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TRANSFORMATIONS CIRCULAIRES 147

translation; d'une figure à une autre inversement égale, par un
retournement, qui se réduit à une symétrie autour d'une droite,
suivie d'une translation parallèle à cette droite.

Chapitre I. — Définitions et théorèmes généraux.

§ 2. — Définition. — Une transformation ponctuelle réelle,
biunivoque, et continue, du plan sera dite circulaire si elle transforme

un cercle quelconque en un autre cercle. Dans cette définition
le mot « cercle » désigne une circonférence proprement dite ou
une droite.

Exemple: une inversion, un produit d'inversions et de
similitudes.

Les transformations circulaires du plan forment un groupe.
Evident.

Théorème I. — Si une transformation circulaire F est définie
pour tous les points du plan euclidien, elle se réduit à une similitude.

Soit en effet A' le transformé d'un point quelconque A; Dx'

et D2 deux droites passant par A'. Les cercles Dx et D2 qui ont
D^ et Da pour homologues se coupent en A et en un autre
point A, qui ne peut avoir d'homologue A% car ce point A7

devrait être commun à D^ et D2', tout en étant distinct de A'.
Donc Dx et D2 sont nécessairement des droites.

Par suite, les droites de la figure F' sont les transformées des
droites de F ; F est donc une homographie. Comme elle transforme
les cercles en cercles, c'est une similitude.

Corollaire. — Si F ne se réduit pas à une similitude, il existe
au moins un point <D du plan pour lequel elle n'est pas définie.

Le raisonnement qui précède montre que les cercles passant
par un tel point O sont transformés en droites. Nous allons
montrer qu'il n'existe qu'un point <f>, c'est-à-dire que:

Théorème II. — Une transformation circulaire proprement
dite T étant donnée, il existe dans le plan un point O et un seul
tel que tous les cercles passant par <D soient transformés en droites.

En effet, s'il existait deux points singuliers de ce genre Q>x

et 3>2, on pourrait prendre des couples de cercles C± et C2 passant
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respectivement par et 02, se coupant en A et B. T serait
définie pour A et B, et transformerait (C^ et (C2) en deux droites
(Ci) et (C2) qui devraient se couper en deux points distincts A'
et B', ce qùi est absurde. Il existe donc un point ® et un seul.

Le point <P sera dit foyer-objet de la transformation F.

Théorème III. — Il existe dans le plan un point T et un seul
tel que les cercles transformés de toutes les droites du plan passent
par Y.

Le point Y sera le foyer-image de F.
Ce théorème se démontre d'une manière analogue au théorème

II. Ou encore, il résulte de l'application du théorème II
à la transformation T 1 inverse de T. Il résulte aussi des
propriétés que nous allons donner maintenant et qui découlent
elles-mêmes, si l'on veut, du seul théorème II.

§3. — Théorème IV. — Toute transformation circulaire
proprement dite F est le produit d'une inversion par une égalité
(déplacement ou retournement).

Soit en effet I une inversion de pôle O et de puissance
arbitraire. Soit F la figure primitive, F' la transformée par T, F0
par I. On passe de F0 à F' par une transformation circulaire,
produit de I par T, qui se réduit à une similitude S, car les
droites de F' correspondent aux cercles de F passant par O,
et de même les droites de F0.

Donc F' F0. S et T IZ
En choisissant convenablement la puissance de l'inversion I,

on a

T IA (l)

A étant soit un déplacement t0, soit un retournement D.

Corollaire. —,Les transformations T conservent les angles
(en grandeur).

Elles se divisent en deux classes: la première, celle des
transformations circulaires directes

e ID (2)
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où D est un retournement, conserve les angles en grandeur et
en signe. La deuxième conserve les angles en grandeur, mais
change leur signe: c'est celle des transformations circulaires
inverses :

G ICD (3)

où CD est un déplacement.
Chacune de ces deux familles est à 6 paramètres: 3 pour

l'inversion, 3 pour le déplacement ou le retournement.
Les (2 forment un groupe; les C non.

Point à V infini du plan. — C'est un point impropre oo défini
comme étant commun à toutes les droites du plan. Une droite
est. un cercle qui passe paroo Une transformation T transforme
son foyer-objet O enoo et transforme oo en son foyer-image T.
Elle est donc définie et biunivoque pour tous les points du plan
ainsi étendu par Vadjonction du point impropre oo

Chapitre II. — Groupe des transformations circulaires
DIRECTES.

§ 4. — La transformation générale <2 ID est définie par
un cercle (I) de centre O (cercle d'inversion) et un vecteur D
de retournement. Le foyer image Test le transformé de O par
îe retournement D. Les éléments géométriques conservés dans
1 inversion I subissent simplement le retournement: tel est le
cas du cercle (I) et des cercles orthogonaux à celui-là, en particulier

des droites passant par >, qui sont les seules droites du
plan transformées en droites par <2.

Soit P le point où une droite (L) passant par O coupe son
homologue (L') (qui passe naturellement par T) (fig. 1); quand
(L) tourne autour de O, P décrit une hyperbole équilatère (H)
passant par O et T, et admettant comme asymptotes la droite (D)
et la perpendiculaire (A) menée à (D) au milieu O de OY. (L)
et (L découpent sur (D) et (A) deux segments constants

dd' D cp
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