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ESPACES FIBRÉS. QUANTA. GROUPES

PAR

M. A. Buhl (Toulouse).

Je me permets d'extraire ici, de mes propres travaux, quelques

pages élémentaires qui, je l'espère, aideront à étudier les magnifiques

Conférences concernant la Topologie et publiées dans le

dernier volume de L'Enseignementmathématique.

J'ai des prétentions limitées. Ce qui suit ne se rapporte pas à

toutes ces Conférences mais plus particulièrement à celles de

MM. Elie Cartan et W. Threlfall.
Des deux côtés, soit par les systèmes de Maurer-Cartan, soit

par l'équation de Schrödinger, il y a quantification. Il ne faut

pas toujours prendre ce mot au sens de la microphysique.

Ii'Analyse considérera, de plus en plus, des équations ou des

systèmes d'équations contenant des paramètres et qui n'ont de

sens que pour certaines valeurs de ces paramètres ou pour
certaines relations établies ou à établir entre eux. On dira alors

que ces paramètres sont quantifiés. En d'autres termes, ^il y a

des valeurs qu'ils ne peuvent pas prendre et les théorèmes d'exclusion,

pour fonctions à valeurs interdites, théorèmes qui ont

entraîné tant de travaux et glorifié si éloquemment le nom de

M. Emile Picard, sont, eux-mêmes, des manifestations de

quantification.
Le présent article doit être considéré comme très réduit. Voici

quelques indications bibliographiques se rapportant à des

développements. Elles correspondent aux numéros mis entre

crochets dans le texte.

1. E. Cartan. Les espaces métriques fondés sur la notion d'aire

(Actualités scientifiques, fasc. 72, 1933).

2. A. Buhl. Tourbillons,Corpuscules, Ondes (Annales de la

Fac. des Se. de Toulouse, 3, XXIV, 1932).

L'Enseignement mathém., 36me> année, 1937.
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3. A. Buhl. Gravifiques, Groupés, Mécaniques (Mém. des

Se. mathématiques, fase. LXII, 1934).
4. A. Buhl. Structures analytiques et Théories physiques (Mém.

des Sc. \ physiques, fase. XXII, 1933).
5. F. G.-M. Exercices de Géométrie (J. de Gigord, Paris, 1912).

Voir p. 940.
6. E. Cartan. Repère mobile, Groupes continus, Espaces

généralisés (Act. scientifiques, fase. 194, 1935).
7. A. Buhl. Groupes continus (Mém. des Se. mathématiques,

fase. XXXIII, 1928).

En outre, dans le Tome I de Nouveaux Eléments d'Analyse
(Gauthier-Villars, 1937), actuellement publié, on retrouvera
les questions ci-après sous forme didactique et avec tous les
développements pédagogiques nécessaires. Ces Nouveaux
Eléments sont d'ailleurs une extension du Cours que je professe à la
Faculté des Sciences de Toulouse.

1. Espaces à canaux. — Ainsi que dans tous nos travaux de
Géométrie et de Physique théorique, nous partons de l'identité

JxdY j'JdXdY (1)

qui exprime, de deux manières, l'aire A de frontière C. Le point
de vue est analogue à celui de M. Elie Cartan fondant une
Géométrie sur la notion d'aire [1].

Un changement de variables, dans (1), donne la formule de
Green-Riemann

U dM + Y dN I If/(!ï-£})««• 121

Si M M(#, ?/, z), N N (#, y, z), avec z appartenant à une
surface a, cette formule (2) se change en

a ß y.

J'üiM+V« ôN/
Mx MyMz

N N Nx y z

de (3)

les indices x, y, 2 indiquant des dérivations partielles.
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Cette formule se rapporte à ce que j'ai appelé d'abord un

espace à canaux [2], [3]. Un canal élémentaire a une section

quadrilatérale. Sur ses faces latérales, M, N, dM, dN sont des

constantes.

Il y a là, déjà, une analogie avec les espaces fibrés de

M. W. Threlfall, les fibres n'étant pas toujours les canaux mais

pouvant être les variétés (ici les surfaces) qui les constituent.

Les canaux se réunissent en faisceaux à section transversale

finie. Toutes les sections transversales relatives à un même

faisceau sont dites en projection canale l'une par rapport à

autre; pour toutes ces sections, l'intégrale double de (3) est

invariante.
Soit un canal élémentaire contenant transversalement da

(en x,y, z)et dë (en X, Y, Z), les cloisons finies et S étant,

comme leurs éléments da et dS, en projection canale. En posant,

pour abréger,
dOU

A (M, N) ÔM —âN '

on peut écrire, pour les deux valeurs égales de AdMdN, consi-

dérées en da et en rfS,

A (M N)

a ß

]VL M..

Nx N,

Y

Mz

N.

A(M,N)- 0(X, Y, Z)

<D <D
Y

Mx Mr Mz

N, NT NZ

0(X, Y, Z)rfS

+ < + ©:

La cloison S a pour équation O (X, Y, Z) 0. Posons

©(/ + <ï>; + ®2Z

Y ®z i
\

' A (X, Y, Z)

Mx my Mz j AU®, M, N) (4

Nx ny Nz
^

At(0 M, N) sur S

puis, pour déterminer A (M, N),

A (M, N) Aj (0 M N) 1

C'est le moyen d'avoir définitivement

J>"s i'J Mx My Mz

Nx Nz

da
Aj(0, M, N)

(5)

(6)
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Mais, si ce résultat a été obtenu avec la cloison S, d'équation
<J> 0, il le sera tout aussi bien avec une infinité d'autres
surfaces <ï> 0, la fonction O (X, Y, Z) satisfaisant à l'équation (4)

construite avec A^ff», M, N) pour second membre. Il y a une

infinité de fronts d'ondes intégraux situés transversalement dans

le faisceau de canaux considéré et y propageant, avec

l'intégrale double, en ®dS, de (6). Le faisceau de canaux peut
être décomposé en faisceaux partiels aussi filiformes qu'on le

voudra et, dans chaque faisceau partiel, on peut considérer un

front d'onde correspondant à une fonction <D différente d'où,

de canal à canal, un émiettement corpusculaire dont chaque

corpuscule ne cesse d'être piloté par un front d'onde.

Voyons maintenant comment tout ceci peut être mis en relation

avec l'équation de Schrödinger. Posons

' 2F 2 A(M N) (MyMz—MzNy)

\ 2 G 2 A (M, • M.VN;1 (7)

2H 2 A(M N){MxMy — MyNx) uvz — vuz

Si l'on forme la divergence identiquement évanouissante

d'après les expressions en M et N données par les relations (7),

on voit que c'est cet évanouissement qui permet la formule (3),

dont l'intégrale double peut alors s'écrire

et qui permet, de même, tous les raisonnements qui suivent.

Essayons maintenant d'obtenir (8) avec les derniers membres

des relations (7). On aura immédiatement

si A est le laplacien à trois variables. Or ceci peut encore s'écrire

Fx+ Gy + 0 '

u Ac — v Au 0

u(Av + Q>v) — p (A m + £lu) — 0
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en désignant par Q une fonction donnée Q (x, qui est,

pour u et c, un simple coefficient.' Donc, si et e sont deux

solutions distinctes de l'équation de Schrödinger

At + ßt 0 :
(9)

on pourra former les derniers membres de (7), puis determiner

des fonctions M et N, toujours d'après (7), et l'on associera ainsi,

a l'équation de Schrödinger (9), des canaux propagateurs pour

les fronts d'ondes transversaux qui transportent des integrales (b)

invariantes. Cette détermination des fonctions M et N se présente

très simplement; ce sont deux intégrales distinctes de l'équation

F06 + G00 + H'-9 0
dx ày àz

(10)

et leur détermination laisse indéterminée la fonction A (M, N)

qui devra finalement être déterminée par (5).

Remarquons que les équations (8) et (10) peuvent s'écrire

respectivement

AF + Ag + Ah o
dx- ày oz

fA + GA + HA o
àx ày àz

Elles sont constituées toutes deux avec les mêmes opérateurs

non permutables et cependant permutés. Nouvelle raison de

considérer qu'une détermination de canaux est un scheme

fatalement associé aux théories reposant sur l'évanouissement

d'une divergence.
Lorsque les canaux sont déterminés, la recherche des ondes

intégrales transversales, dépendant jusqu'ici de 1 équation (4),

peut être considérablement généralisée. On peut, dans le second

membre de (4), remplacer Ax (O, M, N) par une fonction qui

contiendrait les constructions les plus diverses en O, par exemple

des dérivées partielles en O jusqu'à un ordre quelconque, sous

la seule réserve que la nouvelle fonction Ax, pour 0 0, se

réduirait encore à Ax (0, M, N).

Bref, il y a des propagations, à la fois ondulatoires et

corpusculaires, qui peuvent notamment dépendre d'équations aux

dérivées partielles d'ordre quelconque; c'est dire combien il est

vain d'imaginer quelque représentation physico-géométrique
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qui, pour de telles propagations, aurait quelque chose d'unique
et de définitif.

Il faut considérer aussi que l'équation de Schrödinger (9)
n'est pas véritablement unique. La fonction Q, admet différentes
formes dépendant de différentes valeurs d'une constante; en
d'autres termes cette fonction Q est quantifiée. Il y a évidemment

des quantifications correspondantes dans l'espace à canaux
et dans les ondes plus ou moins corpusculaires qui s'y
transportent.

Tout ceci paraît appartenir à une science assez élevée. Mais il
est précisément fort remarquable qu'on puisse, avec la théorie
des espaces à canaux, descendre vers une science élémentaire et
très ancienne. Celle-ci ne sera pas d'un secours négligeable pour
remonter ensuite vers les cas modernes.

Ainsi soit une sphère S, un cylindre circonscrit C et un diamètre
D de S parallèle aux génératrices de C. Tous les conoïdes,droits,
de directrice rectiligne D et de génératrices perpendiculaires à D,
propagent l'aire sphérique jusqu'à son application invariante
sur C. Que l'on fasse glisser la sphère S dans le cylindre C, les

canaux conoïdaux restant invariables et immobiles, et l'on
assistera à la propagation des aires sphériques dans ces canaux.
Ces résultats étaient connus d'Archimède et donnent lieu, en
particulier, à la figure qui fut gravée sur le tombeau de l'illustre
géomètre.

On peut généraliser ce résultat pour une quadrique quelconque
et établir notamment que toutes les associations Taires planes
peuvent se transporter sur une quadrique par procédés algébrico-
logaritkmiques [2], [4].

Voici encore un bel exemple de canaux fibrés circulairement,
exemple qui m'a été signalé par M. P. Delens.

Toute surface sphérique ABC... se projette, en vraie grandeur
A'B'C'..., sur un cône circonscrit à la sphère, lorsque chaque point
A, B, C, est projeté, sur la surface conique, en A', B', C',

par des arcs de cercle AA', BB', CC', ayant pour centre le sommet

S du cône circonscrit [5].
De tels exemples doivent évidemment donner l'idée de toute

une géométrie concernant la propagation des aires, géométrie
déjà notablement développée dans les publications citées. On
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passe immédiatement, de là, à la propagation de masses, de

charges, etc., sur fronts d'ondes intégraux susceptibles de se

corpusculariser dans des canaux aussi filiformes qu'on le voudra.
Certes, ceci est trop géométrique pour représenter les véritables

propagations ondulatoires et corpusculaires du monde
microcosmique. Mais c'est une théorie d'approche, très simplifiée et
mise en relation, comme la théorie véritable, avec les groupes
et l'équation de Schrödinger.

2. Quantification. Les précédentes allusions à la quantification

portent à revenir à cette question en commençant non pas

par les cas difficiles envisagés en Mécanique ondulatoire mais
en recherchant des formes mathématiques simples incluses dans

quelque définition générale.
On peut dire que des équations, des systèmes, des formules,

contenant des paramètres, présentent un phénomène de
quantification quand ces équations, ces systèmes, ces formules ne sont
vérifiées ou vérifiables que pour certaines valeurs (dites valeurs
quantiques) des paramètres en question.

Ou encore lorsque la vérification ne peut avoir lieu que pour
certaines relations, établies ou à établir, entre les paramètres
considérés.

Ainsi ce serait un problème quantique que de rechercher une
fonction égale à sa dérivée ; la fonction ex ne satisfait à la question
que pour une valeur déterminée de e. Et ceci est peut-être très
naturellement d'accord avec le rôle extrêmement important que
joue jusqu'ici l'exponentielle dans les problèmes quantiques les
plus élevés.

Revenons à (1) et à la formule de Stokes (2), étendue au cas
de n variables, pour un système de n formes de Pfafî linéaires.
C'est considérer l'identité

r « r r fàH à^\J.Pi&i jj •
' («)

C'est une question immédiate, simple et absolument fondamentale,

pour d'immenses théories (dont la Théorie des groupes de
Lie) que de rechercher si la forme de Pfafî du second ordre, placée
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sous l'intégrale double, est toujours absolument nécessaire, si

elle ne pourrait pas être remplacée par des combinaisons linéaires,
à coefficients constants, des formes placées sous l'intégrale
simple. En d'autres termes, peut-on avoir

/ P? dx- ,,ff(P?dXj)(PZdxk), (12)

les c à trois indices étant des constantes. Il faut, pour cela, que

(13)
dxh rk

1

Tel est le système de Maurer-Cartan [6], [7]. On voit combien

il naît simplement, immédiatement avec la notion de forme

différentielle elle-même.
Or ce système, tout comme l'égalité (12), sont à ranger dans

les formules quantiques. On a d'abord évidemment

rs 4 - cs 0
mn * nm

(14)

D'autre part l'identité
d ö d
1̂I'D àxk

à ô à

dxi dxj dxk

n V8-
J K

0

après - quelques transformations appuyées sur (13) et quelques

permutations d'indices de sommation, se résout en

jn s i m s m s
csi cjk ^ csj ^ sk. cvcsk ij 0 (15)

La question considérée, l'égalité (12), le système de Maurer-

Cartan (13), n'ont de sens que si les constantes csmn satisfont aux
conditions (14) et (15).

Considérons maintenant des formes linéaires aux dérivées

partielles telles que

X,(/) h àf
'ikdi

(16)
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les variables xk étant les mêmes que précédemment. Les opérateurs

Xi ne sont pas permutables mais on sait que l'expression

(W
ne contient que des dérivées partielles du premier ordre. On a
aussi Videntité de Jacobi

X, X,. X,

X, X. X,

Xi X. xfe

0

à développer sous la forme

(X.IX.X,)) + (X^X.X,)) + (X,(X,X.)) - 0

Supposons maintenant des formes Xi? telles que

(XiX,.) 4Xs (17)

les c à trois indices étant des constantes. On voit immédiatement
que ces relations (17) ne peuvent avoir lieu que si les relations (14)
et (15) ont lieu, les égalités (15) se déduisant alors de l'identité
de Jacobi.

Voici donc deux théories, celle des formes de Pfafî

TT* P? dx, (18)

et celle de certains opérateurs (16), théories qui, au premier
abord, ne se ressemblent guère et qui cependant n'existent
qu'avec les mêmes conditions quantiques. Il doit y avoir, de
ce fait, un rapprochement possible entre elles, une synthèse qui
les réunit. Cette synthèse est la Théorie des groupes de Lie.
Il n'y a sans doute pas de manière plus brève d'imposer celle-ci
à l'attention.

A la notion (18) joignons celle de la dérivation extérieure qui
permet d'écrire (11)

-j'j-
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Alors le système de Maurer-Cartan (13) est à remplacer par

M' + Cnlnm*nl 0 (19)

le produit des facteurs entre crochets devant être un produit
extérieur,dans lequel

dXjdxk— dxkdXj 0

A remarquer que, dans (13), on a réuni, dans le premier
membre, le coefficient de dxjdxk au coefficient de Il faut
faire de même pour le second. Ce faisant, on conserve au complet
le jeu des indices de sommation m et n; il faut donc affecter le
second membre de (13) du diviseur 2.

Remarque analogue pour (19). Si, de plus, on change le signe de
toutes les constantes csmn, le système de Maurer-Cartan (19) prend
bien la forme (6) donnée, dans le volume précédent (p. 193), parM. Cartan. Ce léger désaccord de notations provient de ce qu'ici,
nous nous sommes permis de conserver celles de notre fascicule [7],
On trouvera aussi, dans ce fascicule, tous les développements
nécessaires quant à la recherche des formes de Pfaff satisfaisant
à un système de Maurer-Cartan de structure donnée.

3. Transformations pfafßennes. — Reprenons la notation (18)
et un système d'égalités, entre formes différentielles, tel que

0>s (y) (20)

Il y a autant d'équations que de variables x et de variables y.Dans ces conditions, les équations (20) peuvent-elles être ira
grables, de manière à équivaloir à des relations finies entre les x
et les y, relations qui seraient celles d'un véritable changement
de variables

Si l'on pouvait transformer ainsi

| ws
«/
G

on devrait pouvoir transformer de même

J'jVj' » J-jVr
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et rien n'indique, en général, qu'on puisse le faire, à moins que,
précisément, les formes ©s et cos ne soient solutions du système
de Maurer-Cartan (19), car alors nos deux dernières intégrales
doubles pourraient s'écrire respectivement

et
s s"

ce qui permettrait de les transformer immédiatement l'une en

l'autre d'après (20). Bref le système de Maurer-Cartan (19)
est condition d'intégrabilité pour un système (20); il doit être
vérifié lorsqu'on y remplace iz par w et par oo. A remarquer cette
intervention de deux solutions du système de Maurer-Cartan (20) ;

elle est à rapprocher de l'intervention de deux solutions de

l'équation de Schrödinger (9) dans la construction d'espaces à

canaux dépendant d'une telle équation.
Mais, ceci dit, considérons un système

6DS (x) Ws(z) (20 a)

avec w dans les deux membres. Si l'on y remplace les z par de

nouvelles et quelconques variables ?/, il prend la forme (20) et cette
transformation des z en les y fait écrire

®*(z) 0%)

ce qui, au nom des variables près, est précisément (20). Donc, à
des changements de variables près, (20) et (20 a) sont équivalents.

4. Groupes de Lie. — La notion de groupe correspond à la
coexistence des systèmes

H fi(xi, x2, xn ; ax, a2, ar) (21)

xi » ••• h » h ••• i br) (22)

Xi f%{x1 5 X2 •> ••• •> Xn j C1 c2 ••• Cj-) (23)

et
C. ç.fo, a2, ar ; br) (24)
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Egalons les seconds membres de (22) et (23). De

/v (*'>.*) /v (X * 0)

en traitant les a:, les a et les c comme des variables indépendantes,
on déduit

Ô/V ô/ dfc.
—, A—' 0
Ô£. db{ àat

De même (24) donne

àbi ddt

On peut tirer de là les dérivées des b par rapport aux a et les
porter dans le système précédent, d'où

' (25)

Le calcul brut semble donner des oél fonctions des a et des b
et des fonctions des x' et des b mais (21) doit donner une
vérification de (25) sans b. Aussi, finalement, les cûl peuvent-ils
s'exprimer rien qu'avec des a et les Ç^(x') rien qu'avec des x'.
Il faudrait maintenant, en s'appuyant sur

àx- bx- da, da,
^ v t ?£ l y* / /\

établir aussi que

(26)
"m

les ß3m ne s'exprimant qu'avec des b. Dès lors, on aurait

oûl(d)ddt ßiw(6)döm

d'où, avec la notation employée en (20),

(a) (27)
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On est ici forcément conduit à considérer un changement de

variables, entre les a et les b, défini par un système différentiel (27)
du type (20), système qui doit être intégrable du fait que les formes
né et of satisfont à un système de Maurer-Cartan (19) qui, lui,
n'existera qu'avec des relations de structure (14) et (15) entre les

constantes cjmi.
Et Vintégration de (27) donnera (24), les r paramètres étant

introduits par cette intégration.
Voilà les deux phrases essentielles. Les bien comprendre,

c'est être à même de comprendre toute la suite. Ces deux phrases
contiennent les trois théorèmes fondamentaux de Lie dans un
ordre qui n'est pas celui où l'illustre créateur les a placés.

Le point de vue moderne, celui de M. Elie Cartan, qui semble
être de beaucoup le plus profond, consiste à partir d'une structure
déterminée. Il y a des constantes de structure satisfaisant aux
relations (14) et (15); c'est le troisième théorème de Lie, à base
purement algébrique.

Quand on possède un système de constantes structurales
déterminées, on peut écrire le système de Maurer-Cartan (19)
et chercher à en tirer les deux solutions particulières qui permettent
les équations de définition (27) lesquelles permettent (25) et (26),
ces dernières exprimant le premier théorème de Lie. L'intégration
de (27) conduira à (24), c'est-à-dire aux deux groupes
paramétriques ou à l'espace groupai à double connexion.

En outre, on n'oubliera pas que, les relations structurales
étant satisfaites, il existe aussi, entre opérateurs X$ à déterminer,
des relations du type (17). C'est le deuxième théorème.

Insistons encore sur l'éventualité d'avoir deux solutions
particulières du système de Maurer-Cartan (19) pour pouvoir écrire
le système (27); elle est analogue à l'éventualité, rencontrée plus
haut, d avoir deux solutions de l'équation de Schrödinger (9)
pour construire certains espaces fibrés. Dans les deux cas, il y a
quantification des équations en litige, l'équation (9) n'étant à
considérer généralement que pour des formes quantiques de Q
tout comme le système (19) qui exige des valeurs spéciales pour
les constantes de structure csmn.

Naturellement, on doit pouvoir remplacer le système (27) par
un système

&J{a) oé(b) (27 a)
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tout comme on a remplacé (20) par (20 a). C'est aboutir aux équations

de définition réindiquées, par M. Elie Cartan, à l'endroit
précité.

Cette construction des groupes de Lie, par des intégrations
évidemment de nature analytique, leur donne tout naturellement

un caractère analytique ayant même un substratum algébrique

puisque le système structural (14) et (15) est purement algébrique.
Toute cette analyticité est-elle indispensable à la coexistence

d'équations telles que (21), (22), (23), (24) Peut-être pas. Et
c'est ainsi que l'on arrive à se demander si tous les groupes
continus sont bien des groupes de Lie.

Les conférences topologiques qui précèdent répondent d'elles-

mêmes à une telle question. Elles généralisent formidablement
les notions différentielles, ce qui est évident maintenant et ce que
M. Yessiot écrivait à M. Bouligand en 1930. Voir, plus haut, page 10

du présent volume.
Or Sophus Lie ne s'est guère servi que des notions différentielles

classiques à la fin du siècle dernier. La topologie groupale doit donc

recouvrir son œuvre et aussi la déborder. C'est un nouveau titre
de gloire à ajouter à ceux, déjà si nombreux, de l'illustre géomètre

norvégien; car s'il ne nous avait point donné une œuvre extensible,
celle-ci n'aurait point été étendue.

Plus généralement les précédentes Conférences de Genève

semblent être d'une utilité de premier ordre. Elles ont rapproché
des géomètres du plus grand talent qui avaient cependant le léger

tort de ne point se connaître suffisamment. Lorsque nous avons

rendu compte, ici-même (31, 1932, p. 297), de la belle Kurventheorie

de M. Karl Menger, nous disions regretter de ne point trouver dans

ce livre le nom de M. Georges Bouligand. Mais, depuis, M. Menger

a bien réparé les choses. Voir, par exemple, notre précédent volume,

pp. 362 et 371.

Dans le présent volume (p. 5), M. Bouligand commence par
citer M. Menger. La conjugaison de telles productions est l'une

des formes les plus grandioses des progrès analytico-géométriques
de l'époque actuelle.
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