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SUR LE CALCUL DU POTENTIEL DE L’ELLIPSOIDE
HOMOGENE |
PAR LA METHODE DU FACTEUR DE DISCONTINUITE

PAR

M. PLANCHEREL (Zurich).

§ 1. Introduction. — L’application la plus remarquable que
Gustave LeJeuNe DiricHLET a donnée de sa méthode du
« facteur de discontinuité » pour la détermination des intégrales
multiples est celle de la réduction & une intégrale simple de
Pintégrale triple par laquelle s’exprime le potentiel newtonien
de Tellipsoide homogene!. Dirichlet a vérifié a posteriori la
formule finale qu’il a obtenue par cette méthode en montrant
que la fonction qu’elle représente possede les propriétés carac-
téristiques du potentiel cherché 2. Mais, pour obtenir sa célébre
formule, Dirichlet doit permuter & plusieurs reprises Iordre
des intégrations dans des intégrales multiples non absolument
convergentes. Si donc, dans la recherche du potentiel de Iellip-
soide la méthode du facteur de discontinuité veut étre mieux
qu’une méthode heuristique nécessitant une vérification a poste-
riort du résultat, il est nécessaire de legltlmer les permutations.
effectuées.

1 G. LEJEUNE DIRICHLET. @) Sur une nouvelle méthode pour la détermination des
intégrales multiples (Comptes rendus de I’ Académie des Sciences (Paris), vol. 8 (1839)
p. 156-160; Werke (Berlin, G. Reimer), Bd. 1, p. 377-380). b) Ueber eine neue Methode
zur Bestimmung vielfacher Integrale (Abhandlungen der konigl. preussischen Akademie
der Wissenschaften (1839), p. 61-79; Werke, Bd. I, p. 393-410).

2 G.LEJEUNE DIRICHLET, a) Sur un moyen général de vérifier I’expression du potentiel
relatif 4 une masse quelconque homogéne ou hétérogéne (CRELLE, Journal fiir reine
und angewandte: Mathematik, Bd. 32, p. 80-8%; Werke, Bd. II, p. 11-16). Voir par exemplp
E. Picarp, Traité d’ Analyse, 2me édition (Parls 1901), tome I, p. 189-191. : :
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Dirichlet a bien vu la nécessité d’une telle démonstration et
dans son mémoire il indique en passant que l'introduction de
« facteurs de convergence » appropriés permettrait de considérer
les intégrales & calculer comme limites d’intégrales absolument
convergentes auxquelles s’appliquerait en toute rigueur la
méthode du facteur de discontinuité 3. Mais, lorsqu’on essaie
de développer les breves indications qu’il a données a ce sujet,
‘on est vite découragé car la simplicité des calculs disparait et
la marche de la démonstration est rendue pénible par suite des
considérations exigées pour rendre rigoureux les passages a la
limite nécessités par 'introduction des facteurs de convergence.
Augsi n’existe-t-il, & notre connaissance, aucun exposé rigoureux
du contenu de son mémoire.

Léopold KronEckER ? a traité le probléme dans ses Lecons
sur la théorie des intégrales multiples en utilisant un facteur de
discontinuité différent de celui de Dirichlet et déja utilisé par
MERTENS ® et il s’est préoccupé de donner une démonstration
rigoureuse. Mais sa démonstration est lourde et les vingt pages
qu'elle exige laissent le lecteur peu satisfait ®. L’avantage que
présente le facteur de discontinuité dont se servent Mertens et
Kronecker réside dans le fait qu’il conduit & des intégrales mul-
tiples absolument convergentes. Or, on sait maintenant que de
telles intégrales peuvent toujours étre calculées par itération et
que ordre des itérations est indifférent. En utilisant systéma-
tiquement cette propriété, il est possible d’alléger la démons-
tration de Kronecker et de ’exposer sous une forme relativement
simple et cependant entiérement rigoureuse. C’est ce que nous

3 Voir le dernier alinéa de la note citée sous a) dans 1, le premier paragraphe et le -
septiéme alinéa du paragraphe 5 de la note citée sous b) dans 1,

4 .. KRONECKER, Vorlesungen iliber Mathematik. Bd. I (Vorlesungen iiber die Theorie
der einfachen und der vielfachen Integrale, herausgegeben von E. Netto, p. 317-341,
Leipzig, 1894).

-5 . MERTENS, De functione potentiali duarum ellipsoidium homogenearum (Journal
tir die reine und angewandte Mathematik, Bd. 63 (1864), p. 360-372).

6 L’'éditeur des Lecons de Kronecker fait & ce sujet la remarque suivante (loc. cit. 4,
p. 345): « Die nun folgenden Ableitungen hat Kronecker zuerst 1889 und dann in
veranderter Form 1891 vorgetragen. Er hebt dabei den fiir seine Art der Produktion
besonders wichtigen Umstand hervor, dass die Gesamtheit der Vorsichtsmassregeln,
welche die Methode erfordert, erst im Laufe der Untersuchungen selbst hervortrete,
so dass auf Grund spiterer Erwagungen hiufig Aenderungen in den fritheren Beweis-
fiithrungen notig werden. Die Spuren dleser Schwierigkeiten sind in der Darstellung
wohl nicht ganz zu verw1schen .
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voudrions montrer dans cette Note qui se termine par I’exposé
de la démonstration de Mertens.

§ 2. Préliminaires. — Pour mieux faire ressortir la démons-
tration du § 3, nous avons réuni dans ce paragraphe toutes les
propositions auxiliaires qui lui sont nécessaires. |

@) Sur les intégrales multiples. — Les intégrales multiples
absolument convergentes ont la propriété de pouvoir se calculer
par itération d’intégrales simples ou multiples. Nous admet-
trons que cette propriété importante, qui sous sa forme la plus
générale constitue le théoréme de Fusini, est connue du lec-
teur 7. Dans ce qui suit, nous aurons & I'utiliser sous la forme
suivante: | _

Soit 2 le domaine n-dimensionnel des points z = (z,, Z,, ..., Z,,)
defini par les inégalités — w0 < a, <z, < by < o0 ,v = 1,2,..,n
et f(x) = f(zy, x,, ..., x,) une fonction continue du point z a
Pintérieur de Q. Répartissons les n variables x, en deux groupes
de p et de g variables, p 4+ ¢ = n, que nous désignerons par
L Ty ey Ty et 2l 2l x,. Représentons par des notations
analogues les valeurs correspondantes des ay, by. Soient Q’
et Q" les domaines p — respectivement ¢ — dimensionnels des

‘ ’ .7 7 ”n ” " - o
pomts 2" = (z, z,, ..., r,), " = (z, x,, , Z,) définis par
i
’ 4 4 4
Q,:aﬂ<xzx<bgk’ “‘:1927 ’p’
4 /4 4
Q”:a:<xv<bv, v=1,2,.., ¢.

Alors, si I'une des deux expressions

Sifldz [ Q/]f]c;x”

" G. FunIni, Sugli integrali multipli (Rendiconti della Reale Accademia dei Lincei (5),
1907). On pourra consulter Ch.-J. pE LA VALLEE-POUSSIN, Intégrales de Lebesgue,
fonctions d’ensemble, classes de Baire (Paris, 1918), p. 50-53; C. CARATHEODORY, Vorle-
sungen 1iiber reelle Funhktionen (Leipzig und Berlin, 1918), p. 621-641. I’hypothese de-
la continuité que nous faisons est superflue pour la validité du théoréme. On pourrait

- d’ailleurs, dans les intégrales absolument convergentes que nous aurons i calculer
se passer de ce théoréme général et démontrer directement a 1’aide de considérations
€lémentaires la légitimité de Pinterversion de ’ordre des intégrations.
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a une valeur finie, autre lui est égale et les expressions
[tde, [d= (fde
!fl 0’ ;2”

existent, sont finies et égales entre elles.
Par conséquent, les intégrales itérées

[aa [tda”, [ da” ffdx'
o o o
sont finies et égales, chaque fois que l'une des trois intégrales

f|f!dx , fd:c’f]ﬂda:” , !/'dx”flf[d:c’
2 a’ Q7 Q7 0’ |

a une valeur finie.

b) Le facteur de discontinuité. — Le facteur de discontinuité
dont se sert Kronecker est
1+io
D = [ Hatan, | (1)
1-iw

[ est réel. L’intégrale est & prendre dans le plan de la variable
complexe A sur la droite menée par le point A = 1 parallélement
4 I’axe des imaginaires; elle est & entendre comme « valeur prin-
cipale » au sens de Cauchy. a désignant dans ce qui suit une
quantité positive, D (l) est done définie par

1+ia
D) = lim D) , D) = [ *xtdn. 2)
a-—> e
1-ia

Les propriétés suivantes de D (1) et de D,(l) seront utilisées
au § 3.

A 0o, I<0
D) = { =i, L=20 (3)
2%, Il >0
| l .
D] = (D@ — D@ £ gy > S 1<
,  2er -
i D, () ““D(l)l = |D () —2mi| < a1l » St >0 (4d)
D,(0) = giarctga., |Dy(0)] <m . T (ae)
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11 résulte de ces formules que si 0 <e <1

limD,(l) = 0, uniformément dans — o <[l X¢ (5a)
Q> 00 i
et que
limD, () = 2=, uniformément dans ¢ <I1<1 . (5D)
a—> ®

Enfin, il existe une constante M telle que pour tout’ ¢ > 0,
dans lintervalle —o0 <1 <1

D, )] <M, (—ow<I<1, a2z 0) )

La vérification de (4c) est immédiate. Pour établir (4a) et
(4b) on peut appliquer le théoréme- des résidus & la fonction
¢3!, méromorphe en 2, et au contour formé du segment
rectiligne (1 — ia, 1 + ia) et de deux demi-droites I, II paral-
leles a ’axe réel, allant vers + oo lorsque | <0 et vers —®
lorsque [ > 0. Le résidu au pole 2 = 0 étant égal & 1, on aura

1+ia
- (0o, I<0
(f+!+[>el“*§maz>m. (7)

I —-ia

Or, lorsque | >0, ,
1-ia 0

. 3 . > lu
eh‘ )‘—‘1 d)‘. — f ell\ )\—1 d)\ — e(l—-la)l { e du . )
" ~ ) ~ : J 1+ u—1a
o I ! -1 — 0
‘Donc

| ei ; | €l
U'e“ridx < -—feludu, = £ _.
. = a all|

— 0

On verrait de méme que
‘feu l"idll.
' 11

Ces résultats subsistent lorsque ' <'0, I et IT allant dans ce cas
vers + . Ils ont, comme conséquences, en tenant compte
de (7), les formules (3) et les inégalités (4a) et (4b).

Pour démontrer (6), nous remarquerons qu’en vertu de (4a)

et

A

a|l|
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il suffit de ’établir sous ’hypothése —1 <1 < 1. Or, sous cette
hypothése,

A Ui g % cos inl
Dl'::"e U gl cosiu + usiniu
a0 l‘ 11 le ’ e du
-a 0
Donc,
cos lu usmlu
<
1D, ()] < 2e ji d|+ze - d}
0 .
Or,
a o}
qCOSl_l,id! I‘ du T
T+ 2™ < )1Fwe~ 2
0 0
a . a
usmlu ! (usinlu smlu) smludu1.
6’1+u2 ’ ’ 1 + u? }
Mais
[ a inl inl | a . I d
u sin lu sin lu *sin lu u
f“('l%—uz_ u )dul_ ZJ Ilu 1+ u S
0 0
" du 17 P11
— Z < =
S rrm=llgsy
0
et
) al . = .
’smudl Smudu’<’smudu<n.

0

11 existe donc une constante M vérifiant (6).

¢) Nous aurons encore & nous servir plus loin des relations

1 1410
= f eh)' X—le -
2w

{—ioo

——~———
-

0 -
h, k>0 (8)

qui se vérifient aussi en appliquant le théoréme des résidus aux
contours d’intégration considérés plus haut et en passant & la
limite @ — o . Remarquons que I'intégrale du premier membre
de (8) est absolument convergente.
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§ 3. Le potentiel de Dellipsoide. — Soit E 1’ellipsoide |

2 2 9 -
2 x z z
x= Ty 2 3
=5+t + 551 (9)
a o o o
1 2 3

rapporté a ses axes. Si &= (&,, &,, &;) est un point arbitraire et
51 p2 = (¢, — E1)% + (2 — &5)2 + (x5 — &3)? est le carré de la
distance des points z et £, la valeur au point & du:potentiel
newtonien de lellipsoide E supposé rempli d’une masse de
densité constante est proportionnelle & l'intégrale de volume

v=vi= [T, (10)

ou dx représente Pélément de volume dz, dz, dzs; au point
x = (&, Z, x3) 8. Le calcul de V par la méthode usuelle de la
réduction de I’intégrale multiple a I'itération d’intégrales simples
échoue ici parce que les limites d’intégration des intégrales
simples qui se présentent ne sont pas fixes, mais sont des fonc-
tions de nature compliquée. La méthode du facteur de discon-
tinuité due & Dirichlet consiste précisément a remplacer ces
limites d’intégration variables par des limites fixes en multipliant
la fonction & intégrer par une expression égale & 1 & intérieur
et égale & 0 & extérieur du domaine d’intégration. La formule (3)
donne une expression de cette nature pour le domaine E si on
définit [ par ? - |

2 2 2
2 X x xX_\ :

l=1—3Z =1 (2 422433 (11)
o? o o o
: 1 2 3

Nous aurons donc, d’aprés (3) et (2), | '

. D (1) 1.
2miV =RZ“—p~dx = [ ImD (i, (12)

8 Remarquons une fois pour toutes que dans tout ce qui suit le fait que ¢ s’annule
au point £ ne crée aucune difficulté. En introduisant des coordonnées polaires de centre &
on serend compte que toutes les fonctions que nous aurons & considérer sous le signe
intégrale sont continues 4 ’intérieur du domaine d’intégration transformé.

9 Pour simplifier I’écriture, nous laissons de coté les indices sous les symboles =

3 3
et 1. £f est donc X f, et 1f est donc II7,.

y=1 v=1
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ou R? représente 1'espace entier. Nous supposerons d’abord que
le point £ n’est pas sur la surface de D’ellipsoide.

Nous allons montrer qu’il est permis de permuter dans la
derniére intégrale les symboles [ et lim, ce qui donnera

1+1ia
; . 1 . 1
2wV = lim 1D ()dx = lim - 05—t
a—> P a() N a—»ooz{/‘ p ([ ¢ )\ d)\)d% ? (1‘3)
. 3 —-ia

puis d’intervertir Pordre des intégrations relatives a x et a A,

d’ou résultera :
14ia "
el:.
f ~ dx> dn . (14)

9 iV = lim f ri(
a—» oo
1—-ia

B3

Pour légitimer ces deux opérations, 1l nous suffira de faire .
voir que

1+ia
f%(f ]enl—idl[>dx (15)
B3 1-ia

est finie, ce qui assure en vertu du § 2 a) I'existence de linte-
grale du second membre de (13) et le passage de (13) a (14),
puis d’établir que

lm f%[D (1) — D, (1dz = O . (16)

a->o0 ¢ '
R

ce qui permet de passer de (12) a (13).
Pour démontrer que (15) est finie, on remarque que

lim L ¥z =1 etque T >2mEa
o—ém? v = au a2 = m e
1
2m
existe done une quantité positive po (qui dépend de &) telle que

lorsque désigne le plus grand des nombres o, o, . Il

1< —me*, si e = Po - (17)

Comme
1+ia

712 =

1-ia
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est finie, indépendante de z, on voit que (15) est égale a

N (a) fe—ldx .

P
Rr3

Il suffit d’introduire un systéme de coordonnées polaires de
centre £, et de tenir compte de I'inégalité (17), pour constater
que cette intégrale a une valeur finie. Pour démontrer (16)
nous introduirons les ellipsoides auxiliaires E_5, Es définis par

a? x? |
E;: 25<51—39; By : Z5S1+39, o<d<k1,
o : o

et lé couche

) —3

V 2
E\—~E\:1—8<2%<1+8.

11 est évident que le volume dela couche (E5—E_5) tend vers
zéro avec d. Prenant > 0 arbitrairement petit, nous deter-
minerons 3 par la condition que ce volume soit inférieur & ¢
et que le point £ soit hors de cette couche. Appelant H la sphére
de centre £ et de rayon p, suffisamment grand, nous décompo-
‘serons I'intégrale (16) en quatre intégrales étendues aux domaines

B, B,—E; ¥—F, ®—K.

(4b) montre que dans E__s,» D (l) — D,(l) tend uniformément
_vers zéro avec %, car [ y reste compris entre 1 et une quantité
positive ne'dépendant que de 3, donc de e. (4a) montre de méme
que D (l) — D, (I) tend uniformément vers zéro avec —‘1— dans

le domaine K — Es. Il existe par conséquent une quantité
a, > 0 telle que

‘(f + f) %[D(l) — Dy (1)]d=

By H-Ey

< €, pour a > a, .

§  En vertu de (6) et du choix de 3

‘f% [D() — Dy ()] de

Es-—-E___s

- Me
<
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en désignant par d = d (&, 3) la borne inférieure des distances du
point £ & un point de (Es — E_3). En vertu de (17) et de (4a)
et par introduction de coordonnées polaires de centre £ on a

2 l —me2
Sf#f— 1dac <zfe dzx
=J all] e aJ me?
RS-K R3-K

f %[D () — D, (0] dx

Rs-K

(o]

8 % e me?
— 2T de < ———Sl—t /.e_uzdu .
am @ a/pom\/mb

Il existe donc une quantité a, > 0 telle que

\fi[D(l)mDa(l)]dx% < e, pour a > a, .
aox’ 3

En résumé, pour a >a; + aq,

[ 1D () — Dy (l)]dz

P
R3

est en valeur absolue inférieure & 2 (% -+ 1)5, ce qui démontre

(16).
Pour calculer l'intégrale intérieure de (14)

dx
AN = h—
() fe 5
Rrs3

nous utiliserons un artifice déja employé par Dirichlet et qui
consiste & exprimer par une intégrale quadruple cette intégrale
triple. A cet effet, nous effectuons dans l'intégrale

T(s) = fe’“ us~ du
0

la substitution u = t 2 et prenons ensuite s = %, ce qui donne,
puisque I‘(%) = /=,

Co= /' e 2 dp (18)
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La fonction sous le signe mtegrale dans (18) étant pOS1tlve il
est clair qu’en remplagant — par (18) dans l'intégrale absolu-

ment convergente A () nous obtenons une expression

. . .
A\ = 1 /"dxfe“-te% 2 di
T s G

dans laquelle nous avons encore le droit de permuter 'ordre
des intégrations. Par suite,

1
A (N fdtt 2 [t gy
'\/‘J‘E e 33

Or
In— tp? = 1(1 — 2%:) — tE(x — &)

:)\———Z< -+ >x2+2t2xﬁ—-t2€2

L’intégrale absolument convergente | e”*dx peut par consé-
Rr3

quent se calculer par itération d’intégrales simples dans lesquelles
les variables sont séparées

x
P - 3 = —<t+—2)oc?+2t&1;x,;
A— 0= - —t L o
fe dr = e .“fe i dxi.
R3 1=1_

En utilisant la formule
—

qui se déduit de la formule connue

. (o]
?
=112 —
'/Guduz'\/n,
-0

on obtient

o - <_ £2 )
1

. —1

A()‘):’Tf 241

\/tﬂ\/t—i—_—
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Effectuons dans cette intégrale la substitution = %

(o) o pde)
e /II\/ 1‘5 N /H\/i—;—

On peut, en effet, comme le montre le théoréme de Cauchy,
remplacer I'intégration le long du rayon (0, Ao ) par P'intégra-
tion le long de I'axe réel positif. Par suite

1+ia )

_ . ‘ ’
v = L lim - ”2+“>
__ 2L a— )\2 H\/
1-ia

Ici encore I'intégrale double

14+ic o

a2
/f ) du d
Yo xzn\/1+

est absolument convergente, car

£2 g2
ex(i_va2+u> «2+u

/ u u
)\21—.[\/1—}-—&—2- ])\[21_[\/1+— '7\[211\/ ——2—

La permutation de l'ordre des intégrations est donc permise:

2l

o) ‘ . {4io0 &2 o
ek(i—z a—2+u>
——dA .

a2 {—io0

Or, d’apres (8),'intégrale intérieure a la valeur 21ri‘(1 — X - 32_ u) :
| £

> < |
- est 0 ou est < 0.

Il y aura donc, tout nahurellement deux cas a dlstlnguer

ou zéro selon que 1 — -
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1. Le point & est & l'intérieur de l’ellipsoide. Dans ce cas,
. & | s |
1_—-—2m2+ ~ est > 0 pour tout u > 0 et
- o . e
V=n/ ﬁ+u\ ~(19)
| Jom \/ —l— u
2. Le point & est a I'extérieur de l'ellipsoide. Dans ce cas,
Eafi u'est. une fonction décroissante de u si u > 0; la plus
; » 92 E.~2
grande racine u, de 1 "

= 0 est positive.

Par suite
E-,Z
w e

V~n/‘ ﬁ+“ : (20)
=

Nous ayons supposé dans nos calculs que le point £ n’était
pas sur la surface de Iellipsoide. Il serait facile d’adapter les
raisonnements & ce cas. Mais il est inutile de le faire si on se
rappelle que le potentiel V = V(&) est une fonction continue
du point & et si on remarque que les seconds membres de (19)
et (20) tendent vers la méme valeur lorsque les points £ tendent
vers le méme point de la surface, car u, devient alors nul.

En résumé donc, le potentiel de Dlellipsoide homogéne (9)
au point § = (&, &,, &;) est ' |

e e g
1 — 2%; + N =
o U o u o u
VZTE/ 1 2 3

/(1 ) (14 5) (14 )
2 % % %

uy deésignant la plus grande (algébriquement) des racines de
I’équation en u

£ g £
+ 5=t 5= =1.
o u /!

2
o u oz2~}—u

oy

1

§ 4. La démonstration de Mertens. — La démonstration de
Kronecker que nous venons d’exposer n’évite pas entiérement
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la considération d’intégrales non absolument convergentes.
L’intégrale D (l), en effet, n’est pas absolument convergente
et ceci a nécessité dans le passage de la formule (12) & la for-
mule (14) une étude particuliére. Mertens a montré comment,
par un artifice ingénieux, on peut éliminer complétement de
la démonstration toute considération d’intégrales non abso-
lument convergentes.
I1 utilise & cet effet le facteur de discontinuité

Tim)  atyeman = | °
-\ f ety mdN =

27w

, 120
(22)

mto1>0

1—io
ol m est un nombre réel supérieur a 1. Sous cette hypothese, le
premier membre de (22) est une intégrale absolument convergente.

La formule (22) peut s’établir en représentant par Pintégrale
de Fourier

1 oo | e
5= /’ di ¢l , /‘ e Yyl gy
—00 0
la fonction égale & zéro si x < 0 et égale & e™a™ " si >0
et en tenant compte de la relation due & Euler

[o2}

fe—(1+it)yym—1dy _ I‘(n.%)m .
. (1 + 1it)

On peut aussi calculer le premier membre de (22) & I'aide du
théoréme de Cauchy, par déformation du chemin d’mtegratlon
Si11< 0, le chemin d’intégration peut étre remplacé par la
demi-droite (1, «) parcourue deux fois en sens contraire. Si
[ > 0, il peut étre remplacé par un lacet partant de — oo et y
revenant aprés avoir tourné une fois dans le sens positif autour
de 1’origine. On peut alors exprimer par la fonction T' I'intégrale
prise le long de ce lacet.

Pour obtenir des intégrales absolument oonvergentes Mertens
ne calcule pas directement le potentiel V. = V (&) de I’ellipsoide
homogéne, mais celui d’un ellipsoide ou la densité au point x

est égale & "™ = (1——f2§2)m_1,. (m > 1). Soit V(m; &) ce

potentiel
m; E) = f " g (23).




‘SUR LE CALCUL DU POTENTIEL 345

V(m; &) est une fonction continue de m dans 1 <m < .
- Par conséquent

V(E =1lmV(m; & . (24)
m—>1+0

En introduisant dans I'intégrale absolument convergente (23)
le facteur de discontinuité (22), lui aussi absolument conver-

ent, on peut écrire
g bl p
1+i

Vims g = 50 [ dmay
pat] 1

2

et permuter I'ordre des intégrations dans cette intégrale multiple
absolument convergente. Donc,
1+ic

o D(m) p odr pet

{—ioo s

A partir de cette formule les calculs se poursuivent comme au
§ 3, ot nous avons déja calculé 'intégrale intérieure. On obtient
alors

‘ o { o ( £2
: : 2 A 1“3m>
Vim; &) = P(?)/ = / : ax

2 u' lm—l—i
0 i \/1 - &? 1—joo

L’intégrale relative a A se calcule & Paide de (22). u, ayant la
signification donnée au § 3, il vient alors

Vim; g =12

m
Up+ 1 1+

2

du .

ey g2 m
f (1 Bz + u)
J 7
[uo] )

L’intégrale du second membre étant uniformément convergente
relativement & m dans m > 1, on peut y passer a la limite

m— 140 en y prenant m = 1. On retrouve ainsi la for-
mule (21).

L’Enseignement mathém, 36m=e année, 1937. 23
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