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324 VITO VOLTERRA

Alors en introduisant la fonction

<X> 2 ßr log Z + P

on peut mettre les équations fondamentales (3) sous la foi me

qui est la forme eulérienne des équations du calcul des variations.

L'importance de cette transformation consiste dans le fait

qu'elle relie la question de la lutte pour la vie à un problème

du calcul des variations.

Nous allons dire un mot en général au sujet de ce chapitre

de l'analyse.
Le calcul différentiel est né du problème des maxima et

minima des fonctions. Si une quantité variable est représentée

par une fonction dérivable on trouvera ses maxima et ses

minima en annulant sa dérivée. Mais il peut arriver que la dérivée

s'annule sans que l'on ait à faire ni à un maximum ni à un

minimum. On dit alors que la fonction est stationnaire.

C'est là le cas le plus simple, mais on peut avoir aussi à

chercher des maxima ou des minima de quantités qui ne dépendent

pas d'une ou de plusieurs variables, mais qui dépendent

d'une courbe variable. C'est ainsi que se présente le problème de

trouver la forme qu'il faut donner au profil d'un projectile pour

qu'il rencontre la moindre résistance dans l'air, ou la forme qu'il

faut donner à la courbe de descente d'un corps pesant pour que le

temps de la chute soit un minimum. Le calcul qui traite de ces

problèmes est le calcul des variations.

Or le problème général de la mécanique se réduit à un problème

du calcul des variations. C'est Lagrange qui l'a vu d'une manière

claire pour la première fois et le principe général correspondant

a été formulé sous sa forme définitive par Hamilton, d'où son

nom de principe de Hamilton.

d ô<D

dt à
(6)
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Mais de même que dans le cas simple des maxima et des

minima, où les équations qu'on trouve ne donnent pas toujours'
des maxima ou des minima, mais quelquefois des cas station-

naires, de même le principe de Hamilton correspond quelquefois

à des cas stationnaires.
Dans le calcul des variations c'est une intégrale qui doit être

rendue maximum ou minimum, ou en général stationnaire, et on

cherche les conditions correspondantes que doivent satisfaire

les fonctions figurant dans cette intégrale.
D'une manière analogue à ce que l'on a en Mécanique, dans

le cas de la dynamique démographique, la question peut être

reconduite à un problème de calcul des variations et de fait à

annuler la variation de l'intégrale

Lorsqu'on parle d'annuler la variation de cette intégrale, on

suppose que l'on fait varier infiniment peu les quantités de vie
de manière à obtenir une variation nulle de cette intégrale.
Cette proposition est démontrée par la forme eulérienne sous

laquelle se présentent les équations (6).
Dans ces derniers temps on a toujours eu la tendance à ramener

tous les problèmes qui se présentent dans la physique et plus
spécialement dans la nouvelle physique au principe de Hamilton
et nous voyons maintenant que même les lois démographiques
appartiennent comme les autres lois de la philosophie naturelle
à la même branche des mathématiques.

Je tiens à ajouter que le calcul des variations n'est que le

premier chapitre de l'analyse fonctionnelle. Cette analyse
embrasse donc, même à ce point de vue, une grande partie des

sciences de la nature, s'étend jusqu'à la théorie des populations,
à la lutte pour la vie et elle se relie aux problèmes de l'évolution
et du transformisme.

o

§ XV

Toutes les conséquences que l'on tiré en mécanique du principe

de Hamilton peuvent être transportées dans le domaine de
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