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SUR LE CALCUL DU POTENTIEL DE L'ELLIPSOÏDE
HOMOGÈNE

PAR LA MÉTHODE DU FACTEUR DE DISCONTINUITÉ

PAR

M. Plancherel (Zurich).

§ 1. Introduction. — L'application la plus remarquable que
Gustave Lejeune Dirichlet a donnée de sa méthode du

facteur de discontinuité » pour la détermination des intégrales
multiples est celle de la réduction à une intégrale simple de

l'intégrale triple par laquelle s'exprime le potentiel newtonien
de l'ellipsoïde homogène L Dirichlet a vérifié a posteriori la
formule finale qu'il a obtenue par cette méthode en montrant
que la fonction qu'elle représente possède les propriétés
caractéristiques du potentiel cherché 2. Mais, pour obtenir sa célèbre

formule, Dirichlet doit permuter à plusieurs reprises l'ordre
des intégrations dans des intégrales multiples non absolument
convergentes. Si donc, dans la recheiche du potentiel de l'ellipsoïde

la méthode du facteur de discontinuité veut être mieux
qu'une méthode heuristique nécessitant une vérification a posteriori

du résultat, il est nécessaire de légitimer les permutations
effectuées.

1 G-. Lejeune Dirichlet. a) Sur une nouvelle méthode pour la détermination des
intégrales multiples (Comptes rendus de l'Académie des Sciences (Paris), vol. 8 (1839)
p. 156-160; Werke (Berlin, G-. Reimer), Bd. 1, p. 377-380). b) Ueber eine neue Methode
zur Bestimmung vielfacher Integrale (Abhandlungen der königl. preussischen Akademie
der Wissenschaften (1839), p. 61-79; Werke, Bd. I, p. 393-410).

2 G-. Lejeune Dirichlet, a) Sur un moyen général de vérifier l'expression du potentiel
relatif à une masse quelconque homogène ou hétérogène (Crelle, Journal für reine
und angewandte Mathematik, Bd. 32, p. 80-84 ; Werke, Bd. II, p. 11-16). Voir par exemple
E. Picard, Traité d'Analyse, 2me édition (Paris, 1901), tome I, p. 189-191.
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Dirichlet a bien vu la nécessité d'une telle démonstration et
dans son mémoire il indique en passant que l'introduction de

« facteurs de convergence » appropriés permettrait de considérer
les intégrales à calculer comme limites d'intégrales absolument

convergentes auxquelles s'appliquerait en toute rigueur la

méthode du facteur de discontinuité 3. Mais, lorsqu'on essaie

de développer les brèves indications qu'il a données à ce sujet,
on est vite découragé car la simplicité des calculs disparaît et

la marche de la démonstration est rendue pénible par suite des

considérations exigées pour rendre rigoureux les passages à la
limite nécessités par l'introduction des facteurs de convergence.
Aussi n'existe-t-il, à notre connaissance, aucun exposé rigoureux
du contenu de son mémoire.7

Léopold Kronecker 4 a traité le problème dans ses Leçons

sur la théorie des intégrales multiples en utilisant un facteur de

discontinuité différent de celui de Dirichlet et déjà utilisé par
Mertens 5 et il s'est préoccupé de donner une démonstration

rigoureuse. Mais sa démonstration est lourde et les vingt pages

qu'elle exige laissent le lecteur peu satisfait6. L'avantage que
présente le facteur de discontinuité dont se servent Mertens et

Kronecker réside dans le fait qu'il conduit à des intégrales
multiples absolument convergentes. Or, on sait maintenant que de

telles intégrales peuvent toujours être calculées par itération et

que l'ordre des itérations est indifférent. En utilisant
systématiquement cette propriété, il est possible d'alléger la démonstration

de Kronecker et de l'exposer sous une forme relativement
simple et cependant entièrement rigoureuse. C'est ce que nous

3 Voir le dernier alinéa de la note citée sous a) dans U le premier paragraphe et le
septième alinéa du paragraphe 5 de la note citée sous b) dans L

4 L. Kronecker, Vorlesungen über Mathematik. Bd. I (Vorlesungen über die Theorie
der einfachen und der vielfachen Integrale, herausgegeben von E. Netto, p. 317-341,
Leipzig, 1894).

• & F. Mertens, De functione potentiali duarum ellipsoidium homogenearum Journal
für die reine und angewandte Mathematik, Bd. 63 (1864), p. 360-372).

6 L'éditeur des Leçons de Kronecker fait ä ce sujet la remarque suivante (loc. cit. 4,

p. 345): «Die nun folgenden Ableitungen hat Kronecker zuerst 1889 und dann in
veränderter Form 1891 vorgetragen. Er hebt dabei den für seine Art der Produktion
besonders wichtigen Umstand hervor, dass die Gesamtheit der Vorsichtsmassregeln,
welche die Methode erfordert, erst im Laufe der Untersuchungen selbst hervortrete,
so dass auf Grund späterer Erwägungen häufig Aenderungen in den früheren
Beweisführungen nötig werden. Die Spuren dieser Schwierigkeiten sind in der Darstellung
wohl nicht ganz zu verwischen ».
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voudrions montrer dans cette Note qui se termine par l'exposé
de la démonstration de Mertens.

§ 2. Préliminaires. — Pour mieux faire ressortir la démonstration

du § 3, nous avons réuni dans ce paragraphe toutes les

propositions auxiliaires qui lui sont nécessaires.

a) Sur les intégrales multiples. — Les intégrales multiples
absolument convergentes ont la propriété de pouvoir se calculer
par itération d'intégrales simples ou multiples. Nous admettrons

que cette propriété importante, qui sous sa forme la plus
générale constitue le théorème de Fubini, est connue du
lecteur 7. Dans ce qui suit, nous aurons à l'utiliser sous la forme
suivante :

Soit O le domaine w-dimensionnel des points x (x1: xn)
défini par les inégalités — oo < av < < bv < oo v 1, 2, n
et f(x) f(xi, x2, xn) une fonction continue du point x à
Vintérieur de Q. Répartissons les n variables xv en deux groupes
de p et de^g variables, p -f- q.= n, que nous désignerons par
X!, x2, xp et x%1 x"2, x"q. Représentons par des notations
analogues les valeurs correspondantes des av, 6V. Soient Q'
et Q" les domaines p — respectivement q— dimensionnels des
points x' (xx, x2, xp), x" {x[, x[, xq) définis par

H' : a[x < Xix < b'x (i, 1, 2, p ;

r\f, " » nil : a, < V 1, 2, q

Alors, si l'une des deux expressions

élémentaires la légitimité de l'interversion de l'ordre des intégrations.'
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a une valeur finie, l'autre lui est égale et les expressions

ffdx, fdx'ffdx"
Q 12' iï"

existent, sont finies et égales entre elles.

Par conséquent, les intégrales itérées

fdx' f fdx" f dx" J fdx'
\if a" o" a'

sont finies et égales, chaque fois que l'une des trois intégrales

f\f\dx,f dx' f \f\dx" fdx" f | |

a Q' û" Q"

a une valeur finie.

b) Le facteur de discontinuité. — Le facteur de discontinuité

dont se sert Kronecker est

D (l)J ellX~l dX

1-ioo

l est réel. L'intégrale est à prendre dans le plan de la variable

complexe X sur la droite menée par le point X 1 parallèlement

à l'axe des imaginaires ; elle est à entendre comme « valeur

principale » au sens de Cauchy. a désignant dans ce qui suit une

quantité positive, D (l) est donc définie par
1 +ia

D (l) lim Da(l) Da(l) f ellX-ldX (2)

a-*00 l-ia

Les propriétés suivantes de D et de Da(l) seront utilisées

au § 3.
I o o

D (l) l ni1 0 (3)

2ni, l > 0

I Da W 1 I Do(î) — D (l)|^ ~a\ï\Sl'<0. <4a)

•

|Da{i) - D (l)||D0(Ï) — 2*i| < ^ ; si 0 (46)

Da(0) 2i arctg a |Da(0)| < ir (4c)
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Il résulte de ces formules que si 0 < s < .1

lim D (l)0, uniformément dans — » < 51 s

a->oo

et que
lim D (l)2 ni uniformément dans sSISl

a-*ooa

Enfin, il existe une constante M telle que pour tout >0,
dans l'intervalle —co < l <1

| Da(l)| <• M (— « < f g 1 a £ 0) (6)

La vérification de (4c) est immédiate. Pour établir (4a) et

(4 b)on peut appliquer le théorème des résidus à la fonction

e'xX~*, méromorphe en a, et au contour formé du segment

rectiligne (1 — ia, 1 + ta) et de deux demi-droites I, II parallèles

à l'axe réel, allant vers -f <» lorsque 0 et vers — oo

lorsque l>0.Le résidu au pôle X 0 étant égal à 1, on aura

(/+/+/iV-'"HL; ',tl. 1,1

\i il 1-ia '

Or, lorsque l > 0,

^ i > -co-ia ~°°

Donc

| felXx'ldx\^ifelUdu w\
I -00

On verrait de même que

II

Ces résultats subsistent lorsque <0, I et II allant dans ce cas

vers + oo. Ils ont, comme conséquences, en tenant compte
de (7), les formules (3) et les inégalités (4a) et (46).

Pour démontrer (6), nous remarquerons qu'en vertu de (4a)

335

(5a)

(56)
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il suffit de l'établir sous l'hypothèse —1 < l < 1. Or, sous cette
hypothèse,

i(l4 m)/*cos Zw + w sin Zw
l — dw

1 + a2D.«> 'J V-nr- 2"'J
-a 0

Donc,

Or,
a oo

cos Zw C duI r cos Zw c
\)YTü*du \ < J 11 + w2 2 '

a a

J w sin Zw I I r/w sin Zw sin Zw\^ I I rsin
1 + w2

U I - I J \1 + W2 u
U I I J w

Mais

I (v^n4_!Ln_i_"UJ 11 r
I j \i + u2 u I I J

"sin Zw du <2

0

et

lu 1 +

si'i/rfp-i'iïiï
a al -

I fsin lu I I r\sin w _
I fsin w

I

u
I IJ T" I ~7_ 71 '

w

Il existe donc une constante M vérifiant (6).

c) Nous aurons encore à nous servir plus loin des relations

l-ioo

qui se vérifient aussi en appliquant le théorème des résidus aux
contours d'intégration considérés plus haut et en passant à la

limite a — oo Remarquons que l'intégrale du premier membre

de (8) est absolument convergente.
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§ 3. Le potentiel de Vellipsoïde.— Soit E l'ellipsoïde

2XXX-* + -! +-U1a a a a12 3

rapporté à ses axes. Si £= (£1? £3) es^ un P0^ arbitraire et
si p2 — (% — £i)2 + (x2 — Ç2)2 + 0r3 — Ç3)2 est le carré de la
distance des points x et Ç, la valeur au point E, du potentiel
newtonien de l'ellipsoïde E supposé rempli d'une masse de

densité constante est proportionnelle à l'intégrale de volume

v V(Ç) f— (10)
J p
E

où dx représente l'élément de volume dx± dx2 dx3 au point
x (^i, ^25 #3) 8- Le calcul de V par la méthode usuelle de la
réduction de l'intégrale multiple à l'itération d'intégrales simples
échoue ici parce que les limites d'intégration des intégrales
simples qui se présentent ne sont pas fixes, mais sont des fonctions

de nature compliquée. La méthode du facteur de discontinuité

due à Dirichlet consiste précisément à remplacer ces

limites d'intégration variables par des limites fixes en multipliant
la fonction à intégrer par une expression égale à 1 à l'intérieur
et égale à 0 à l'extérieur du domaine d'intégration. La formule (3)
donne une expression de cette nature pour le domaine E si on
définit l par 9

X*

oc*

X X
1 + + (11)2 1 2

CL OL CL
11

Nous aurons donc, d'après (3) et (2),

=/^=rH3 R3

2tt i\ f—Lïdx fi lim D (12)J P J p a-* oo
^

s Remarquons une fois pour toutes que dans tout ce qui suit le fait que s'annule
au point \ ne crée aucune difficulté. En introduisant des coordonnées polaires de centre S

on se rend compte que toutes les fonctions que nous aurons à considérer sous le signe
intégrale sont continues à l'intérieur du domaine d'intégration transformé.

9 Pour simplifier l'écriture, nous laissons de côté les indices sous les symboles s
3 3

et n. s/ est donc S /y et n/ est donc II /v.
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où K3 représente l'espace entier. Nous supposerons d'abord que

le point l n'est pas sur la surface de l'ellipsoïde.
_

Nous allons montrer qu'il est permis de permuter dans la

dernière intégrale les symboles / et lim, ce qui donnera

A + ia, \

2 TtiV lim f ^a(l)dx lim fUf(13)

a-> oo «/ p UD„„ r \J /
H3 H3 M~ia

puis d'intervertir l'ordre des intégrations relatives à x et à X,

d'où résultera
l + ia / 7*. \

(14)2niY==}f X~i(fjdX)dl-
a->oo xi-ia

Pour légitimer ces deux opérations, il nous suffira de faire

voir que A+ia \Ji.J | e11X"1 dX\\dx(15)

H3
^

M-ja

est finie, ce qui assure en vertu du § 2 a) rexistence de rmte-

grale du second membre de (13) et le passage de (13) a (14),

puis d'établir que

lim f i[D(I) — T>a(l)]dx 0 (16)

i-v oo * ' Pa->oo

ce qui permet de passer de (12) à (13).

Pour démontrer que (15) est finie, on remarque que

lim-i-Ss^l et que s|-2^2mSa:2
o-> oo p

lorsque _L désigne le plus grand des nombres «', <xa, a3. Il

existe donc une quantité positive p0 (qui dépend de Q telle que

l < — m p2 si P s= Po •

Gomme
1 +ia

f |tI
i-ia
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est finie, indépendante de x, on voit que (15) est égale à

N(a) Ç —dx
B3

Il suffit d'introduire un système de coordonnées polaires de

centre £, et de tenir compte de l'inégalité (17), pour constater

que cette intégrale a une valeur finie. Pour démontrer (16)

nous introduirons les ellipsoïdes auxiliaires E_s, Es définis par

E^:S|^1 —3; Es:S~^l + &* 0 < 3 < 1

et la couche

EÄ — E_s : 1 — 3 < 2^ < 1 + 3

Il est évident que le volume delà couche (Es — E_s) lend vers

zéro avec S. Prenant s > 0 arbitrairement petit, nous
déterminerons S par la condition que ce volume soit inférieur à z

et que le point \ soit hors de cette couche. Appelant K la sphère

de centre £ ét de rayon p0 suffisamment grand, nous décomposerons

l'intégrale (16) en quatre intégrales étendues aux domaines

E_s? Es-E__s, K — Es,

(46) montre que dans E_s, D.(Z) — Da(Z) tend uniformément

vers zéro avec ~, car l y reste compris entre 1 et une quantité

positive ne dépendant que de S, donc de s. (4a) montre de même

que D (l) —Da (l) tend uniformément vers zéro avec — dans

le domaine K — Es. Il existe par conséquent une quantité

ax > 0 telle que

| (f+ /)|[D»)-Da«]^
; E_S

En vertu de (6) et du choix de S

lyifDW-D
a(l)]dx

< s pour a > at

ES_E-S
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en désignant par d d(£, §) la borne inférieure des distances du

point E, a un point de (E§ — E_§). En vertu de (17) et de (4a)

et par introduction de coordonnées polaires de centre £, on a

I rlr 1 ^ r 2e! 1 2 e"?2
/I[D(D~D a(D]dx

'hs-ÏP H3-K H3-K

am J P a p0 m y m «j
°o

Il existe donc une quantité a2> 0 telle que

j J I[d(/) — Da(l)]dx j < s pour a > a2

K3-K

En résumé, pour a>ax + a2,

r.i[D (1) - Da(l)]dx
J p
H3

est en valeur absolue inférieure à 2 + 1^£, ce qui démontre

(16).
Pour calculer l'intégrale intérieure de (14)

A(X)«/>fd P
H3

nous utiliserons un artifice déjà employé par Dirichlet et qui

consiste à exprimer par une intégrale quadruple cette intégrale

triple. A cet effet, nous effectuons dans l'intégrale

r(s) J* e~uus~ldu

0

la substitution ut p2 et prenons ensuite s j, ce qui donne,

puisque r(|) Vtc,

i -4=r fe-^r^d(18)
p V«
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La fonction sous le signe intégrale dans (18) étant positive, il
est clair qu'en remplaçant ~ par (18) dans l'intégrale absolu;

ment convergente A (X) nous obtenons une expression

A(X) —f dx 2dt
v * -as i

dans laquelle nous avons encore le droit de permuter l'ordre
des intégrations. Par suite,

A(X) — \=Tfdtt2

v « i H3

0r'
IX—«p2x(l — —lS(* — W

L'intégrale absolument convergente f ea_tf? dx peut par consé-
H3

quent se calculer par itération d'intégrales simples dans lesquelles
les variables sont séparées

3 °° — \xf + 2t^x;

K3 i=i-

En utilisant la formule

/— B2

J e Aw2+2Bw^m _ y/^.eA (__ n < arg A < 7r)

— 00

qui se déduit de la formule connue

00

j e~u% du v:

— 00

on obtient
- —!î_\

» f A aS +Hx/
A(X) 7T / -dt

o Vrn0+A
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X^

u
Effectuons dans cette intégrale la substitution t

loo / £2 \ co / 12 \
A/1\ 71 C ^ TU r e\~:
A(X) y / j=du ^r / du

Vny/. + i Vny/.+i
On peut, en effet, comme le montre le théorème de Cauchy,
remplacer l'intégration le long du rayon (0, X oo par l'intégration

le long de l'axe réel positif. Par suite

1+ia 00

e \ **+uJ
: duV — lim fd-l eV

21 J * J n. A +ü1-ia 0 V ^ a2

Ici encore l'intégrale double

l+ioo 00

y- y1
^1~S'2+")

4 • n X2n
1-î» 0 V1

est absolument convergente, car

\ a.2+uj
M

e
1_2 —-—

e a2+u
<

x*ny/i+£|xpny/i + J îxpny/i+J

La permutation de l'ordre des intégrations est donc permise:

l+ioo
1 f* du f* /(* S«2+w)

37 / „ / j ——
TT 4 / 1 J «Ax/i + JLJy ^ a2 1-io

Or, d'après (8), l'intégrale intérieure a la valeur 27U^1 — S
E2

ou zéro selon que 1 — 2 „ est > 0 ou est < 0.^ a2 +' u ~ " ~
Il y aura donc, tout naturellement, deux cas à distinguer:

o ni
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1. Le point £ est à l'intérieur de l'ellipsoïde. Dans ce cas,

1 — S — est > 0 pour tout u > 0 et
oc2 + u r

1 — E -

•' Vi+?u
n1

2. Le point % est à l'extérieur de l'ellipsoïde. Dans ce cas,
£2

Saa + u
est une fonction décroissante de u si u > 0; la plus

grande racine de l'équation 1 — S
u

0 es^ positive.
Par suite

00 „ ^ S2 '
"

r a2 + u jY — -re I / du (20)J y1+.n
Uq

Nous ayons supposé dans nos calculs que le point £ n'était
pas sur la surface de l'ellipsoïde. Il serait facile d'adapter ies
raisonnements à ce cas. Mais il est inutile de le faire si on se

rappelle que le potentiel V V-(£) est une fonction continue
du point £ et si on remarque que les seconds membres de (19)
et (20) tendent vers la même valeur lorsque les points Ç tendent
vers le même point de la surface, car u0 devient alors nul.

En résumé donc, le potentiel de l'ellipsoïde homogène (9)
au point X (?i, lz) est

+

\fv 7C / vgï + u_*
du (21)/ I A \

U \ f A 1
U \ f A < U>\

"0+l"ol y/
1 + ^2 | 1 + — | 1 +

u0 désignant la plus grande (algébriquement) des racines de
l'équation en u

Ç2 ü2 E2

* \ * 2,

a + u oc + u a + u '

§ 4. La démonstration de Mertens. — La démonstration de
Kronecker que nous venons d'exposer n'évite pas entièrement
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la considération d'intégrales non absolument convergentes.

L'intégrale D(Z), en effet, n'est pas absolument convergente
et ceci a nécessité dans le passage de la formule (12) à la
formule (14) une étude particulière. Mertens a montré comment,

par un artifice ingénieux, on peut éliminer complètement de

la démonstration toute considération d'intégrales non
absolument convergentes.

Il utilise à cet effet le facteur de discontinuité
l+ÎOO / rv 1 (\ï ell7rmd^=\ ' '

(22)
2rct J pn-i > 0

l—l oo
» * —

où m est un nombre réel supérieur à 1. Sous cette hypothèse, le

piemier membre de (22) est une intégrale absolument convergente.
La formule (22) peut s'établir en représentant par l'intégrale

de Fourier
00 oo

— r dteitx f edy
2 7T J J

— oo 0

la fonction égale à zéro si #<.0 et égale à si x > 0

et en tenant compte de la relation due à Euler
00

P e-(l+it)y m-i d r
J (i + ür

On peut aussi calculer le premier membre de (22) à l'aide du

théorème de Gauchy, par déformation du chemin d'intégration.
Si l < 0, le chemin d'intégration peut être remplacé par la
demi-droite (1, oo parcourue deux fois en sens contraire. Si

Z > 0, il peut être remplacé par un lacet partant de — go et y
revenant après avoir tourné une fois dans le sens positif autour
de l'origine. On peut alors exprimer par la fonction T l'intégrale
prise le long de ce lacet.

Pour obtenir des intégrales absolument convergentes, Mertens

ne calcule pas directement le potentiel V V (£) de l'ellipsoïde
homogène, mais celui d'un ellipsoïde où la densité au point x

est égale à Zm_1 « (^1 — \ (m> !)• Soit £) ce

potentiel

/jm-l-ydx (23).
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Y (m; £) est une fonction continue de m dans 1 < m < oo

Par conséquent
V(Ç) - lim y (m ; Q (24)

m-> 1 + 0

En introduisant dans l'intégrale absolument convergente (23)
le facteur de discontinuité (22), lui aussi absolument convergent,

on peut écrire

V(m;Ç) f ellXd},
2 ni J p J

K3 1 —i oo

et permuter l'ordre des intégrations dans cette intégrale multiple
absolument convergente. Donc,

_ l+ic»r (m) p dl "
Y {m ; Ç) ^ f re_Ldx

m2ni J ymj pxm ,/ p
1—ioo H3

A partir de cette formule les calculs se poursuivent comme au
§ 3, où nous avons déjà calculé l'intégrale intérieure. On obtient
alors

i+ico xO_v_JL_\
v, T(m) / du r e \ ~«*+u)

o n

L'intégrale relative à X se calcule à l'aide de (22). u0 ayant la
signification donnée au § 3, il vient alors

V(m ; Ç) * / ^
m J

Up+ \Uq\
2

L'intégrale du second membre étant uniformément convergente
relativement à m dans m>1, on peut y passer à la limit,p
m —* 1 + 0 en y prenant m1. On retrouve ainsi la
formule (21).
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