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LES DOMAINES VECTORIELS

ET LA THÉORIE DES CORPS CONVEXES

PAR

M. Paul Vincensini (Marseille).

I. — Domaines vectoriels.

On sait qu'on appelle domaine vectoriel d'un corps convexe C

de l'espace euclidien En à n dimensions, le domaine V rempli
par les extrémités des vecteurs issus d'un point fixe 0 et équi-
pollents aux différents vecteurs ayant pour origines et pour
extrémités deux points quelconques de C 1.

V est convexe et admet le point 0 pour centre de symétrie.
J'ai indiqué 2 une démonstration géométrique générale de la
convexité de V, en me basant sur la génération suivante du
domaine vectoriel d'un corps convexe quelconque C.

Déplaçons C par les différentes translations qui amènent un
point quelconque de sa frontière à passer par le point fixe 0.
Nous obtenons ainsi un ensemble de oon_1 corps convexes
congruents à C. La région de l'espace remplie par ces oon_1 corps
est précisément V.

Les corps convexes que nous envisagerons dans la suite seront
supposés doués, en chaque point frontière, d'un hyperplan
tangent déterminé, variant continuement avec le point de

1 Pour la notion de domaine vectoriel et quelques-unes de ses applications voir-Rademacher: Jahresbericht der D.M.V., t. XXXIV, 1925, p. 64. T. Estermann-Sur le domaine vectoriel d'un corps convexe, Math. Zeitschrift, t. 28, 1928 GUn\pathi •

Sur les domaines vectoriels, Math. Zeitschrift, t. 38, 1934.
2 P. ViNGENSiNi : Sur les domaines vectoriels des corps convexes. Journal de Math

pures et appliquées t. XV, 1936.
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contact. Autrement dit, il y aura une correspondance biunivoque
et bicontinue, entre l'hypersurface frontière du corps et sa
représentation hypersphérique. Dans ces conditions, chacun des
00n 1

corps précédemment définis touche la frontière de V en
un certain point, et les hyperplans tangents à un même corps,
en 0 et au point A où il touche la frontière de V, sont parallèles.

Il résulte immédiatement de là que, si deux corps convexes
C et C ont même domaine vectoriel, deux diamètres parallèles
quelconques des deux corps sont égaux et font le même angle avec
les hyperplans tangents en leurs extrémités 1.

On peut en effet, par des translations, amener les deux
diamètres parallèles envisagés à coïncider avec un même rayon
vecteur OA du domaine vectoriel.

Il est clair d'ailleurs que deux corps convexes de même
domaine vectoriel ont même largeur 2 dans toutes les directions.

On peut dire si l'on veut que, G et C' étant deux corps convexes
ayant même domaine vectoriel, si n et rc' sont deux hyperplans
tangents parallèles et également situés touchant respectivement
C et C' en A et A', la translation AA' amène les frontières des
deux corps à être bitangentes en deux points diamétralement
opposés.

L'hypersurface frontière de chacun des deux corps peut donc
être regardée comme l'enveloppe complète de l'hypersurface
frontière de l'autre, lorsque celle-ci se déplace par translation
en restant constamment tangente à la première hypersurface.

Eu égard aux corps convexes du plan, il convient d'ajouter
les propriétés suivantes. Soient M et M' deux points diamétralement

opposés d'un corps convexe G (du contour qui le limite),
A le point correspondant du domaine vectoriel V [OA est équi-
pollent à M'M]. Lorsque les tangentes T et T' à C en M et M'
tournent d'un angle doc, M et M' décrivent deux arcs ds et ds'.
La tangente en A à V tourne du même angle du, et le point A
décrit l'arc da tel que

du ds + ds'

1 Nous appelons diamètre d'un corps convexe, le segment déterminé par les points
de contact de sa frontière avec deux hyperplans tangents parallèles.

2 Une largeur d'un corps convexe est la distance de deux hyperplans tangents
parallèles.
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Il résulte de là que

1° la longueur de Y est le double de celle de C;

2° le rayon de courbure de V en A est la somme des rayons

de courbure de C en M et M

On déduit immédiatement de la deuxième propriété que si

deux corps convexes plans ont même domaine vectoriel, et si

leurs frontières ont même rayon de courbure en deux pom s

(respectivement situés sur les deux frontières) où les tangentes

sont parallèles, ces frontières ontaussi même rayon de courbure

aux points diamétralement opposés des précédents.

Les courbes orbiformes [de largeur constante] limitent des

corps convexes admettant des cercles pour domaines vectoriels

Toutes les orbiformes de même largeur d ont même longueur nd

fia moitié de la longueur du domaine vectoriel commun]. En

outre, une orbiforme et un cercle de même largeur peuvent

toujours être amenés, d'une infinité de façons, à être bitangents

en deux points diamétralement opposés.

IL — Les domaines vectoriels.
ET LA THÉORIE DES CORPS CONVEXES.

Indépendamment de son intérêt propre, dû surtout à l'existence

de relations extrémales fort remarquables établies par

MM. Rademacher, Estermann et Ganapathi (articles cités)

entré les volumes d'un corps convexe quelconque et de son

domaine vectoriel, la notion de domaine vectoriel d'un corps

convexe se prête à une étude remarquablement intuitive de

nombreuses questions relatives aux corps convexes.

On sait à quelles difficultés on se heurte lorsqu'on essaye

d'aborder, par l'analyse, les problèmes même les plus simples

qui se présentent dans la théorie des corps convexes. Ces

difficultés sont dans l'ordre logique des choses.

Il est incontestable que, depuis que Gauss a systématiquement

employé les coordonnées curvilignes pour 1 étude des

propriétés des surfaces, créant ainsi la géométrie différentielle,

des progrès considérables ont été réalisés en matière géomé-
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trique, dont beaucoup auraient été impossibles sans le secours
de l'analyse. Mais, si la géométrie doit beaucoup à l'analyse, il
n'en est pas moins vrai que celle-là a grandement contribué au
développement de celle-ci.

Si, par exemple, l'utilité d'une étude des corps convexes s'était
manifestée au moment où l'analyse cherchait sa voie, il est très
probable que l'évolution de cette dernière n'aurait pas été tout
à fait ce qu'elle est. Il est très normal que certaines théories
géométriques, telle précisément la théorie des corps convexes,
résistent à un instrument analytique qui n'a pas été
spécialement fait pour elles.

Les principaux progrès réalisés dans ce domaine de la géométrie

sont dus surtout à l'intuition géométrique elle-même, qui a
successivement amené Brun, Minkowski et, plus récemment,
Bonnesen 1, à introduire les notions, si parfaitement adaptées
au sujet, de série linéaire, de volumes mixtes, de couronne
circulaire ou de couronne minima attachées à un ensemble

convexe plan.
Dès qu'une de ces notions a été introduite, un grand pas en

avant a été fait. La notion de domaine vectoriel d'un corps
convexe me semble devoir se montrer d'une efficacité comparable
à celle des notions qui viennent d'être rappelées.

Il suffit pour s'en convaincre de se reporter aux travaux de

Ganapathi (loc. cit.), relatifs à la structure des ovales du plan,
ou à certaines inégalités isopérimétriques, telle par exemple
l'inégalité

^-S^2M+<D7A'2,4 tu 4

où L et S sont la longueur et l'aire d'une figure convexe plane
quelconque C, D et A les diamètres maximum et minimum de C,

M l'aire de la courbe moyenne de C [lieu des milieux des

diamètres]; inégalité qui, dans le cas des orbiformes, se réduit à

L2
S ^ 2M

4 TU

i T. Bonnesen: Le problème des isopérimètres et des isépiphanes. Paris, Grauthier-
Villars, 1929.
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Récemment [Mémoire cité du Journal de Mathématiques p

et appliquées],j'ai appliqué la notion de domaine vectoriel a

la détermination des figures convexes dont la largeur ^
dans toute direction. La construction à laquelle j ai ete conduit

remarquablement simple, donne en particulier les orbifomes si

la largeur est supposée constante ; en outre, elle s e en

naturellement à l'espace.
T i

Dans deux Notes publiées dans les

M. B. Segre a énoncé un grand nombre de propriétés des arcs

convexes, des ovales et des orbiformes du plan. Les résultats de

M Segre ont attiré l'attention de M. Hadamard, qui a bien

voulu me charger de les exposer dans une séance de son séminaire

du Collège de France. Ignorant les démonstrations de M. egre

l'ai cherché à établir ses propositions en les rattachant, autan

que possible, à la notion de domaine vectoriel.

Il se trouve que quelques-unes en sont des consequences

presque immédiates, beaucoup d'autres s'y ramenant avec la

olus grande facilité.
Pour illustrer par quelques nouveaux exemples la fécondité

le la notion de domaine vectoriel, je vais reprendre^, à ce nouveau

ooint de vue, quelques-uns des résultats de M. B. Segre.

XXX. — Les résultats de M. Segre.

Les résultats de M. B. Segre sont, en grande partie, relatifs

à la courbure des courbes convexes du plan. Les courbes considérées

sont des courbes intuitives au sens de M. Severi, c'est-a-

dire, tout entières situées à distance finie et douées, en chaque

point, d'une tangente variant d'une façon continue et d'une

courbure également continue et non nulle. Une ligne ouverte

sera dite un arc; l'arc sera convexe lorsque, avec sa corde, il
détermine une surface convexe.

Lorsqu'un point parcourt un arc dans un certain sens, la

tangente correspondante tourne d'un certain angle que M. B.

Segre, avec M. Mukopadyaya 2, appelle la déflexion de lare.

1 6me série, t. 20, 1934.
2 Collected geometrical papers of Calcutta, 1931.
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Si la déflexion est égale à tc les tangentes aux extrémités de l'arc
sont parallèles. Pour une courbe convexe fermée (un ovale), la
déflexion est égale à 2 n. Si les tangentes aux extrémités d'un
arc se coupent, la déflexion est inférieure à n ou supérieure à 7r,

suivant que l'arc est tout entier à l'intérieur ou tout entier à

l'extérieur du triangle formé par les deux tangentes et la corde.

La plupart des propositions énoncées par M. Segre découlent

plus ou moins directement du théorème fondamental suivant:
Considérons deux arcs convexes distincts C et C dont les

déflexions sont inférieures ou égales à -tu, ayant les mêmes

extrémités et tangents en au moins une extrémité. Il est clair

que l'on peut établir entre ces deux arcs (ou entre l'un d'eux
et une portion convenable de l'autre) une correspondance biuni-

voque par tangentes parallèles. Dans cette correspondance, la

différence des courbures en deux points homologues de C et C'

prend des valeurs positives et des valeurs négatives ; il y a, par suite,

sur les'deux arcs, un couple (au moins) de points homologues

distincts des extrémités, en lesquels les courbures sont égales.

Le théorème précédent peut être présenté sous la forme

légèrement différente suivante, qui nous sera plus commode

dans la suite?
Soit un triangle quelconque ABC [C peut être à l'infini] et

deux arcs de courbes convexes BM, BN tangents en B au côté

AB, situés à l'intérieur du triangle, et tels que les tangentes

aux points M et N où ils aboutissent sur AC soient parallèles.
Si Von établit une correspondance par tangentes parallèles entre

les points des deux arcs, la différence des courbures en deux points
correspondants quelconques prend des valeurs positives et des

valeurs négatives, et il existe au moins un couple de points
correspondants en lesquels les courbures sont égales.

Le fait que la différence des courbures en deux points
homologues ne peut pas prendre de valeurs d'un signe déterminé

signifie, dans cet énoncé comme dans le précédent, que les deux-

arcs coincident.
Parmi les résultats de M. Segre, reprenons plus spécialement

le suivant, relatif aux ovales, pour montrer comment la notion
de domaine vectoriel peut intervenir utilement dans la démonstration.
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Soient,C un ovale quelconque d'un s le

minimum de la somme des rayons de courbure en deux points

diamétralement opposés,S le maximum de cette d 1) les

largeurs minima et maxima de C, 1 longueur C. On a

s<rf<-<D<S.
TU

Substituons à l'ovale envisagé son domaine vectoriel dont la

frontière Y est un ovale doué d'un centre de symétrie 0. Les

largeurs minimum et maximum de C correspondent aux rayons

vecteurs minimum et maximum OA et OB D de

[fig- 1]-

Vi' C/
D

1

Les diamètres AA' et BB' de V sont normaux à V, et les

cercles y et Vdediamètres AA', BB' sont respectivement le

plus grand cercle inscrit dans V et le plus petit cercle circonscrit

à V.
Le minimum s et le maximum S de la somme des rayons de

courbure en deux, points diamétralement opposés de G sont,

d'après le numéro I, respectivement le minimum et le maximum

du rayon de courbure de V.
Considérons les deux arcs de V et y situés d un coté déterminé

de AA'; d'après la proposition de M. Segre rappelée plus haut,

il existe sur ces deux arcs deux points (au moins) où les tangentes

sont parallèles et où les rayons de courbure sont égaux; il existe

donc un point au moins sur V en lequel le rayon de courbure

est égal à d.
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La différence des rayons de courbure en deux points homologues

de V et de y prenant, comme l'on sait, des valeurs
positives et négatives, le minimum du rayon de courbure de V est
inférieur à d. On a donc

s < d

Le même raisonnement appliqué à V et V donne

D < S

Il reste à montrer que

d < - < D
TU

Il suffit pour cela de regarder la figure (1). T enveloppe V quiy
à son tour, enveloppe T. On peut donc écrire

1 l 1
— long, de y < — long, de V < — long, de V

d'où immédiatement

d<-< D
TU

La suite des inégalités (1) donne des propriétés extrémales
caractéristiques des orbiformes. Pour qu'un ovale soit orbi-
forme, il faut et il suffit que deux quelconques des cinq quantités
figurant dans (1) soient égales.

Le caractère de nécessité de la proposition est immédiat.
Si C est une orbiforme, dans la figure (1) C, y et T sont confondus,
d'où l'égalité des cinq quantités figurant dans les inégalités (1).
Montrons que la condition énoncée est suffisante.

Si d D, la largeur de G est constante et C est bien une
orbiforme.

Si d — les deux ovales V et y ont même longueur ; or V

enveloppe y, donc V et y sont identiques. Le domaine vectoriel
V de G étant un cercle, G est une orbiforme. Le même raisonnement

s'applique si D —.

Si s d, la différence des rayons de courbure de Y et y en
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deux points homologues ne peut pas prendre de valeurs négatives;
il résulte alors d'une remarque antérieure que V et y sont

identiques. V étant un cercle, C est une orbiforme. Le
raisonnement est identique si D =»a S.

IV. — La correspondance équilongue.

Considérons deux ovales quelconques C et C7; on peut toujours,
d'une infinité de façons, établir entre les deux ovales une
correspondance ponctuelle conservant les déflexions. Il suffit, à cet
effet, de prendre arbitrairement deux points A et A' sur C et C7

dont les tangentes font un certain angle a, puis d'associer
les couples de points M et M' de C et C' tels que les déflexions

des arcs AM, A7M7 soient constamment égales. M et M7 peuvent
décrire C et C7 en tournant dans le même sens ou dans des

sens inverses; nous nous bornerons à envisager le premier cas.
Il est clair que. sur C et C7, les couples de points diamétralement
opposés se correspondent.

La correspondance établie par M et M7 sur C et C7 est dite
par M. B. Segre équilongue si la distance de deux tangentes
parallèles de C est constamment égale à la distance des deux
tangentes homologues de C7. M. Segre justifie sa définition en
montrant que, lorsqu'il en est ainsi, C et C7 ont même longueur.
Cette propriété devient immédiate si l'on fait tourner C de

l'angle —a; après la rotation, C et C7 (qui se correspondent
par tangentes parallèles) ont même largeur dans toutes les
directions, donc même domaine vectoriel et par suite même
longueur (moitié de la longueur du domaine vectoriel).

Il se trouve que la plupart des propriétés des ovales que
M. Segre a rattachées aux correspondances équilongues, peuvent
être très simplement obtenues par la rotation d'angle — a
effectuée sur C, suivie de la considération du domaine vectoriel
commun de C et C7. Considérons par exemple la proposition
suivante :

La condition nécessaire et suffisante pour qu'une correspondance
conservant les déflexions, entre deux ovales C et C7, soit équilongue,
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est que la somme des rayons de courbure du premier ovale en deux
points opposés soit constamment égale à celle des rayons de courbure
aux points correspondants du second.

Faisons tourner C de l'angle — a, de façon à rendre les

tangentes homologues parallèles. Il suffît alors, pour montrer
que la condition énoncée est nécessaire, d'observer que, C et C'
ayant même domaine vectoriel, les sommes des rayons de

courbure de G et C en deux couples de points diamétralement
opposés sont égales au rayon de courbure du point correspondant
de la frontière du domaine vectoriel commun (voir le n° I).

La condition est suffisante car, après la rotation, les deux
domaines vectoriels, supposés d'abord distincts, doivent avoir
la même cour&ure aux points où les tangentes sont parallèles-
Cette propriété entraîne l'identité des deux domaines vectoriels..
Les deux ovales G et G7 ayant même domaine vectoriel sont
bien en correspondance équilongue.

Parmi les autres propositions énoncées par M. Segre

envisageons, pour terminer, la suivante:

Si entre deux ovales C et C existe une correspondance équilongue,
il y a toujours sur G six points distincts au moins, en chacun

desquels la courbure de G est égale à celle de G' au point
correspondant.

Pour la démonstration amenons toujours, par rotation,
G et G' à avoir même domaine vectoriel. On a vu au numéro I
que, par une translation de l'un des deux ovales, on pouvait
amener C et C7 à être bitangents en deux points diamétralement
opposés A et B. Considérons alors les deux arcs de G et C7 situés
d'un côté déterminé de AB; il y a, sur ces deux arcs, en vertu,
du théorème fondamental du numéro III, deux points
homologues (tangentes parallèles) en lesquels les courbures sont

égales.
A ces points correspondent sur les deux demi-ovales situés-

de l'autre côté de AB, des points diamétralement opposés en

lesquels, d'après le numéro I, les courbures sont aussi égales.
Nous pouvons supposer que la translation dont il a été question.
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plus haut a eu pour effet de rendre C et C bitangents aux couples
de points diamétralement opposés qui viennent d'être mis en
évidence.

Dans la figure (2), C et C' auront alors même courbure en

A et B.

Fig. 2

Si les deux arcs ACB, AC'B ont un point commun M
distinct de A et B, l'application du théorème fondamental
aux deux couples d'arcs d'extrémités A et M, B et M de CetC,
établit immédiatement l'existence de deux nouveaux couples
de points opposés sur C et G' vérifiant la condition de l'énoncé,
et l'on a bien, sur chacun des deux ovales, six points en chacun
desquels le rayon de courbure est égal au rayon de courbure
au point correspondant de l'autre ovale.

Pour démontrer le théorème dans toute sa généralité, nous
pouvons donc supposer, conformément à la figure (2), que l'arc
AC'B est à l'intérieur de la région du plan déterminé par
l'arc ACB et la corde AB.

Continuons à appliquer le même théorème fondamental
aux deux ars ACB, AC'B: il existe sur ces deux arcs deux
points homologues P et P' en lesquels les courbures sont égales.
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Avec les points P; et P, diamétralement opposés à P et P

nous avons déjà quatre points sur C répondant à la question.

Pour mettre en évidence le dernier couple de points de l'énôncé

menons PR' parallèle aux tangentes T et T' en A et B à C et G',

R' étant sur C'. Soit R le point de G homologue du point R' de C'.

En intervertissant au besoin A et B, on peut supposer que

l'on a

long. AP' ^ long. AR' ;

dans ces conditions long. AP ^ long. AR ; R est sur l'arc

AP, et la droite R'R coupe T en un certain point S (qui peut

être rejeté à l'infini si AP AR).

Il suffit d'envisager les deux arcs AR, AR' tangents en

A au côté AS du triangle A S R', et d'appliquer (sous sa deuxième

forme) le théorème du numéro III, pour voir qu'il existe sur

C, entre A et R, un point U en lequel le rayon de courbure

de C est égal au rayon de courbure de C' au point homologue U'.

Le point U! diamétralement opposé à U sur G donne lieu à

la même conclusion.
En définitive, conformément au théorème énoncé, nous

avons établi l'existence de trois couples de points diamétralement

opposés (A, B), (P, P'), (U, U') en lesquels les rayons
de courbure de C sont égaux aux rayons de courbure aux points

correspondants de C'.
Si l'on suppose que G' est confondu avec C, les points

homologues étant diamétralement opposés sur C, on voit qu'il existe,

sur tout ovale, trois couples de points diamétralement opposés

en lesquels les courbures sont égales, et que par suite (Ganapathi,
loc. cit.) la courbe moyenne (voir n° II) d'un ovale quelconque

présente au moins trois points de rebroussement.
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