18 admet a priori I’existence.

Ces indications suggérent l'importance de tout ce qui reste
a faire en pareille matiére. Et cependant avons-nous ici laissé
de coté bien des questions essentielles, telles les relations de la
théorie des surfaces avec la théorie de la mesure, relations dont
I'importance apparait de plus en plus nette 3.

SUR LES PROPRIETES INFINITESIMALES
DES ENSEMBLES FERMES ET LE PRINCIPE INDUCTIF
DE I’ENLACEMENT !

PAR

B. Kavrmannx (Leeds).

I. — PROPRIETES LOCALES D’ORIGINE INTEGRALE.

1. — Essayons de donner les caractéristiques de la topologie
générale. Etant donné ce que cette science représente aujourd’hui
on serait porté & considérer comme son probléme principal
I'examen par les méthodes de la topologie combinatoire des
espaces les plus généraux et en particulier des ensembles fermés.

35 On devrait respecter la condition d’aprés laquelle‘le ptg. m1xte de E et de F; 4 F2
est la réunion des ptg. mixtes de E, F, d’une part, et de E, F, d’autre part. .

36 Voir sur ce point la thése de M. Georges DURAND (Parls 1931, ou Journ. de Math.,
9me gérie, t. XI, 1931) et Iimportant mémoire déja cité de MM H. BUSEMANN et
W. FELLER (Acta Math., 1. 66, paragraphes 4, 5, 6). —Pourléhmlnatmn des eraces
usuels, voir Pavc, Bull. Ac. Sc. Belg., aolit 1936 .

1 Conférence faite le 23 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par I’Université de Genéve; série consacrée i
Quelques questions de Géoméirie et de Topologie.
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En effet, ces derniéres années la topologie générale s’est trés
sensiblement rapprochée de la topologie combinatoire. Cepen-
dant, une différence importante subsiste entre ces deux disciplines
trés liées et c’est une différence de principe. On peut facilement
la réduire & un seul fait. | o A

La topologie combinatoire construit ses objets d’apres certaines
régles d’incidence & partir d’'un nombre fini ou dénombrable
d’éléments que I'on appelle des simplexes ou des cellules. Pour
la plupart des problémes il est indifférent si ces éléments sont
géométriquement définis ou congus d’une maniére abstraite
comme des schémas combinatoires. En tous cas cette cons-
truction fournit d’une maniére univoque: les relations d’incidence
ou de frontiére, les possibilités de subdivisions successives ou
de triangulations des configurations en d’autres équivalentes
(ou homologues), etc.

La situation dans la topologie générale est tout a fait différente.
Les ensembles fermés ne sont d’abord que des assemblages
amorphes et essentiellement continus de points; il n’y a point
d’éléments du genre des simplexes a l’exception de ceux &
0 dimensions, & savoir des points. Par conséquent il n’existe
pas de subdivisions simples, de relations d’incidence, etc. Les
subdivisions usuelles fournissent des éléments qui eux-mémes
n’ont pas de forme non plus, moins encore que l’ensemble
lui-méme. Cette différence fondamentale quoique évidente est
décisive pour la mise en problémes de la topologie générale,
elle explique méme son développement actuel.

Il est bien connu que la possibilité d’une apphcatlon des
méthodes combinatoires subsiste malgré cela. Elle se base sur
Pidée d’approximations. On part des subdivisions suffisamment
fines d’un ensemble F, subdivisions qui découlent des théorémes
de recouvrement, ou encore d’un réseau fini (ou dénombrable)
de points (simplexes O-dimensionnels) distribués régulierement
sur F; une seule régle, & savoir celle qui affirme que r + 1
éléments ayant un point commun ! déterminent un simplexe
a r dimensions, permet de construire les complexes d’approxima-

.1 Dans le cas d’un réseau ponctuel c’est un réseau partiel formé de » 4 1 points
et dont l’enveloppe convexe a un diamétre donné, qui déte[mme un simplexe

r-dimensionnel,
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tion (les nerfs). Les subdivisions successives de I’ensemble F
donnent une suite de complexes d’approximation. Alors, une
approximation ' suffisamment poussée permet de déceler la
parenté entre les complexes et ’ensemble. lui-méme. Le succes
de ces méthodes est bien connu. Elles ont permis de définir
pour les ensembles fermés les relations d’homologie, les ordres
de connexion .t les nombres de Betti pour un nombre arbitraire
de dimensions, de généraliser les relations d’intersection et
d’enlacement, d’établir et de démontrer les théoremes corres-
pondants de dualité et, enfin, d’obtenir plusieurs proprietes
nouvelles des ensembles les plus généraux.

9. — J’ai voulu rappeler le développement de la topologie
des ensembles fermés pour souligner quelques-uns de ses
caractéres auxquels on ne pense pas souvent.

L'un de ces caractéres est lexistence de nombreux problémes
qui ne peuvent pas se présenter en topologte combinatoire et qui
dans le cadre de cette derniére deviennent des énoncés évidents
et triviaux bien qu’ils découlent en topologie des ensembles de
théorémes combinatoires de toute importance.

Ces problémes spécifiques a la topologie générale peuvent étre
trés intéressants et trés profonds sans avoir de pendant dans la
topologie cellulaire. Le probléme de la dimension en est un
exemple. Représentons-nous, par exemple, les énoncés suivants
pour le complexe r-dimensionnel K": K" contient un cycle
(r — 1)-dimensionnel homologue a 0, K" est un «obstacle
d’homologie » & r dimensions, K" contient une multiplicité de
Cantor & r dimensions, etc. A tous ces énoncés qui sont bien
triviaux dans le cadre de la topologie cellulaire correspondent
des résultats importants et intéressants dans la topologie
générale. Songeons seulement que ces résultats découlent des
théorémes de dualité ou peuvent étre ramenés a eux.

Une autre propriété remarquable de la topologie générale se
rapporte & son développement et se manifeste par la prépon-
dérance de résultats globaux. Les complexes d’approximation
permettent d’appliquer les invariants combinatoires & I’ensemble
et puisque ces invariants sont des propriétés globales pour les
complexes, ils le sont & plus forte raison pour les ensembles.
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La parenté mentionnée ci-dessus entre les ensembles et les
complexes d’approximation est une parenté globale. Méme les
transformations d’un ensemble F & r dimensions en un complexe
K" & r dimensions — d’aprés le théoréeme de transition de
M. ALEXANDROFF — transformations qui sont certainement des
processus localement définis, expriment uniquement une parenté
globale. Généralement I’approximation ne confére pas les propriétés
locales des complexes a Uensemble.

3. — Pour cette raison il semble désirable de distinguer
nettement entre elles les propriétés locales d’un ensemble F
donné dans un espace R. P étant un point de F il est d’usage
d’appeler local un énoncé ou une propriété E de F se rapportant
a un voisinage U de P dans ’espace R. Si le ' méme énoncé E se
rapporte & un voisinage arbitrairement petit du point P, on
pourrait ’appeler une propriété infinitésimale de F. Mais d’avoir
formé ces notions ne permet pas encore d’obtenir les caractéres
distinctifs des propriétés locales d’un ensemble. Je crois
cependant qu’il existe deux types essentiellement différents
de ces propriétés. |

Nous voulons ici nous restreindre aux énoncés qui sont des
théorémes, c¢’est-a-dire & des énoncés qui se démontrent.

Soit (B) un systéme d’hypothéses dont, par une démonstra-
tion, découle un énoncé ou une propriété E; désignons la
démonstration par (B) — E (F). g

- U étant un voisinage dans R d’un point P de F, nous appelleronst
E (U) une propriété locale ordinaire de F si sa démons-
tration (B) — E (F) ne contient pas non plus d’hypothéses
essentielles dans R — U. Si un méme énoncé E (U,) reste vrai
pour une suite (U,) de voisinages convergeant en un point P de F
et st la démonstration (B) — E (U,) reste pour chaque n intérieure
a U, alors nous parlerons d’une propriété infinitésimale
ordinaire de F relatif a P..

Dans les cas suivants cependant on se trouve en présence
de faits tout & fait différents.

-1 Si un énoncé ou une propriété E se-rapporte & un ensemble F nous écrivons aussi ‘
briévement E (F). Si U est un voisinage dans I’espace R, E (U) désigne que 1’énoncé
E (F) contient au moins un énoncé essentiel pour U.
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Si la démonstration (B) —E (U) nécessite des hypothéses
essentielles dans R — U et en particulier si elle doit se seroir
essentiellement d’endroits intérieurs & R — U, alors nous appelle- .
rons E (U) une propriéié locale (de F) d’origine intégrale. Et,
d’une facon analogue, si E(U,) est un énoncé vrai pour un
voisinage arbitrairement petit U, de P et s’il existe un poLsinage
fize Us tel que (B) — E (U,) reste vrai pour chaque n, des hypo-
théses essentielles étant données dans R — Us, alors nous appelons
E une propriéié infinitésimale (de F) d’origine intégrale.

Les propriétés locales (ou infinitésimales) d’origine intégrale
peuvent notamment s’exprimer (totalement ou en partie) par
les énoncés dans R — T, malgré qu’elles se rapportent tmmé-
diatement* & U. Si c’est le cas, alors nous parlons d’énoncés
locaux (ou infinitésimaux) de caractére intégral. Evidemment,
ces énoncés peuvent étre en méme temps envisagés comme des
énoncés globaux. L’on constate aisément qu’un énoncé de
caractére intégral doit &tre nécessairement d’origine intégrale
(mais pas réciproquement).

Les propriétés locales et notamment les proprletes infinité-
simales d’origine intégrale sont caractéristiques pour la topologie
des ensembles fermés. Mais on voit immédiatement qu’il s’agit
seulement d’une formation relative des notions. La distinc-
tion entre les propriétés ordinaires ou d’origine intégrale
dépend non seulement d’un certain systéme (B) d’hypotheses,
mais aussi des démonstrations elles-mémes 2. Je crois cepen-
dant qu’il est un principe de travail utile et de grande actualité
de former ces notions malgré qu’elles ne requiérent pas, au
moins sous cette forme, de rigueur mathématique ou méme
philosophique. | :

4. — Je voudrais encore compléter ces considérations sur.
les propriétés locales et infinitésimales des ensembles fermés en
soulignant les deux (ou trois) attitudes qu’on peut prendre

1 La définition de propriété locale n’exclue point que I’énoncé E (U) contienne en
méme temps des énoncés dans R —U. Cela n’est.exclu que pour le cas des proprittés
locales ordinaires. Considérons par exemple 1’énoncé suivant: «(B) entraine que
tous les couples de points dans U peuvent étre relies par un arc dans F tel qu’il
rencontre des points dans R — T .-

2 Seuls les énoncés de caractére mtégral sont 1ndépendants des démonstrations.
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vis-a-vis -d’elles, attitudes entrainées par les problémes
eux-mémes. | o

L’une de ces attitudes est déterminée par le désir de caractériser
entre les ensembles et les espaces les plus généraux ceux qui
présentent les propriétés déja connues des formations cellulaires
(des multiplicités, des espaces de Poincaré, des sphéres). Ces
problémes sont aussi trés importants pour la topologie combina-
toire puisqu’ils permettent d’étendre son domaine de validité.
La résolution de ces problémes s’obtient en posant des conditions
nécessaires et suffisantes de genre généralement local, qui
garantissent la possibilité de la structure cellulaire. On a une
trés grande liberté dans le choix de ces conditions et I'intuition
est d’un grand secours. A priori au moins, ces conditions peuvent.
aller des tautologiques jusqu’aux trés profondes. Le principe
directeur est évidemment le suivant, si 'on envisage un but
concret: moins on pose d’hypothéses, plus la portée des conditions
s’étend. Comme exemple citons le probléme de la généralisation
de la notion de multiplicité, dont on s’est beaucoup occupé ces
derniéres années (VAN KaAmMPEN, PONTRJAGIN, ALEXANDER,
LErscHETZ) ou encore le probléme de caractériser la spheére
& n dimensions. On peut aujourd’hui poser des conditions
nécessaires et suffisantes pour ’homéomorphie d’un espace et
d’une sphére, mais on pourrait aussli en poser assez peu pour
rendre le probléme extrémement difficile, comme c’est le cas
avec I’hypothése de Poincari. Comme probléeme tres relié a
ce dernier, mais plus profond encore, citons le probléme de la
réciproque du théoréme Jordan-Brouwer dans les espaces &
quatre ou plus dimensions (& savoir de caractériser la sphére
par les propriétés de l’espace complémentaire).

Une attitude fonciérement différente doit étre adoptée si I’on
se donne un objet géométrique (aussi général que possible) et
si ’on cherche des propriétés nouvelles de cet objet. Si, dans
cette attitude, nous définissons la propriété d’une facon abstraite
ou bien si nous formons de nouvelles notions, le critere est
opposé: plus la notion formée, qui exprime des propriétés
nouvelles de 1'objet, est tranchante, plus sa portée est grande.
Dans la topologie des ensembles on trouve tant d’exemples de
ce fait qu’il nous semble inutile d’insister. Ce critére oblige aussi
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4 justifier une notion nouvellement introduite et cela par
Pindication de sa signification pour une classe d’objets donnée
indépendamment de cette notion et aussi générale que possible.

Enfin,- je mentionnerai encore une troisiéme attitude: par
des définitions (des axiomes) on peut déterminer une nouvelle
classe d’objets satisfaisant aux conditions données. Ensuite
on examine d’autres propriétés de 'objet. Pour cette attitude
il ne faut pas oublier que le nouvel objet dépend généralement
N des définitions. Cette attitude est d’usage pour établir une
M iLcorie abstraite nouvelle et le développement cohérent de cette
théorie doit la justifier. Pratiquement, elle est suggérée par
0 1e désir d’6tudier les probléemes difficiles d’homéomorphie et
Il d’homotopie au moins dans des conditions plus spéciales et
I plus faibles. Les trois attitudes sont courantes dans la topologie.

II. — LE PRINCIPE INDUCTIF DE L’ENLACEMENT.

5. — Les pages suivantes seront consacrées a un bref exposé
| de 1a théorie infinitésimale des ensembles les plus généraux.
Il s’agira sans exception de propriétés d’origine intégrale dans
le sens du critére énoncé plus haut. Ce sont, d’ailleurs, les
résultats d’une suite de recherches que j’avais abordées dans les
derniéres années et qui, je crois, font connaitre pour le moment
plusieurs nouvelles relations importantes pour la structure
infinitésimale des ensembles. Je voudrais d’ailleurs me restreindre
aux questions de principe de ces recherches. La compréhension
et la classification de ces principes nous sera facilitée si nous
retenions quelques phases du développement de la topologie
B oénérale. On peut noter, je crois, trols moments critiques,
décisifs pour ce développement.

Le premier moment critique s’est présenté le jour ou l'on
sest rendu compte de 1'importance des relations d’enlacement
pour la topologie générale. On avait reconnu notamment.que la
décomposition. d’un espace par un ensemble n’était qu'un cas
particulier d’enlacement de ’ensemble avec un cycle de dimension
duelle. On sait que cette découverte est due & MM. LEBESGUE

L’Enseignement mathém., 36™e année, 1937. 3




34 B. KAUFMANN

et BRouwer!. En topologie combinatoire ce sont les theoremes
de dualité qui relévent le mieux Pimportance de cette décou-
verte. Ce sont les relations d’intersection et notamment les
indices de Kronecker dont la théorie compléte est due a
M. LeErscuETz qui forment leur outil le plus important.

En particulier, cette conception a permis d’introduire la
notion de la multiplicité générale qui est fondamentale pour
Pexposé qui suit. |

Soit U un voisinage sphérique dans R". Un ensemble ferme
a r dimensions F dans U est appelé une multiplicité générale
s'il existe un cycle algébrique I dans U irréductiblement
enlacé avec F; ¢’est-a-dire I ~_ 0 dans U—F tandis qu’on
a I ! ~ 0 dans U — F’ pour chaque vrai sous-ensemble F’
de F 2.

La grande importance de ces multiplicités s’explique par leur
valeur universelle. Comme M. ALEXANDROFF a pu le montrer,
chaque ensemble fermé & r dimensions contient une multiplicité
générale 4 r dimensions °. |

Un second point de vue qui — au moins pendant quelques
années de suite — a fortement influencé la topologie, était
le suivant: on concoit la nature de la dimension d’un ensemble
comme un invariant o définir inductivement, l'induction se
rapportant 4 une suite de décompositions d’un ensemble par
des ensembles &4 un nombre inférieur de dimensions. Ce principe
aussi est di & M. BROUWER.

Le troisiéme pas est fait par la théorie de 'approximation que
nous avons déja mentionnée et dont le développement est dit
notamment & MM. ALEXANDROFF et LEFSCHETZ.

Le principe que je voudrais indiquer maintenant apparaissait
de plus en plus au cours de mes recherches; il s’agit ici d’une
synthése du principe de Uenlacement et du principe inductif de la
séparation. J’appellerai ce principe le principe inductif de
Penlacement et la configuration des cycles et des ensembles a
laquelle il donne lieu le systeme inductif de Uenlacement.

1 Voir L. PONTRJAGIN, Math. Annalen, 105 (1931), pDp. 166-167.

2 La notation 1?71 ~o 0 désignera désormais I’existence d’'un complexe
I{n~'1’ - I‘”"'L

3 Voir P. ALEXANDROFF, Dimensionstheorie, Math. Annalen, 106 (1932), pp. 161-238.
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6. — Décrivons tout d’abord deux opérations trés simples
qui, formellement, s’appliquent a4 des ensembles aussi bien qu’a
des cycles.

Soit, dans R", A" un ensemble fermé a r dimensions. Nous
appelons décomposition de A" la détermination d’un ensemble
A"D 3 (r— 1) dimensions au plus et tel que A" puisse étre
représenté comme somme de deux ensembles fermés A" et 2A",
1AT2A" = AT ce que nous écrivons A" = A" L ATD L 24T,
Nous appelons extension d’un ensemble ’opération inverse; un
ensemble donné A subit I’extension 4 un ensemble & r dimen-
sions si I'on parvient & déterminer deux ensembles 1A" et 2A"
tels que *'A” 4 A"V 4 2A" = A" s0it une décomposition de A”.

Nous pouvons définir les opérations correspondantes pour les
cycles algébriques. Soit I'" un cycle algébrique a r dimensions.
La décomposition de I'" en deux complexes 1C", 2C" sera déter-
minée si nous indiquons un cycle I'"' 4 r — 1 dimensions tel
que I'" =1C" 4-2C7, 'C" — I, — 2C" —~ I'"™!, Etant donné
un cycle I nous appelons extension de I"! la détermination
ou la construction de deux complexes 'C" et 2C" tels que
1C" + 2C7 = I soit décomposé par I,

Soit F = B” un ensemble fermé & r dimensions — dans le
sens de M. BROUWER — intérieur & un voisinage sphérique U
borné dans R"™ par une sphére & (r — 1) dimensions. Soient

T r—1 ~j
B, B!, .., B™, ... B,

une suite d’ensembles fermés a (r — j) dimensions (j = 0,1, ..., 7)
tels que chaque ensemble B! décompose l’ensemble B’"’ en
deux sous-ensembles 'B"7 et 2B,

B — 1B + Br-i-1 4+ 2B2T

Soit I un cycle algébrique (mod. 0) & (n — r — 1)
B dimensions, satisfaisant 3 la condition

| "™t ~_0 dans U—B"
Wet soient 4
IR A A £ A A

&
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urie suite d’extensions du cycle I

Iwn—r—kj _ 1Qn—r+j + 2Qn—-'r+j,
ou l'on a pour chaque j = 0,1, 2, ..., r

1Qn—r+j — Iwn—r-»j——l dans‘ U — 1BT~3' :

— QT Pl dans U — 1B

Si les suites {T"7+1Y. ) et {B};_q;4,.,, satisfont
a ces conditions, nous dirons qu’elles forment un systéme inductif
d’enlacement relatif & ’ensemble F.

Etant donné un systéme inductif d’enlacement, nous appelons
Jes suites { T"7*7'} une suite fondamentale de cycles et la
suite {B'7} une suite fondamentale d’ensembles du systeme
d’enlacement en question.

7. — Etant donné un systéme inductif d’enlacement, on en
tire d’abord une extension inductive de l'important théoréme
Phragmen-Brouwer-Alexandroff. Conformément a I’hypothese,
lensemble F = B" est un obstacle d’homologie par rapport
au cycle I™7!, ¢’est-a-dire que ’on a, dans U—B", =t~ 0.
De ce fait le théoréme PHRAGMEN-BROUWER généralisé affirme
quil existe dans B" rel S"" un vrai cycle enlacé avec | K
(mod. my) et totalement non homologue dans B’

ot 'on a pour chaque k&

r T T
Zk = 1Ch + 2C 9

r—1

e i S

et ou
Zr—l — -1 r—1 r—1

est un cycle dans B et totalement non homologue 0 dans B |
Le cycle Z" peut étre supposé de position générale par rapport f
a ™! de facon que les indices de Kronecker (de module 1
variable m;) puissent étre déterminés pour chaque £. |
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La généralisation inductive du théoréme Brouwer-A lexandroff.
Soit
e r—j
{Pn r' ! }j=0,1"--sr ’ {B }j:Oa1!-'-ar

un systeme inductif d’enlacement relatif a F. Nous affirmons
que:

1o 11 existe une suite de cycles entiers

{Zr—j = z:_j, z;_j,-..., z;:_j, e §5=0.1, .t (mod. m}) ,
telle que, pour chaque j, Z'7 soit un cycle entier dans B,
totalement non homologue 0 dans B"™, ou

r—j _ 1071 o 2T
AlC};‘j — g dans B,

— 20— 21 dans 2B}

2 On a, pour chaque j, T+ ~ 0 dans U — B™7.

Ce théoréme se démontre aisément par induction; 1’on
démontre les propriétés 1° et 20 alternativement pour des j
croissants. De la validité de la relation 2° pour j = 0 découle
— d’apres la définition du systéme d’enlacement — la validité
de 20 pour chaque j = 1, 2, ..., r. De ce fait, chaque ensemble
B est un obstacle d’homologie du cycle I ¢tendu j fois,
ce qui explique le nom de «systéme d’enlacement» pour la
configuration formée des suites {[™7+i1} ot {B™7}.

En construisant encore les cycles entiers {Z™7} qui corres-
pondent univoquement aux ensembles décomposants { B™7 },
nous obtenons une configuration efficace au point de vue
combinatoire. Pour chaque j elle satisfait aux relations 1° et 2°0
et, pour préciser, nous la'notons dans le tableau suivant. Nous
‘appelons cette configuration wun «systéme combinatoire
d’enlacement ». |
Soit

™"t ~_0 dans U—B".




38 , B. KAUFMANN
Les relations suivantes (mod. m,) sont vraies pour chaque
- 07 17 '

it o i . i . .
il o oagrerti-t | egrerti-t B — 1pri L pri-l o eprd |

QT+ —» Il dans U —1B™
— QT Tl gans U — 2p7-d ,
29 - {57 G+ g, dans B
{67 =T g Yy, dans BT, BT
{x(C7, TH) = g (=27, T £ 0} .

7+l L0 dans U —B™7.

8. — L’importance du systeme inductif d’enlacement repose
sur le fait suivant: I'on peut, en retenant les suites {B"7} et
{Z7}, remplacer la suite fondamentale de cycles {I""¥}
par une suite fondamentale {y" "'} de cycles arbitrairement
petits qui forme avec les suites {B"7} et {Z"7} un systéme
combinatoire d’enlacement équivalent. En d’autres termes?’:

Pour chaque e arbitrairement petit il existe une suite de

cycles { y* "1},

Yn—r—{-j-i _ 1qn—1+9—1 + gqﬂ—r+3—1 ,
1qn—r+3 i Yn—T-H—l dans U — g™ ,
— g e Tl dans U —2B™7 |

S(v* 1) < e,

qui a les mémes relations d’intersection et d’enlacement avec
les cycles Z' que les cycles { T""+i-1 1,

Il est essentiel pour la construction des cycles { Y"1} de
ramener un cycle donné a une « position générale » par rapport
a un ensemble de dimension complémentaire.

Nous appelons K" un complexe -en position générale par
rapport & un ensemble B, si son « échafaudage» & (n —r — 1)
dimensions ne rencontre pas ’ensemble B".

1 Voir [7] et surtout [9]. Les chiffres gras entre crochets se rapportent a la bibliographie
indiquée a-1a fin.
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Nous dirons qu’'un complexe K™ ge trouve en position
générale par rapport a la suite fondamentale {B"7}, si chaque
échafaudage & (n —r +j—1) dimensions de K™™' est en
position générale par rapport a I’ensemble B"7. Un complexe
K™ peut toujours étre ramené a un complexe équivalent *Knt
qui serait en position générale par rapport au systéme {B’"“j %
La construction de *K™! se fait par une généralisation de la
méthode des modifications infinitésimales de complexes de
M. Alexandroff. Remarquons encore que les complexes habituels
de simplexes étant beaucoup trop «rigides » ne se prétent guére
3 1a solution du probléme de la position générale d’un complexe
B ct d’un ensemble et, surtout, pas dans le cas d’un systéme
B d’ensembles {B™ }. Pour cette raison I'on construit les
B complexes modifiés d’éléments qui sont eux-mémes des
complexes correspondant d’une fagon univoque et réciproque
aux simplexes du complexe donné.

Les invariants d’intersection et d’enlacement nous permettent
de construire les cycles {y" "™} sur un complexe & (n—1)
dimensions et en position générale par rapport au systéme
d’ensembles {B"7}. Cette construction découle du simple
principe de décompositions « disjonctives » de cycles, qui
correspondent aux décompositions d’ensembles ‘de dimension
complémentaire et sont déterminées par ces dernieres [9].

Nous pouvons maintenant formuler le lemme fondamental
de cette théorie.

Si les cycles { ™7} et les ensembles {B"”} forment un
systéme inductif d’enlacement, alors pour chaque nombre
h=0,1,..,r il existe dans F une multiplicité a ~ dimensions
arbitrairement petite f*, contenant des points de I’ensemble B°.
11 existe, en plus, dans B® un point de multiplicités a h dimensions
P" ¢est-a-dire il existe dans F® une suite de multiplicités
(générales) a4 h dimensions f* D f* D ... décroissantes et
convergeant en un point P" intérieur & B

Dans la définition du systéme inductif d’enlacement la suite
fondamentale était donnée d’une facon purement formelle. Par
conséquent, les théorémes énoncés ci-dessus sont valables d’une
maniére générale pour une multiplicité arbitraire F ou, plus
généralement encore, pour un ensemble F = B” satisfaisant par
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exemple aux hypothéses du théoréme Phragmen-Brouwer. Le
systéme inductif d’enlacement doit avoir une construction
correspondante au - probléme concret. L’on construit alter-
nativement les cycles et les ensembles de suites fonda-
mentales { "+ Y et {B"7} pour les j croissants et I'on fait
sur les ensembles B"? des hypothéses qui autorisent des
conclusions inductives. L’on voit ainsi que ce sont seulement
les démonstrations des théorémes exposés briévement dans la
suite qui font voir toute la fécondité des systémes inductifs
d’enlacement. |

III. — LA STRUCTURE D’ENSEMBLES A PARTIR DE MULTIPLICITES
ARBITRAIREMENT PETITES.
LES NOUVEAUX THEOREMES DE PAVAGE.

9. — C’est 'extension locale du théoréme Phragmen-Brouwer-
Alexandroff qui forme le premier échelon de la théorie infini-
tésimale des ensembles [1, 2]. Le théoréme suivant est valable:

Soit F une multiplicité a r dimensions ou, plus généralement,
un ensemble (dim F = r) satisfaisant aux hypothéses du
théoréme Brouwer-Alexandroff. Soit F = 'F 4 B™! L 2F une
décomposition de F par un ensemble B! & (r — 1) dimensions
en deux composants ouverts F et 2F. Alors, il existe une multi-
plicité & r dimensions arbitrairement petite f* = 1f" 4 b™1 4 2f
décomposé par un sous-ensemble b de B! en deux parties |
ouvertes f" C F et 2f" C ?F.

La démonstration de ce théoréme [6] découle de I'invariance
locale des cycles placés dans les deux premiéres lignes du
systeme d’enlacement. Le cas particulier r = n—1 de ce
théoreme fut démontré pour la premiére fois et par des méthodes
trés différentes par M. H. D. URSELL et moi-méme [2, 3, 4, 5, 8].
Les représentations dites harmoniques de complexes qui sur-
gissent dans ce cas particulier et leurs invariants sont aussi,
me semble-t-il, intéressantes en elles-mémes. Ce théoréme en-
traine aussi que I’ensemble de tous les points de multiplicités
r-dimensionnels dans F est & une dimension. ‘

Les résultats suivants montrent trés nettement que la fotalité
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des multiplicités arbitrairement petites de chagque dimension h <1
a dans un ensemble d r dimensions la méme étendue que les points
de Densemble lui-méme [1, 9]. En d’autres termes, si nous
considérons toutes les multiplicités arbitrairement petites de
diamétre = 8 (3 étant arbitrairement petit), nous voyons
qu'elles forment — dans un sens qui s’impose [8, § 1] — un
systéme r-uplement connexe et cela que ce soient des courbes
(h = 1), des surfaces (A = 2) ou des hypersurfaces de dimen-
sion arbitraire < r. Nous aurons un résultat encore plus
précis en considérant l’extension dimensionnelle des totalités
des points de convergence des systémes de multiplicités arbi-
“trairement petites de chacune des dimensions fixes, c¢’est-a-dire
des points de multiplicités définis plus haut (voir le lemme
fondamental de § II). Mais pour cela une conception appro-
priée de la dimension s’impose. ? .

La notion relative de dimension. Soit A un ensemble fermé &
r dimensions. dans R™ Nous dirons qu’un ensemble donné ®
(qui n’est pas nécessairement fermé) dans R" a la dimension
homogéne j relativement & A (hom dim ® = j rel A) si j est le
plus petit entier positif tel que chaque couple A’ et A" de sous-
ensembles fermés et disjoints de A peut étre séparé par un
ensemble B — A dans A ayant au plus la dimension (r — 1),
avec hom dim ® = j— 1 rel B. Si C est un sous-ensemble
fermé quelconque de A alors on a hom dim ® = —1 rel Csi ®
et G sont disjoints. Si G est composé d'un seul point, alors
on a hom dim ® = 0 rel C si le point C est intérieur a @,
hom dim ® = — 1 rel C §’il ne I’est pas?. |

L’on voit immédiatement que cette notion de dimension est
extrémement intuitive. Nous pouvons maintenant énoncer le
théoréme suivant:

Sotent F un ensemble a r dimensions dans R" et ®" la totalité
des points de multiplicités de dimension h. Alors, pour chaque
valeur de h = 0, 1, ..., r Pensemble ®" a la dimension homo-
gene r relativement a F.

‘ L I est évident que cette définition spéciale s’impose pour la dimension relative
4 un point. Soient A un segment (0, 1) et P:= A. Les ensembles de séparation B sont
formés de points singuliers et ne contiennent pas de parties disjointes. Pour avoir
hom dim P = 1 rel A il faut aussi avoir hom dim P = 0 rel B (pour chaque B). -
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Ces théorémes et aussi ceux que j’exposerai dans la suite
n’ont été démontrés jusqu’a présent que pour les ensembles
formant des obstacles d’homologie pour des sphéres & (n —r —1)
dimensions. Par conséquent, ces théorémes sont en tous cas
valables pour tous les ensembles & (r — 1) dimensions dans R".
En général, ils sont valables pour tous les cas ou Iensemble
satisfait aux hypothéses du théoréme inductif Phragmen-
Brouwer.

Les moyens dont nous disposons aujourd’hui nous permettent

” : cep 1
de démontrer pour chaque entier positif j =< (r S g ) le
théoréme suivant, F étant un ensemble arbitraire a r dimensions
et 2r > n + 1.

La totalité @ de tous les points de multiplicités @ r dimensions
de F, a au moins la dimension homogéne v rel F.

10. — Soient F un ensemble & r dimensions dans un voisinage
sphérique U de R" ef s*™ ! une hypersphére & (n —r — 1)
dimensions et ~/~ 0 dans U —F. Soit € un nombre positif
arbitrairement petit et soit

F=F+F+ . .+F+..+F,, 8F) <=

une décomposition de I'ensemble F. I1 est connu qu’il existe,
pour chaque ¢, des décompositions de 'F  dont chaque
k(k=2,3, .., 2 -+ 2) parties aient toujours une intersection a
(r — k + 1) dimensions. Appelons ces décompositions de F
des décompositions canoniques. Les théorémes de pavage sul-
vants sont valables [10]: |

Pour chaque < suffisamment petit il existe v - 1 parties de chaque
décomposition canonique de F qui contiennent des points d’une
multiplicité générale arbitrairement petite £ de chaque dimension
h=201,..r

11 existe, de ce fait, r 41 parties de chaque décomposition
canonique de F, ayants des points communs sur des courbes,
surfaces et hypersurfaces générales arbitrairement petites de
chaque dimension. Il ’agit ici d’un systéme fixe de r + 1 parties
pour tous les . L’on voit aisément que le lemme fondamental
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de M. LeBEsGuE correspond au cas h =0 tandis que, pour
chaque h> 0, nous trouvons un théoréme de pavage de
dimension supérieure.

La démonstration des theoremes de pavage découlant du
principe inductif d’enlacement donne aussi un résultat purement
quantitatif sur les ensembles. '

Pour avoir I’effet du théoréme de M. Lebesgue ou des nouveaux
théorémes de pavage, nous devons évidemment supposer le ¢
de la décomposition de F «suffisamment petit». Maintenant
nous pouvons reconnaitre, au moins en principe, la valeur et la
signification de cet . Ici de nouveau nous nous restreignons au
cas d’ensembles F (dim F = r) formant un obstacle d’homologie
de la sphére a (n —r —1) dimensions dans un voisinage
sphérique U de R". -

L’effet de tous les théorémes de pavage v + 1 se présente pour

chaque ¢ < ;—TD, D étant la distance o (s"7!, F).

Par conséquent, le ¢ des théorémes de pavage dépend de r
et D. Plus grande peut-on supposer la distance D, plus grand. e
peut étre choisi. Dans le cas absolu, ou F forme un obstacle
d’homologie d’une sphére & (n — r — 1) dimensions R", 1l se
peut évidemment qu’on puisse supposer D arbitrairement grand.
Dans ce cas l’on peut, de ce fait, supposer ¢ arbitrairement
grand, c¢’est-a-dire == M, M étant un entier positif arbitrairement
grand. Il serait intéressant, me semble-t-i1l, de déterminer le ¢
pour des classes plus spéciales d’ensembles et de figures
géomeétriques. |

Les points de multiplicités de chaque dimension 2 = 0, 1, .
permettent aussi d’apporter plus de premsmn aux theoremes de
pavage * [7, 10].

F étant dans U un ensemble enlacé avec la sphere s
(ou, plus généralement, ayant s"" ~|_ 0 dans U — F), alors

il existe pour chaque e /—p (F, s"') une décomposition

canonique de F avec r +1 partles, qui contiennent un point
de multiplicités commun de chaque dimension 2 = 0,1, ..., r

1 La démonstration des nouveaux théoremes de pavage pour tous les ensembles
satisfaisant aux conditions du théoréme inductif Phragmen-Brouwer sera indiquée
dans un travail postérieur.
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IV. — AUTRES PROBLEMES.

11. — Les résultats indiqués plus haut nous permettent de
considérer les multiplicités générales comme des éléments a
dimension supérieure d’un ensemble. Au moins d’une facon
infinitésimale nous pourrions comparer la composition d’un
ensemble & partir de multiplicités arbitrairement petites a la
ecomposition d’un simplexe & partir de simplexes arbitrairement
petits.de chaque dimension. Sans doute, ce sont ici les premiers
resultats obtenus dans cette direction; ils permettent cependant
de poser, aussi globalement, plusieurs autres problémes. Pour
terminer, je voudrais en mentionner quelques-uns 1.

La tache consiste en la construction d’un systéme inductif
d’enlacement, correspondant au' probléme concret donné. En
géneral, la solution de ce probléme est facile pour le cas d’en-
sembles formant des obstacles d’homologie des hypersphéres.
Dans le cas général d’ensembles enlacés avec des cycles arbi-

traires, on peut facilement étendre les cycles j fois, si I’on a

" /—l 7 /4 /4 .
] < (r— = —’2_ ) En conséquence, nous ne pouvons établir des

nouveaux théorémes de pavage que jusqu’a la j-éme dimension.
Pour des j<r et des r <n arbitraires la solution générale
n’existe pas encore 2.

1 D’autres problémes liés immédiatement & la théorie exposée ici sont indiqués dans
les travaux mentionnés dans la bibliographie.

2 Ayant déja terminé le manuscrit de cette conférence, j’ai pu encore démontrer
les théoremes de pavage, de méme que les théorémes énoncés dans le paragraphe 9,

pour tous les ensembles fermés & un nombre arbitraire de dimensions dans R”. En méme

temps le probleme d’étendre r fois un cycle par rapport & un F arbitraire dans U a

été résolu.
La solution repose sur le lemme suivant:

Soient F un ensemble fermé & r dimensions arbitraire dans ﬁ et 171 yn cycle
arbitraire (mod. O) a (n — r — 1) dimensions dans U — F; rn—r—1 ~/~ 0 dans U-F,

Alors il existe une suite de complexes 4 (n — r) dimensions {Kn 7}\’21 3
K" s 177-1  gans U, ve= 4, 2 L

tels que llm{ K F} soit un ensemble 4 0 dzmenswns
= 0
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19. — D’autres problémes se présentent si l'on veut carac-
tériser les multiplicités classiques a ce nouveau point de vue.
La définition de l'ordre des points de multiplicités peut étre
considérée comme un travail préparatoire dans cette direction.
Soient {f*} et {'fl} pour n, m=1,2,... deux suites de
multiplicités décroissantes a A dimensions ayant un point
limite P commun. Si une multiplicité 'f* (pour m = p) contient
toutes les f* pour chaque w arbitrairement grand et si, récipro-
quement, une multiplicité f* contient presque toutes les ‘i si
grand que soit n = v, alors nous appelons les suites {3} et {fm}
équivalentes et nous dirons qu’elles définissent le point P comme
un point de multiplicités & £ dimensions. Si toutes les suites
qui définissent un point P comme un point de multiplicités a k
dimensions sont équivalentes, nous appelerons P un point de
multiplicités stmple. 11 est clair que le nombre (fini ou infini)
de suites {/!'} non équivalentes définissant le point P comme
un point de multiplicités & h dimensions peut étre considére
comme ordre (& z dimensions) de P. |

F étant un ensemble & r dimensions, nous appelons un point P
de F point régulier si, 3 étant un nombre arbitrairement petit,
il existe un 1 < 3 et tel qu'une multiplicité & r dimensions de
diamétre = S contienne tous les points de F intérieurs a un
voisinage U (). Un ensemble F est dit régulier si tous ses points
sont réguliers. Il est clair qu’un point régulier de F doit étre
simple dans la dimension r-eme. Il serait intéressant de savoir
si un ensemble fermé F dont tous les points sont des points
simples dans la r-éme dimension est régulier lui-méme.

11 serait notamment intéressant de savoir si la notion générale
de multiplicité permettrait & elle seule de caractériser les
multiplicités classiques . L’on pourrait essayer d’appliquer icl
aussi le principe inductif.

Une multiplicité générale & 2 dimensions (et notamment dans
le sens absolu, c’est-a-dire définie dans U = R") est appelee
simplement connexe (localement) dans la dimension (h — 1)-éme
si chaque point P de F peut étre séparé de chaque point R 7= P
de F par une multiplicité & (h — 1) dimensions ' placée dans

1 En se servant des nombres de Betti généralisés M. Lefschetz a résolu ce probléme
pour des ensembles fermés, M. E. Cech pour des espaces topologiques.
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U (P, 3) (pour chaque 3) et simplement connexe (localement) dans
la dimension (h— 2)-éme. L’induction peut ici commencer par f°
ou fi, c’est-a-dire par des cercles topologiques. La question qui
se pose est la suivante: les ensembles d r dimensions, localement
simplement connexes dans la (r — 1)-éme dimension, sont-ius des
multiplicités classiques (dans le sens étendu de MM. vaN KAMPEN
et PoNTRJAGIN) ? 1.

13. — Cette question ne doit pas étre confondue avec le
probléme de caractériser les multiplicités classiques par les
propriétés de espace complémentaire et notamment avec le
probléme de la réciproque du théoréme de Jordan dans les
espaces & un nombre supérieur de dimensions. Ce dernier
probléme a aujourd’hui de l'intérét aussi dans R®. Il faut ici
distinguer entre les conditions locales (dans le sens ordinaire) et
les conditions globales qui sont plus essentielles. Les premiéres
peuvent facilement étre indiquées de diverses maniéres; la
seule solution dans R3® connue jusqu’a présent? repose sur
’hypothése de la connexion simple du domaine complémentaire
d’une surface fermée. Il est naturel que la démonstration se serve
du théoréme de dualité de M. ALExANDER. Mais je voudrais
remarquer ici qu’il existe une forme purement ensembliste de la
réciproque du théoréme de Jordan dans R®.

Pour qu'une surface ¥ & deux dimensions dans R3, fermée el
réguliére (dans le sens indiqué plus haut) dans chaque point soit
une sphére topologique il faut et il suffit que chaque section irré-
ductible d’un domaine complémentaire de F soit une multiplicité
de Cantor. ‘ |

La condition de régularité pourrait étre remplacée par une
autre condition, aussi purement ensembliste ®. Bien que la forme
de ce théoréme soit purement ensembliste, sa démonstration est
essentiellement combinatoire et ne pourrait guére étre ramenée
immeédiatement aux théorémes de dualité. L’on remarque
toujours que les problémes ensemblistes sous une forme générale

1 I’on sait que cette assertion est vraie pour le cas le plus simple h = 2.

2 Voir R. L. WILDER, Math. Annalen, 109 (1933), p. 273.

3 Si ’on voulait se servir de notions plus anciennes, il suffirait d’exiger (localement)-
que la surface F soit accessible et « unbewallt » & partir des . domaines complémentaires.
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ne peuvent étre résolus que par des moyens combinatoires et
conduisent souvent a des nouveaux problémes combinatoires.

Je ne saurais indiquer a quel point une surface fermée dans
R" et satisfaisant & des conditions analogues, doit étre une
multiplicité dans le sens classique. - -

L

14. — Nous voulons revenir encore a des multiplicités
générales.

o]

La supposition suivante indique un probléme global trés
itéressant.

Soit F une variété générale & r dimensions. Soient A" et B"

deux sous-ensembles fermés & % dimensions de F, pour un
h=01, .. r—1 fixe. Nous prétendons qu’il existe toujours
une multiplzczte de Cantor a (h 4 1) dimensions Tthi contenant A"
et B"1,
Ce probléme est trés li6 au probléme du prolongement des
multiplicités arbitrairement petites & 2 dimensions dans F, et
ce dernier présente des analogies avec les surfaces de Riemann.
En général, la possibilité d’une analogie méme globale entre les
ensembles fermés et les espaces de Riemann n’est point absurde.
L’on pourrait, par exemple, envisager les multiplicités générales
comme des surfaces plides une infinité de fois et les ensembles
comme des totalités de telles surfaces; il n’est pas impossible
d’avoir une vue des éléments d’accumulation qui se présentent
ainsi. Dans R3 'on connait ces éléments qu’on pourrait aussi
appeler des «ideal elements ». II est stir que les recherches sur la
totalité de ces singularités d’un ensemble se feront par les
méthodes de la topologie combinatoire. '

1 11 est facile de démontrer cette assertion pour h = 0.

Dans R” 'on peut toujours relier un couple A” et B% d’ensembles & h dimensions
par une multiplicité de Cantor T2+1 Considérons une suite de décompositions en
simplexes z(s¥) de R” dont les diamétres tendent vers 0. Déterminons A partir des -

(h + 1) — simplexes de z(+1) une variété de Cantor Kh“H telle que I'on ait
d(A 1+ B, h_H) < <1, Ajoutons & Kh'} ! un complexe Kh'}"1 de tous les (h + 1) —
simplexes de z(:2) dont la distance de (A” + B?) serait 1nfér1eure a <2, etc. L’enve-
loppe fermée de K"+ 1 pour v+« est-une multiplicité de Cantor & (a -+ 1) dimen-
sions, reliant Al et B2. ‘ v
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NOTES COMPLEMENTAIRES. A MA CONFERENCE
SUR LA TOPOLOGIE DES VARIETES

1. — Au lieu du passage de la Géométrie anallagmatique de
M. J. HapaMARD, cité dans ma conférence sur la TOpologle des variétés,
t. 35, p. 246, il seralt préférable de lire la Note L insérée dans le tome 11
de ses Legons de Géoméirie élémentaire (7me édition, Paris 1932).

2. — Le dernier paragraphe de la page 249 ne concerne que les surfaces
orientables. Car la variété-voisinage d’une surface non-orientable i immergée
dans I’espace & quatre dimensions doit étre orientable, comme chaque i

variété & n — 1 dimensions immergée sans smgularltes dans [P’espace

euclidien & n dimensions. Or, le produit topologlque du cercle et d’une
surface non-orientable est non-orientable, lui aussi. — Voir a ce sujet
H. Serrert, Algebraische Approximation von Mannigfaltigkeiten, Math.
7eztschmft 40 (1936) et W. HanTzscue, Einlagerung von Mannigfaltigkeiten
in euklidische Raume, ibid. 42 (1937).

.. 3. — L’article de M. E. STiEFEL, cité & la page 250 vient de paraitre:
Comm. math. help., vol. 8, p. 305- 353 Il faudrait le lire également au
sujet des variétés 1mmergées dans des espaces euclidiens.

W. THRELFALL.

1 Cette bibliographie indiqiie seulement les travaux ‘s’occupant directement de la
théorie exposée ici.
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