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TRANSFORMATIONS CIRCULAIRES 149

ou D est un retournement, conserve les angles en grandeur et
en signe. La deuxiéme conserve les angles en grandeur, mais
change leur signe: c’est celle des transformations circulaires
Lnverses : |

C=1m |, (3)

ou (2 est un déplacement.

Chacune de ces deux familles est & 6 paramétres: 3 pour
Pinversion, 3 pour le déplacement ou le retournement.

Les € forment un groupe; les C non.

Pownt a Uinfini du plan. — C’est un point impropre oo défini
comme étant commun a toutes les droites du plan. Une droite
est.un cercle qui passe par o . Une transformation I' transforme
son foyer-objet @ en o , et transforme o en son foyer-image W',
Elle est donc définie et biunivoque pour tous les points du plan
ainst étendu par adjonction du point Lmpropre o .

CGHAPITRE II. — GROUPE DES TRANSFORMATIONS CIRCULAIRES
‘ DIRECTES.
§ 4 — La transformation générale C = ID est définie par

—>

un cercle (I) de centre @ (cercle d’inversion) et un vecteur D
de retournement. Le foyer image ¥ est le transformé de @ par
ie retournement D. Les éléments géométriques conservés dans
Ulnversion I subissent simplement le retournement: tel est le
cas du cercle (I) et des cercles orthogonaux a celui-1a, en parti-
culier des droites passant par @, qui sont les seules droites du
plan transformées en droites par C.

Soit P le point ou une droite (L) passant par ® coupe son
homologue (L') (qui passe naturellement par V) (fig. 1); quand
(L) tourne autour de @, P décrit une hyperbole équilatére (H)
passant par @ et V', et admettant comme asymptotes la droite (D)
et la perpendiculaire (A) menée i (D) au milieu O de Y, (L)
et (L) découpent sur (D) et (A) deux segments constants

—>

@Trﬁ, gy:@cp.,
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On pourrait- donc définir une transformation C en se donnant
une hyperbole équilatére (H) et un point ® sur I'une de ses
branches. L’homologue M’ de M se construit alors en joignant

(D) (H)

Fig. 1.

OM qui coupe (H) en P, puis en portant sur ¥'P un segmenf, M’

tel que
®M - ¥M' = R? , (4)

R étant une constante arbitraire (c¢’est-a-dire indépendante de
(H) et de D).

On pourrait, dés & présent, étudier les différentes classes de G
a partir des remarques précédentes. Mais la méthode suivante
meéne plus directement au résultat.

§ 6. — THEOREME V. — La transformation C admet deux
points doubles toujours réels. Ils sont diamétralement opposés sur
Uhyperbole équilatére (H), c’est-a-dire qu’ils forment avec les deux
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foyers un parallélogramme, dit parallélogramme de base de la
transformation C. |
Démonstration : Soit o un point double de C; d’aprés ce qui
précede, « est sur (H) et vérifie la condition ®w.¥w = R2.
Inversement tout point vérifiant ces deux conditions est
point double de C. Il en résulte que si o est point double, il en
est de méme de son symétrique @ par rapport au point O.

(D)

a) Cas général. — Supposons que (H); soit une hyperbole
non décomposée, ¢’est-a-dire que ® ne soit ni sur (D) ni sur (A)

cela revient & dire que D ne passe pas par D, et que le segment—f)

?

n’est pas nul, en un mot que le moment du vecteur D par rapport
a @ n’est pas nul (fig. 2).

Le symétrique w, de o par rapport & ®g est sur ®@ et ’on a
®w;. @m = R2. Le cercle (I") passant par ww,@ est donc ortho-
| gonal & (I); son centre vy est sur ¢ et sur la médiatrice de W@,
Par ailleurs w@ coupe ®¢ en' v’ qui est aussi sur o, @,;, symé-
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trique de w@ par rapport & ®¢; donc la perpendiculaire (d')
en v’ a ®¢ est la polaire de @ par rapport au cercle (I'); comme
les cercles (I) et (I') sont orthogonaux, (d’) est leur sécante
commune. Il en résulte que @v.d+y" = R2; le cercle de diamétre
vY', qui passe par O, est orthogonal a (I); Oy et Oy’ sont les
bissectrices de OA et OB (puisque vy et v’ sont conjugués har-
moniques par rapport & A et B). On en déduit la construction
suivante: .

C étant définie par le cercle (I) et le vecteur DT construire ¥
et O, puis les bissectrices de OA et OB, coupant la droite ®¢
(perpendiculaire & D) en deux points: I'un extérieur au cercle (I),
soit v, et 'autre intérieur, soit vy’. Le cercle (I') de centre v
orthogonal & (I) coupe la droite Oy’ en » et @, toujours réels
(car le rayon de (I') est > vy’ > v0O), qui sont les points
doubles cherchés.

b) Cas particuliers. — Ce sont ceux ot le moment du vecteur D
par rapport au point ® est nul. Alors ’hyperbole (H) se décom-
pose. Cela se présente dans les cas suivants:

(2)

o) (o) {D)

by

(B)
(¥)
.//j\ . //\
¢ ;"' 0 m! k2 $ o v {8) 2 o Y

%

«

(h

Fig. 3.

1o D a une longueur nulle (fig. 3). — Le retournement se réduit
a une symétrie autour de la droite (D) ou renversement R;
C = IR. ‘

(«) (D) ne coupe pas le cercle (I). Il y a deux points doubles w
et @, intersection de (A) et du cercle de centre O orthogonal
a (I).

(B) (D) coupe le cercle (I); les points d’intersection w et @
sont les points doubles cherchés.

(v) (D) est tangente au cercle (I) en O. Ce point O est le seul
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point double de la transformation. (Il convient de le compter
pour deux).

% D a une longueur différente de zéro, mais son support (D)
passe par ® (fig. 4). — Le cercle de centre O, coupant (I) suivant
un diameétre, coupe (D) en
deux points » et @, qui sont
doubles.

Dans tous les cas, on a donc
deux points doubles réels dis-
ttncts ou confondus, o et @, que
nous appellerons les péles de la
transformation. Les segments
OV et w® ont méme milieu O.
Ce sont ces diagonales du pa-
rallélogramme de base o ® @V,
dont la forme caractérise la
transformation correspon-
dante, comme nous allons le démontrer dans ce qui suit.

Fig. 4.

§ 6. — Similitude image d’une transformation circulaire. —
L’existence de deux points doubles réels, distincts ou confondus,
va nous permettre d’introduire la notion de similitude image
de C, conformément aux théorémes suivants:

TurorimEe VI. — FEtant donnée une transformation C, on peut
la transformer par une I' convenable, en particulier par une
inversion, en une stmilitude directe S.

Prenons en effet une transformation circulaire J quelconque
assujettie simplement & avoir pour foyer-objet un pdle @ de C.
La transformée de C par J est ¢’ = J7'CJ. On voit quelle
admet oo comme point double, car o« x J1CJ =@ x CJ
= ® X J =0 ; c¢’est donc une similitude.

TutorEME VII. — Toutes les similitudes ainsi obtenues d
partir d’une méme C sont semblables, ¢’est-a-dire ont méme angle
et méme rapport.

En effet, si & = J7I@ S = Jey vdu
S — JS) Ay = G_{ZSG Jenetpoe;mt c;] :LJJ_fJ 'Oneterll’ogeilgi

?
comme tout & I'heure que ¢ est une similitude.
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TrEorEME VIII (fondamental). — Quand C subit une trans-
formation du groupe T, la similitude S subit une similitude 2,
c'est-a-dire garde encore méme angle et méme rapport. |

En effet, si ¢ = I'"'CT avec § = J1CJ et ' = K'CK,
onad = KIICrK = K'I1J8J'I'k = X'S%, en posant
> = J7IT'K, et 'on voit encore que X est une s1m111tude |

Donc le rapport k et I'angle o de la similitude directe S sont §
des invartants de C dans le groupe T'. La similitude & définie
& une similitude prés, sera dite I’image de C. L’étude de ces
images nous donnera les propriéiés intrinséques des transforma-
tions C. |

§ 7. — Etude sommaire des différents types de transformations C.
— Nous n’avons qu’a tirer ici les conséquences des théorémes
fondamentaux qui précédent.

10 Type général. — Les poles » et @ sont distincts. L’'image &
est une similitude de poéle ;, de rapport k et d’angle «. Pour

la commodité, nous supposons qu’on,

e I’a obtenue a I’aide d’une I' directe.
s Prenons dans le plan-image (fig. 5)
.7 des coordonnées polaires o et o,
O avec le pdle w; comme centre, et un
. -’ -7 axe ;r arbitraire. Les équations
Aty e T _de S sont
Fig. 5. ' '

 =ke, oo =¢+a. (5

Dans le plan ou opére C, définissons chaque pomt M _par un

segment de cercle wMa@ capable de 1l’angle (Mm Mm) = o,
compris entre 0 et 2w, et par un cercle du faisceau orthogonal,

Mo

défini par le parametre positif 7— =
Les quantités o et = sont les « coordonnées circulaires » de M
par rapport aux poles » et @. Elles sont liées aux coordonnées

polaires p et ¢ de 'image m par des relations de la forme

T.

= 6 — 0, . p=a7 . (6)

En effet la premiére découle de ce que I' conserve les angles:
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o = (w;z, o;m) est égal & I'angle en v, dans le plan primitif, du
segment de cercle (o,) ayant pour image w;z, avec le segment
oMo, angle qui est égal |
a ¢ —o,. La deuxiéme
formule n’est autre que
celle de la trangformation
des distances dans I’in-
version composante de I,
de foyer @ et puissance r2:

(J),Lm ‘r2
oM ~ Ow-0M

Or o;m=p et
oM = t.@M; donc

o _
T-OM @ Ow-0M
d’ou
r2 Fig. 6.
P = % T =av,
r2
2 a = — .
n posant | _ e

[On peut en particulier prendre pour I' 'involution plane de
foyer @, axe @w, puissance r? = @w?, qui conserve o ; alors o,
se confond avec w, et ¢ = o, p = Gw.7.]

En portant dans (5) les valeurs (6) de ¢ et p, on a:

v=ktr, o =06c4+al|. (7)

Ce sont les équations in-
trinséques de C, invariantes
dans le groupe T

Relation entre la simili-
tude image et la figure focale

" (interprétation  géométrique
des invariants k et o) (fig. 7).
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Appliquons les relations (7) aux points ® et oo, c¢’est-a-dire |
écrivons que ®.C = oo. On a pour.®:

»

’L‘:g——; c = (DB, (—I)Z))
et pour o0 :
T =1 o/ = 0
d’ou
1= k.20 0= (07, D 7
— 'q)—aj, _( ’ 0))—|—OC,' ()
ou
[0X0] —— >

La similitude S est celle qut, avec le cenire @, fait passer de
a @.

Dire que & et « sont invariants revient donc & dire que la forme
du parallélogramme de base de C est invariante dans le groupe T.

[C étant donnée par son parallélogramme @ @Y, si 'on se
donne o’ et @’ transformés de w et @, cela suffit & déterminer C’,
car on construit immeédiatement @’ et 1]

Etudions les différents cas:

a) k=1 et a£0; S est une similitude quelconque (fig. 2).
C ne posséde aucun cercle double, et n’est en aucun cas involu-
tive. Sil’entier p — -+ 0, A étant un point donne A, =A.CP}
tend vers w si k < 1, et vers @ si k> 1. |

b) k1 et « =0; S est une homothétie JC. Nous dirons §
que C est du type homothétie, et nous la noterons C;,. Ses équations
intrinséques sont |

v = kv, ¢/ =o0o. (9)

Tous les cercles (o) sont doubles. Si p —~ 400, A, tend vers o |
ou @ en restant sur le méme cercle (o). |
Le parallélogramme de base est aplati. Ce cas correspond a§
la figure 3 () et a la figure 4.
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¢) k=1et a20. S est une rotation R.
Nous dirons que € est du type rotation, et nous la noterons C,.
Les équations intrinseques sont

= 1, 6/ =0 + o . - (10)

Les cercles (7) sont doubles; le parallélogramme de base est
un losange (fig. 3 (B)).
Le point A ayant les coordonnées o et =, le point A, = A.

CP a les coordonnées ¢ + pa et 1. C, est involutive d’ordre p
21

S1 o0 = —.
p
En particulier € est réciproque si o« = w. Alors @ et ¥ se
confondent avec O; le losange est aplati (fig. 8). L’1image est une

m mt

0 (8)

Fig. 8. Fig. 9.

symétrie autour de w. La transformation est I’involution plane <7,
dont les équations intrinséques sont:

=T, ¢/ =0+ 1w. ‘ (11)

Les cercles (7) sont toujours conservés; les cercles (s) le sont
aussl; mais alors que les «cycles » ou cercles orientés (t) le sont
également, les cycles (c) ne le sont pas: sur un cercle (o), les
deux segments limités par o et @ sont échangés dans la trans-
formation. Deux points conjugués M et M’ sont les points

communs a un cercle () et & un cercle (t). Les points wa MM’
forment un quadrilatére harmonique.

_— e e e i e T ———
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Autres cas simples: p = 3 donne I'involution plane ternaire

définie par a = 2?7: (losange de base formé de deux triangles
équilatéraux). p = 4 donne linvolution plane quaternaire:
'

o = losange de base devenu un carré. Ete...

9
20 Type translation (fig. 10). — C’est le cas ol » et @ sont
confondus, c’est-a-dire ou C est le produit d’une inversion par

B
(T)

(D)

Fig. 10.

une symétrie autour d’une droite D tangente au cercle d’inver-
sion (I) au point O. Ce point O est le seul point double (Cf. §5).

L’image £ de C;, obtenue par une I' de foyer-objet O est le
produit d’une symétrie autour d’une droite (i) paralléle a (d)

par la symétrie autour de (d); c’est une translation de vecteur l
paralléle a (8) (fig. 9). On en déduit que les cercles (7) tangents
a (A) en O sont conservés dans C;, ce que 'on pouvait remarquer
a priort. |

Un point M étant toujours défini par un cercle = et un cercle o,
de diamétres respectifs OB et OA, les coordonnées cartésiennes z
et y de son image m, par rapport a (8) et (d), sont de la forme

) (12)
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et les équations de C; sont
2 =z +a, y-——:‘y ‘ (18)

r2 , | . .
¢ = ——= n’est pas un invariant ).
@0 ‘

Conclusion. — Tous les cas possibles ont été examinés. Rete-
nons que toute transformation circulaire directe est la transformée
d'une stmilitude directe par une inversion.

Ce théoréme n’est pas vrai dans I’espace pour les transforma-
tions sphériques. Le théoréme analogue pour les transformations
inverses est vrai dans l’espace, mais non dans le plan.

CaAPITRE [II. — LES TRANSFORMATIONS CIRCULAIRES
INVERSES. "

§ 8. — On a vu (§ 3) qu’elles sont de la forme C = 1.
Nous allons les. étudier d’une maniére toute semblable a la
précédente, mais les résultats seront essentiellement différents.

- Généralités. — Dans le cas le plus gén,éral, le déplacement @
est une rotation (fig. 11), d’un angle 0 autour d’un point O;

(L)

Fig. 11.
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