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LA SPHÈRE DE LONGCHAMPS

PAR

V. Thébault, Le Mans (Sarthe).

Dans UEnseignement mathématique (1930, pp. 31-34),
M. N. Altshiller-Cöurt suggère la recherche des propriétés
d'une sphère qui étendraient au tétraèdre celles d'un cercle du
triangle étudié par G. de Longchamps 1.

Il signale une généralisation de ce cercle et se borne à donner
quelques propositions quand le tétraèdre est orthocentrique.

Nous avons déjà apporté une contribution à l'étude de cette
sphère remarquable lorsqu'il s'agit du tétraèdre général 2. Nous
voudrions reprendre notre travail pour y ajouter des résultats
plus généraux et des compléments.

1. — Soient un tétraèdre quelconque ABGD, (BC a, GA è,
AB c, DA a', DB è', DG c'); G son centre de gravité,
Ga, G5, Gc, Gd ceux des faces BCD, GDA, DAB, ABC; (0) la
sphère circonscrite, de rayon R; le centre de l'hyperboloïde
des hauteurs (point de Monge), symétrique du centre 0 par
rapport au point G.

Considérons une sphère (co), de rayon p, pour laquelle les
puissances des sommets A, B, C, D du tétraèdre aient les formes
/rf2, km2, kn2, kp2, Z2, m2, n2, p2 ayant des valeurs données et
k étant un coefficient arbitraire.

Soient (tc) le plan radical de la sphère (O) circonscrite au
tétraèdre et de la sphère (co) ; a, ß, y, S les projections orthogonales

1 Journal de Mathématiques spéciales, 1886, pp. 57,
2 Mathesis, 1932, pp. 223-228.
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82 V. THÉBAULT
des sommets A, B, C, D du tétraèdre sur le plan (rc) ; M, N, P,
Q, S, T les intersections du même plan et des arêtes BD, DC,
CB, BA, AC, AD. On a, en grandeur et en signe,

A co2 — p2 — kl2 — 2 0(0 - A a

B <o2 — p2 km2 2 Oco • B ß

Cm2 — p2 kn2 20co Cy (1)

Dû2 — p2 kp2 2Oca - D8

Le plan (Bß,DS) coupe le plan (n) suivant une droite qui
passe par le point M, et

MB : MD B ß : D 8 m2 : p2

Le point M et, par analogie, les points N, P, Q, S, T et le

plan (tu) qui les contient, restent donc fixes lorsque k varie.
Par suite :

Le lieu du centre co de la sphère (co), lorsque k varie, est la droite A
menée du centre de la sphère circonscrite perpendiculairement
au plan (7c) de coordonnées barycentriques l2, m2, n2, p2, par rapport
au tétraèdre 1.

Ayant

A?- kl2 B«2 — km2 G? — kn2 DÛ2 — kp2 p2 (2)

le centre de la sphère (co) est le centre radical des sphères

(A -\/k (l2 + X) (B \/k (m2 + X) (C ^k {n2 + X))

(D, Vk(p2 + ^ (3)

quel que soit X, et la sphère (co) est la sphère orthogonale des

sphères

(A, iVk) (B, myT) > (G, n^/k) (D, pVk) • (4)

A deux valeurs k2 du paramètre k, correspondent deux
sphères (cox), (co2). Le plan (îu) et les distances algébriques

1 V. Tpiébault, Mathesis, 1932 (supplément).
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Aa, Bß, Cy, DS restant les mêmes, lorsque k varie, on a cette
relation entre les distances des centres des sphères (0), (co1), (<o2),

Oo^ : 0(o2 kx : k2 (5)

Plus généralement, à n valeurs Ay, A;2, k3l kn du paramètre A,

correspondent les sphères (coj), (oo2), (co3), (con) pour lesquelles
on a la relation

Ottj Ow2 Oco3 t)co,

k± k2 ko k,

n
(6)

n

Si trois coefficients Ay, k2, k3 vérifient les égalités

1

1 2

OU

(k2 + k3)

_2_ _
1

h ~~
k2 ks '

dans la première hypothèse, les centres co2 et co3 des sphères
correspondantes sont symétriques par rapport au centre de la
sphère (coj. Dans le second cas, la division (0, col5 to2, co3) est

harmonique.

2. — Si nous supposons d'abord que

l2 a2 + b'2 + c'2 m2 a'2 + b2 + c'2 n2 a'2 + b'2 + c2

p2 a2 + b2 + c2 (7)

les relations (1) deviennent

p2 k (a2 + b'2 + c'2) 20co • Aa

p2 k (a'2 + b2 + c'2) 20co • B ß

C(o2 — p2 k(a'2 + b'2 + c2) — 20(o • Gy (8)

D(o2 — p2 k{a2 + b2 + c2) 2 0(o • D3

Le plan (Bß, DS), par exemple, coupe le plan suivant une
droite qui passe en M, et

MB Bß a'2 + b2 + c'2

MD
~~

DS
~~

a2 +"i + c2 ' ^

V(0

~2
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De plus, on a

A? — Bco2 k[(a2 — a'2) — (b2 — b'2)} (10)

puis, en vertu de formules connues,

ÄG2 — BG2 — ~ [(a2 — a'2) — (b2 — b'2)] (11)

si bien que les expressions

Acö2 — Bcô2 Bw2 — Cü2, G<ö2 — Dcö2 Dcô2 — Aöi2

et

AG2 — BG2 BG2 — CG2 CG2 — DG2 DG2 — AG2

sont de mêmes formes. D'où ce théorème: le lieu du centre co

de la sphère, lorsque k varie, est la droite qui joint le centre 0
de la sphère circonscrite au centre G de gravité du tétraèdre ABGD

En outre, en vertu de (5),

Ocô : OG k : — ; et Oœ — 4Ä • OG ; (12)
4

puis, et par analogie,

-•ft (a2 + ft'2 + c'2) _ _
a2 + ft'2 + c'2

~~8k OG _ 80G

„Ö a'2 + b2 + c'2r- a'2 + b'2 + c2

Bp- 80S ' Ct" SÔT-'
D8 _ - *' + **_+ '' (13)

80G

Enfin, k étant l'intersection de la droite OG avec le plan (7u),

GK 1(A« + Bß + C y + D8) —
g2 + a" + &2 + j'2 + * + c»

4 v e i
160G

- • (14)
160G

Il est facile de déterminer l'expression du rayon p de la

sphère (co) dans l'hypothèse où Z2, m2, n2, p2 satisfont aux
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relations (7). Le centre w est situé sur la droite OG. En appliquant

le théorème de Stewart au triangle AOG, par exemple,

le sens positif sur la droite indéfinie passant par les points 0

et G étant celui de 0 vers G, on a

Geo • AO2 + O« • AG2 OG • Aco2 + 0<a • »G • OG2 ;

d'où, en vertu de (12),

Aw2 (1 + 4ft) • R2 — 4ft • AG2 + 4ft(l + 4 ft) OG2 (15)

Or, on sait que

AG2 AG2 ~ [3 (a'2 + b2 +c2) — (a2 + + c'2)] (16)
lb u lo L

OG2 R2 —^(a2+ a'2b'2 + c2 + c'2) (17)

0

Dès lors, après réductions, et par analogie,

A;2 (1 + 4 k)2R2 — k(a'2 + b2 + c2) — k2 Sa2

B tô2 (1 + 4 k)2• R2 — k(a2 + b'2 + c2) — k2 • Sa2

Cm2 (1 + 4 ft)2 • R2 — ft (a2 + + c'2) — ft2 • S (18)

Dm2 (1 + 4ft)2 • R2 — ft (a'2 + b'2 + c'2) — ft2 • Sa2.

Eu égard à (8), on déduit de ces égalités, que

P2 — Atû2 — ft (a2 + b'2 + c'2) (1 + 4 ft)2 • R2 — ft (ft + 1) • Sa2 (19)

En outre, les relations (18) fournissent la suivante:

Aû2 + Bu2 + Ctô2 + Dw2 [2 (1 + 4ft)]2 • R2 — 2ft(2ft + 1) • Sa2

(20)

laquelle découle également de la formule connue

Aw2 + Btô2 + Ctô2 + Dû2 AG2 + BG2 + CG2 + DG2 + 4o>G2

Remarques. 1° La puissance du centre G de gravité du tétraèdre
ABCD, par rapport à la sphère (to), a pour expression, en vertu
de (19),

G«2 - p2 [(1 + 4ft) • OG]2 — p2 • S«2 (21)
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1

2° Lorsque k —y, Oco 20G= OQ. Dans cette hypothèse,

la relation (20), qui devient

Äff + BQ2 + Cß2 + D Q? 4R2 (22)

permet d'énoncer ce théorème:

La somme des carrés des distances du point de Monge aux
sommets d*un tétraèdre est égale au carré du diamètre de la sphère
circonscrite 1.

3° Lorsque le tétraèdre ABCD est équifascial,

Ha2 16R2 Oco — 4/c • OG 0 O EE co

Dans ce tétraèdre spécial, les sphères orthogonales aux
quatre sphères (4), de centres A, B, G, D, ont pour centre 0.

3. — Le cercle de Longchamps est celui qui coupe orthogona-
lement les trois cercles (A, a), (B, è), (C, c), ayant pour centres
les sommets A, B, C d'un triangle et comme rayons les côtés

opposés respectifs BC — a, GA è, AB c. Autrement dit,
les puissances des sommets A, B, C, par rapport au cercle (co),

sont respectivement égales aux carrés a2, &2, c2 des côtés opposés.
Nous proposons d'appeler Sphère de Longchamps d'un

tétraèdre quelconque, une sphère (co) telle que les puissances des

sommets A, B, G, D, par rapport à cette sphère, soient
respectivement

^ (a2 + b'2+ c'2) 4 (a'2 + 62 + c'2) ^ (a'2 + b'2 + c2)

i (a2 + b2 +c2) (23)

De cette façon, la somme des puissances pour les quatre
sommets du tétraèdre, égale

a2+ a'2 + b2 + b'2 + c2 + c'2 Sa2

i V. Thébault, Gazeta Matematica, Bucarest, 1933, p. 86,
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c'est-à-dire la somme des carrés des six arêtes, de même que la
somme des puissances des sommets d'un triangle ABC, par
rapport à son cercle de Loisgchamps, égale la somme des carrés
des côtés de ce triangle.

Nous allons montrer que cette sphère (co) présente bien des

analogies avec le cercle en question.

4. — Sphère de Longchamps. Cette sphère (co), de rayon p,

est déterminée par les relations (8) dans lesquelles k

Des égalités (5), (10) et (11), on déduit

Le centre co de la sphère de Longchamps est le symétrique du
point Q de Monge par rapport au centre de la sphère circonscrite
au tétraèdre ABCD, autrement dit, le point co coïncide avec le
point de Monge du tétraèdre anticomplémentaire AxBxCxDx
obtenu en menant par A, B, C, D les plans parallèles aux faces
opposées du tétraèdre fondamental.

Si le tétraèdre ABCD est orthocentrique^le point co est le symétrique

de Vorthocentre H du tétraèdre, par rapport au centre de la
sphère circonscrite, c'est-à-dire V orthocentre du tétraèdre
anticomplémentaire Ax Bx Cx Dx l.

L'expression

du carré du rayon de la sphère (co), découle immédiatement de
la formule (19).

La sphère (co) est réelle, se réduit à son centre, ou bien est
imaginaire, suivant que

Ou : OG — A _ 2.2 4
(24)

p2 9R2 _ (œa + a>2 +b2 + j,a + C2 + C/S) (25)

3R2>|-Sa2, 3R2 -î-Sa2 3R2 < ySa2 (26)

1 N. A. Court, loc. cit.
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Lorsque la sphère (w) est réelle, le centre G de gravité du

tétraèdre est extérieur à cette sphère, car

0>G2 90G2 9R2 — ^2a2 > 9R2 — |-2a2 P2

Quand la sphère (co) se réduit è son centre «,

So2 12 R2 OG 5
; (27)

le centre £1 de Vhyperboloïde des hauteurs est sur la sphère circonscrite

et le tétraèdre ABCD est trirectangle.
Dans un tétraèdre orthocentrique ABCD, d'orthocentre H,

le carré du rayon de la sphère conjuguée s'exprime

p'» + a'2) R2-^£a2 ^ P2 (28)

Dans ce cas particulier, on a donc p' 3p, et,

La sphère de Longchamps d'un tétraèdre orthocentrique se

confond avec la sphère conjuguée au tétraèdre anticomplérnentaire

AiB1C1D1 du tétraèdre ABCD x.

A. Théorème. Le plan (tc) est le plan polaire du centre G

de gravité du tétraèdre ABCD, par rapport à la sphère de

Longchamps.

En effet, en vertu de (21), la puissance du point G pour la

sphère (cù), est égale, en grandeur et en signe, à

(\-p4 A) OG GK • Ga (29)
160G V 2/

ce qui justifie le théorème.

Remarques: 1° Lorsque k— \lecentre co de la sphère,

envisagée au paragraphe 2, coïncide avec le centre G de gravité

J- N. A. Court, loc. cit.
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du tétraèdre. Le carré du rayon de cette sphère (G) a pour

expression
P2 (30)
*i 16

et on a

p2 + p. 9R2 _
3

Sœ2 + 3_Sa. 9 (R2 - S«2)

9 0G2 GÜ2 ; (31)

d'où ce théorème:

La sphère (G, px) est orthogonale à la sphère (to) de Lokgchamps

et le plan (u) est le plan polaire du centre '* de cette dernière sphère,

par rapport à la sphère (G).

2° Soient oca', ßß', yy' les distances des milieux des arêtes

BC et DA, CA et DB et DC du tétraèdre. On sait que

aï72 H- ßß"'2 + TT72 JSa2

Mais les droites ««', ßß', yy' se coupent en leurs milieux au

centre G de gravité du tétraèdre, et

1 (aa72 + ßß72 + Y?2) |Px • (32)

Si le tétraèdre ABCD est orthocentrique, oca' ßß' yy',

Gä2 Gß2 G y2 4|Sas { P* (33)

et la sphère (G, px) se confond avec la première sphère des douze

points du tétraèdre anticomplémentaire Ax Bx Cx Dx du tétraèdre

orthocentrique ABCD.

B. Théorème. Les sphères décrites des symétriques A2, B2, C2, D2

des sommets A, B, C, D d'un tétraèdre, par rapport à son centre G

de gravité, comme centres, avec A2A, B2B- C2C, D2 D pour

rayons respectifs, sont orthogonales à la sphère de Longchamps
du tétraèdre ABCD.
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Le tétraèdre A2B2 C2 D2 est symétrique du tétraèdre ABCD.

par rapport au point G. Or, on a

4 (AG2 -BG2) =- [(a2 — a'2) — (b2 — b'2)]

La sphère (<ï>), de rayon p", orthogonale aux sphères de centres

A, B, G, D et de rayons respectifs 2AG AA2, 2BG BB2,

2 GG CC2, 2DG DD2, a donc son centre <E> sur la droite OG;

k — — 1 1 • -

1 - 4 •

' OG 4

p"2 9R2 — |sa2 - p2 ; (34)

autrement dit, le point O, symétrique du centre 0 de la sphère

circonscrite, par rapport au point £2, coïncide avec le centre Ox

de la sphère circonscrite au tétraèdre A1 Bj Cx Dx anticomplémentaire

de ABGD. La sphère ® est égale à la sphère (a>) de

Longchamps du tétraèdre ABGD.
Le centre co2 de la sphère (cù2), orthogonale aux sphères de

centres A2, B2, C2, D2 et de rayons respectifs A2 A, B2 B, C2 C,

D2 D, est symétrique de celui de la sphère (®), par rapport au

point G, si bien que

G6)2 — G® — 3 OG Geo

En outre, les sphères (O), (co2) sont symétriquement égales;

la sphère (to2) se confond avec la sphère (<o) de Longchamps

du tétraèdre ABCD, ce qui démontre le théorème.

C. Théorème. La sphère (<o) de Longchamps, la sphère (0)
circonscrite au tétraèdre fondamental,la sphère (0]) circonscrite

au tétraèdre anticomplémentaire Ax Ci Dx et la sphère (G, p^,

ont le même plan radical (~).

Pour démontrer cette proposition, il suffit de voir que le

plan (tc) est le plan radical des sphères (01; 3R) et (G, px). Si
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l'on désigne par dla distance algébrique du point G au plan
radical de ces sphères, on a

— p2 — (GÖ2 — 9R2) 2CqG • ;

d'où

— 60G • ;
16 16

puis, en vertu de (14),

d GK, (35)
160G

ce qui justifie le théorème.
On en déduit aussi que le cercle d'intersection du plan (tc)

avec la sphère (0), lorsqu'il existe, est commun à la sphère (0)
ét à une sphère, de rayon 3R, dont le centre est le symétrique du
point 0, par rapport au point de Monge du tétraèdre.

D. Théorème. Le plan complémentaire (tz') du plan (iz) 1,

par rapport au tétraèdre ABCD, est le plan radical commun à

la sphère (0) circonscrite, à la sphère circonscrite au tétraèdre

complémentaire Ga Gö Gc Gd du tétraèdre ABCD, à la sphère

(G, jPi), et à la sphère de Longchamps du tétraèdre GaG5GcGd.

Il suffit, en effet, de transformer la figure formée par les

sphères(Oi, 3G), (0, R), (G, px), (co, p), par l'homothétie (G, —-|
Ces sphères deviennent respectivement les sphères (0, R),

(GaG&GcGd), (GCplf (A4f
Remarques. En réunissant des propriétés des sphères (G, px)

et (û>, p), obtenues précédemment lorsque le tétraèdre ABCD
est orthocentrique, on retrouve ce théorème connu:

Dans un tétraèdre orthocentrique, la sphère circonscrite, la sphère
conjuguée, la première et la seconde sphères des douze points, ont
même plan radical. Ce plan est le plan polaire du centre de gravité
du tétraèdre, par rapport à la sphère conjuguée2.

1 Le plan (r/) est le transformé du plan («) par l'homothétie ^G, — ~
2 Cfr., par exemple, G. de Longchamps, Mathesis, 1890, p. 82.
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On peut ajouter que le plan radical de ces quatre sphères est

aussi le plan polaire de Vorthocentre du tétraèdre par rapport à la
première sphère des douze points.

E. En vertu des égalités (9) et de leurs analogues pour les

autres arêtes du tétraèdre ABCD, les points M, N, P, Q, S, T
sont les centres des sphères ayant pour diamètres les distances
.de deux centres de similitude des sphères (A), (B), (C), (D),
orthogonales à la sphère (co) de Longchamps, prises deux à deux.

Les sphères (B), (D), (M) ont même plan radical.
Il en est de même des triples de sphères (D), (C), (N);

(G), (B), (P); (B), (A), (Q); (A), (G), (S); (A), (D), (T).
La sphère (co) de Longchamps, orthogonale aux sphères

(A), (B), (G), (D), l'est aussi aux sphères (M), (N), (P), (Q),
(S), (T). De plus, puisque les points M, N, P, Q, S, T sont dans le

plan (7u), les sphères de similitude (M), (N), (P), (Q), (S), (T)
sont aussi orthogonales à la sphère (0) circonscrite au tétraèdre,
et, par suite, à la sphère (Ox, 3R) circonscrite au tétraèdre
anticomplémentaire AiBiCiD]^ de ABCD.

Ces six sphères de similitude se coupent donc en deux points
V et W, symétriques par rapport au plan (tz), situés sur la droite
OG qui joint le centre de la sphère circonscrite au centre de

gravité du tétraèdre, et

OV • OW R2 coY • <oW p2 (36)

Observant que 0^! 3R, on obtient cette proposition
qui étend au tétraèdre un théorème de E. Lemoine relatif aux
cercles d'ApoLLONius du triangle 1:

Dans un tétraèdre ABCD, le centre de la sphère circonscrite
au tétraèdre anticomplémentaire A1B1C1D1, a la même puissance
égale à 9 R2, par rapport aux six sphères lieux des points dont les

rapports des distances à deux des sommets du tétraèdre sont égaux
aux rapports des sommes des carrés des arêtes des faces opposées

aux sommets considérés.

F. Théorème. Soient A1B1C1D1 le tétraèdre anticomplémentaire

d'un tétraèdre orthocentrique ABCD et un point M du

i Journal de Mathématiques élémentaires de "G. de Longchamps, 1886, p. 142.
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plan du triangle ABC, Mx Vanticomplémentaire de ce point par

rapport au même triangle. La sphère de Longchamps du

tétraèdre ABCD est orthogonale à la sphère décrite du point N,

situé au quart du segment rectiligne M1B1 à partir du point M1,
3

comme centre, avec 17 DM pour rayon.

Lemme. Dans un tétraèdre orthocentrique, la puissance du

milieu d'une hauteur, par rapport à la sphère conjuguée, est

égale au quart du carré de cette hauteur.1

Soit X le milieu de la hauteur Di Di d'un tétraèdre orthocen-

trique d'orthocentre On a, en effet, en grandeur
et en signe, r étant le rayon de la sphère conjuguée,

r» H S; • HD HIT • (HD + DD) HDj • (HD - DD).
(37)

D'autre part, la puissance du point X, par rapport à la sphère

conjuguée, est

XH;-= (XD + D;H)2-HD;• (HÔ;- DÎT)

(i DD - HDi)! - HD), + HF DD * DD» (38)

Dans la configuration relative au théorème précédent,
étant le point où la droite D^^ perce le plan de la face A1B1C1

2
du tétraèdre A1B1C1D1, on a évidemment DM — — NDX, et le

point N est le milieu du segment rectiligne Dj^.
Dès lors, on a

ND2 DÏ + NX2 ^D Ü'2 + NH2 — XH2
i i 4 i i

puis, en vertu du Lemme ci-dessus,

NH2 ND2 — DiD(2 + XH2 ND2 — r2 ^DM^ — r2

ce qui justifie notre théorème.

Remarque. Dans l'hypothèse où la sphère de Longchamps
du tétraèdre ABCD est réelle, on parvient au même résultat en

•
1 Cette propriété nous a été communiquée par M. R; Goormaghtigh.
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observant que la droite D^^ perce cette sphère en deux points
J et L qui divisent harmoniquement le segment rectiligne D-^;
on a donc

NJ • NL NDj (I-DM)2 •

5. — Soient une sphère quelconque, de centre P, et les

sphères (A, ï), (B, m), (C, ri), (D, p), ayant pour centres les

sommets d'un tétraèdre ABCD, qui coupent orthogonalement la
sphère (P). Si les points A', B', C', D' partagent respectivement
les segments rectilignes AP, BP, CP, DP dans un même rapport
tel que

A'Â u • AP B'B u • BP C'C m • CP

D'D — u • DP

et que les points de divisions soient les centres des sphères dont
les rayons respectifs c • ÂP, c • BP, e • CP, c • DP sont
proportionnels aux longueurs AP, BP, CP, DP, le centre P' de la sphère

orthogonale à ces quatre sphères est situé sur la droite joignant le

point P au centre 0 de la sphère circonscrite au tétraèdre.

On a, en effet,
AP2 — BP2 l2 — m2 (39)

et des relations analogues pour BP2 — CP2, CP2 — DP2,

DP2 — AP2, déduites de la première par des permutations
circulaires sur l, m, n, p; d'où il résulte que l'on a les relations

A'P72 — B'P72 (ç • AP)2 — {ç • BP)2 v2 (AP2 — BP2)

«= ç2 • (l2 — m2) ; (40)

Les centres P et P' des sphères orthogonales aux quatre
sphères (A, l), (B, m), (C, n), (D, p) et aux ^quatre sphères

(A', f-ÄP), (B', vBP), (C, vCP), (D', DP), sont situés

sur les diamètres OP et 0' P' des sphères (0) et (0') circonscrites

aux tétraèdres ABCD et A'B'C'D', perpendiculaires aux
plans (7t) et (rc') de coordonnées barycentriques l2, m2, n2, p2,

par rapport aux deux tétraèdres. Ces tétraèdres ABCD et

A'B'C'D' étant directement homothétiques, les plans (tt)
et (%') sont parallèles, et les points 0, P, 0', P' sont collinéaires.
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Le tétraèdre A'B'C'D' étant pris comme tétraèdre de

référence, on a, en vertu de (5),

A'P72 — B'P72 p2 • (AP2 — BP2) c2 • (l2 — m2) (41)

puis,

A'P2 — B'P2 u2 • (AP2 — BP2) u2 • (l2 — m2) ; (42)

d'où il résulte que
O'P' p2 O'P'
O'P u u • OP

puis, que

(43)

O'P' ~ - OP (44)

Observant, en outre, que

O'P u. OP OÖ7 (1 — u) • OP (45)

on obtient

OP' 00' + O'P' (l — U + OP (46)

et enfin la relation
OP7

_
v2 — u2 + u

Op
—

u
(47)

qui généralise celle que M. N. A. Court a obtenue, comme
conséquence de propriétés de certaines sphères associées au
tétraèdre ABCD, dans le cas particulier où le point P coïncide
avec le centre de gravité 1.

6. — Si l'on suppose, par hypothèse, que

l2 (a'2 + b2 + c2) m2 (a2 + b'2 + c2)

n2 (a2 + b2 + c'2) p2 « (a'2 + b'2 + c'2) (48)

les relations (1) deviennent, en grandeur et en signe,

A co2 — p2 k (a'2 + b2 + c2) 2 O co A a

BL2 — p2 &(a2 + &/2 + c2) 2 0co • Bß
Co2 — p2 A: (a2 + b2 + c'2) 2 Ooo • G y (49)

Dw2 — p2 k(a'2 + b'2 + c'2) 2 0co • D8.

1 The American Mathematical Monthly, 1932, p. 198.



96 V. THÉBAULT

En outre, comme on a

A«2 — Bô)2 — k [(a2 — a'2) — (b2 — b'2)] (50)

et des expressions analogues pour

BÔ2-G?, Cw2-D«2, DW2 — Aw2

déduites de celle-ci par des permutations circulaires sur a, à. c

et a', b', c', Ze point <o situé sur OG, et

0« : OG — /c : — A " ; (51)

d'où il résulte que
Ow 4Ä • OG (52)

Ces relations, et celles du début du paragraphe 2, permettent
déjà de dire que les centres des sphères orthogonales aux deux

quadruples de sphères ayant pour centres les sommets A, B, C, D
du tétraèdre et dont les carrés des rayons respectifs sont
proportionnels à la somme des carrés des arêtes des faces opposées

aux sommets considérés et à la somme des carrés des arêtes
aboutissant à ces sommets, sont symétriques par rapport au
centre 0 de la sphère circonscrite.

De plus, appliquant le théorème de Stewart au triangle
AOco, par exemple, on obtient facilement, d'abord la relation

Aw2 (1 — 4k)2 • R2 + k • (a'2 + ô2 + c2) — k2 • Sa2 (53)

et des expressions analogues pour Bco2, Cco2, Dco2, puis l'expression

p2 (1 — 4k)2 • R2 — k2 ' Sa2 (54)

du carré du rayon de la sphère, de centre co, orthogonale aux
quatre sphères de centres A, B, C, D dont les carrés Z2, m2, rc2, p2
des rayons ont les valeurs indiquées par la relation (48).

Remarques. 1° Lorsque k —,

Oo> 20G on <0 a p2 R2—|-Sa2 (55)
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Comme dans tout tétraèdre, on a

16R2 ^ Sa2
V

la sphère (co û), de rayon p, est toujours imaginaire.
Des relations (49), (51), on déduit également que

a'2 + b2 + c2
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Aa
8 0G

(56)

et des formules analogues pour Bß, Cy, DS obtenues par des

permutations circulaires sur a, è, c et a', b', c'\

K étant le point où la droite OG perce le plan radical (tu)

des sphères (0) et (co ee £2), on a donc

S«2
GK — (Aa + Bß + Gy + D 8) —

4 160G
(57)

D'autre part,

GO OG2 — p2 R2 — T^Sa2 — R2 + 7Sa2 — Sa2
16

(58)

Mais, en vertu de (29),

Sa2
GO2 — p2 4-Sa2 —= • 3OG GK • 3GO GKX - GQ (59)

16 160G

Kx étant le transformé du point K par l'homothétie (G, 3),
On peut donc énoncer ce théorème:

Des sommets d'un tétraèdre ABCD, comme centres, on décrit
les sphères dont les carrés des rayons sont égaux respectivement
à la demi-somme des carrés des arêtes aboutissant aux sommets

considérés. Le centre co de la sphère orthogonale aux quatre sphères
coïncide avec le point de Monge, et le plan polaire du centre G

de gravité du tétraèdre, par rapport à la sphère (co £2), est le
transformé du plan radical de cette sphère et de la sphère circonscrite,

par l'homothétie (G, 3).

2° Observant, par exemple, que

k (a2 + b'2, + c'2) + k (a'2 + b2 + c2) k - Sa2 * (60)

on obtient les relations

X2a + Y2 X2, + Y2, « X2 + Y2 X2d + Y\ k- Sa2 (61)

L'Enseignement mathém, 36me année, 1937. 7
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entre les carrés des rayons Xa, X5, Xc, Xd et Ya, Yb, Yc, Yd
des sphères, de centres A, B, C, D, correspondant aux relations

(7) et (49).

Nous avons repris l'étude de la sphère de Longchamps depuis
l'envoi du présent Mémoire à L'Enseignement mathématique.

Dans une communication au Congrès international des
Mathématiciens (Oslo, 1936) 1, nous avons signalé, entre

autres, les théorèmes suivants qui étendent au tétraèdre général
des propositions déjà anciennes dues à J. Griffiths 2, sur le

triangle, et à J. Wolstenholme 3, concernant le tétraèdre

orthocentrique.

1. — Le centre G de gravité du tétraèdre ABCD est le centre
de l'ellipsoïde de Steiner circonscrit dont les demi-axes #, y, z

vérifient les relations 4

OC2 -f y2, + 32 ^ S a2 (62)

Il résulte donc des relations (30) et (62) que la sphère

(où G, px) est la sphère orthoptique de Vellipsoïde de Steiner
circonscrit au tétraèdre ABCD.

2. — Théorème. — Dans un tétraèdre quelconque ABCD, la

sphère (0) circonscrite, la sphère (Ox) circonscrite au tétraèdre

anticomplémentaire AjBjCiDjL, la sphère (co) de Longchamps, la

sphère (T) décrite sur le segment rectiligne joignant le centre G de

gravité au point ^ de Monge du tétraèdre anticomplémentaire,

comme diamètre, et la sphère de Monge de l'ellipsoïde de Steiner
circonscrit au tétraèdre fondamental, appartiennent à un même

faisceau.

1 Cf. aussi V. Thébault, Annales de la Société scientifique de Bruxelles, 1936-72.
2 Nouvelles Annales de Mathématiques, 1864-345 et 1865-522.
3 Nouvelles Annales de Mathématiques, 1871-452.
4 La première de ces relations est due à M. E. Turrière, L'Enseignement mathématique,

1930-70.
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3_ Théorème. — Dansun tétraèdre quelconque ABCD, la

sphère circonscrite,la sphère décrite sur le segment

joignant le centre de gravité au point de Monge, comme

la sphère de Monge de l'ellipsoïde de Steiner la sphère

circonscrite au tétraèdre complémentaire GaGbGcG„ et la sphère

de Longchamps de ce dernier tétraè,appartiennent à un même

faisceau. Ces deux propositions complètent les théorèmes C

et D qui précèdent.

LES RELATIONS D'ÉGALITÉ RÉSULTANT

DE L'ADDITION ET DE LA SOUSTRACTION LOGIQUES

CONSTITUENT-ELLES UN GROUPE

PAR

Jean Piaget (Genève).

Le but de cette Note n'est pas d'élaborer de nouveaux
procédés de calcul logistique, mais uniquement de chercher si les

opérations d'addition et de soustraction, propres à l'Algèbre
de la Logique, sont susceptibles, une fois mises sous forme

d'égalités, d'engendrer un véritable groupe. La seule nouveauté,

au point de vue du calcul logique, est d'avoir généralisé l'opération

inverse de l'addition: la «soustraction logique», interprétant
ainsi ce que les logiciens appellent la « négation ».

En étudiant le développement génétique de la logique et

des notions mathématiques en psychologie de l'enfant, nous

avons été frappé de l'importance de la réversibilité croissante

des opérations pour la constitution de la raison. C'est ce qui
nous a conduit, par analogie avec ce que H. Poincaré a montré

pour la genèse de l'espace, à nous demander si, indépendamment
de toute numération, la formation des classes et des relations

logiques implique une structure groupale, parallèle, sur ce plan
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