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ESPACES FIBRES. QUANTA. GROUPES

PAR

M. A. BurL (Toulouse).

Je me permets d’extraire ici, de mes propres travaux, quelques
pages élémentaires qui, je P’espére, aideront a étudier les magni-
fiques Conférences concernant la Topologie et publiées dans le
dernier volume de L’Enseignement mathématique. |

J’ai des prétentions limitées. Ce qui suit ne se rapporte pas a
toutes ces Conférences mais plus particulierement a celles de
MM. Elie Cartan et W. Threlfall.

Des deux cotés, soit par les systémes de Maurer-Cartan, soit
par I’équation de Schrédinger, il y a quantification. Il ne faut
pas toujours prendre ce mot au sens de la microphysique.
1’Analyse considérera, de plus en plus, des équations ou des
systémes d’équations contenant des paramétres et qui n’ont de
sens que pour certaines valeurs de ces paramétres ou pour
certaines relations établies ou & établir entre eux. On dira alors
que ces parametres sont quantifiés. En d’autres termes, il ya
des valeurs qu’ils ne peuvent pas prendre etles théoremes d’exclu-
sion, pour fonetions & valeurs interdites, théorémes qui ont
entrainé tant de travaux et glorifié si loquemment le nom de
M. Emile Picard, sont, eux-mémes, des manifestations de
quantification. | A

‘Le présent article doit étre considéré comme trés réduit. Voici
quelques indications bibliographiques se rapportant a des
développements. Elles correspondent aux numéros mis entre
crochets dans le texte.

1. E. CARTAN. Les espaces méiriques fondés sur la notion d’aire
(Actualités scientifiques, fasc. 72, 1933).

2. A. BunL. Tourbillons, Corpuscules, Ondes (Annales de la
Fac. des Sc. de Toulouse, 38, XXIV, 1932).

L’Enseignement mathém., 36™e année, 1937.
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3. A. BuHL. Gravifiques, Groupes, Mécaniques (Mém. des
Sc. mathématiques, fase. LXII, 1934).

4. A. BunL. Structures analytiques et Théories physiques (Mém.
des Sc.\physiques, fasc. XXII, 1933).

5. F. G.-M. Ewxercices de Géoméirie (J. de Gigord, Paris, 1912).
Voir p. 940.

6. E. CARTAN. Repére mobile, Groupes continus, Espaces
généralisés (Act. scientifiques, fasc. 194, 1935).

7. A. BunL. Groupes continus (Mém. des Sc. mathématiques,
fasc. XXXIII, 1928).

En outre, dans le Tome I de Nouveaux Eléments d’Analyse
(Gauthier-Villars, 1937), actuellement publié, on retrouvera
les questions ci-aprés sous forme didactique et avec tous les
développements pédagogiques nécessaires. Ces Nouveauxr Elé-
ments sont d’ailleurs une extension du Cours que je professe a la
Faculté des Sciences de Toulouse.

1. Espaces a canauxr. — Ainsi que dans tous nos travaux de
Géométrie et de Physique théorique, nous partons de 1'identité

‘JQX iy — de iy (1)

qui exprime, de deux maniéres, l’aire A de frontiére C. Le point |
de vue est analogue a celui de M. Elie Cartan fondant une

Géométrie sur la notion d’aire [1].
Un changement de variables, dans (1), donne la formule de

Green-Riemann :
- 2 d |
J UdM + VdN = (f(g%mg—[ﬁ])deN . (2)
G N

Si M= M(z,vy,2), N= N(z,vy, z), avec z appartenant a une
surface o, cette formule (2) se change en

’\{ ’
oU

. « B v
e} el 6

JUdM+VdN:’{.<5—1\\£—W> M, My M, |45, (3)

> N, N, N, '

les indices z, y, z indiquant des dérivations partielles.
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Cette formule se rapporte a ce que j'ai appelé d’abord un
espace & canaux [2], [3]. Un canal élémentaire a une section
quadrilatérale. Sur ses faces latérales, M, N, dM, dN sont des
constantes. |

Il y a 13, déja, une analogie avec les espaces fibrés de
M. W. Threlfall, les fibres n’étant pas toujours les canaux mais
pouvant étre les variétés (ici les surfaces) qui les constituent.
Les canaux se réunissent en faisceaus a section transversale o
finie. Toutes les sections transversales relatives & un méme
faisceau sont dites en projection canale I'une par rapport a
Pautre; pour toutes ces sections, I'intégrale double de (3) est
invariante. .

Soit un canal élémentaire contenant transversalement do
(en z, y, z) et dS (en X, Y, Z), les cloisons finies ¢ et S étant,
comme leurs éléments do et dS, en projection canale. En posant,

pour abréger, -
oV  oU

AN, N = Sp TN

on peut écrire, pour les deux valeurs égales de AdMdN, consi-
dérées en do et en dS,
« B ¥y o, 0, O,

A(M, N) ®(X, Y, Z)dS

AM, N) | M, M, M, | do = (X, Y, 7) M, M, M,

| o + o + o
N, N, N, N, N, N, x T By T T

La cloison S a pour équation ® (X, Y, Z) = 0. Posons
. D, O, (A(X,Y,Z),
1 .
- — L R (4)
o) o + o + @ /
N, N, N, A, (0, M, N) sur s,

puis, pour déterminer A (M, N),
AM, N)A (0, M, N) =1 . (5)

C’est le moyen d’avoir définitivement

o By

’ do - |

®dS =”" M. M., M | .

U o | MO 18)
¢ - x Ny NZ




52 A. BUHL

Mais, si ce résultat a été obtenu avec la cloison 5, d’équation
® = 0, il le sera tout aussi bien avec une infinité d’autres sur-
faces ® = 0, la fonction @ (X, Y, Z) satisfaisant a I’équation (4)
construite avec A,(®, M, N) pour second membre. Il y a une
infinité de fronts d’ondes intégraux situés transversalement dans
le faisceau de canaux considéré et y propageant, avec invariance,
Pintégrale double, en @dS, de (6). Le faisceau de canaux peut
stre décomposé en faisceaux partiels aussi filiformes qu’on le
voudra et, dans chaque faisceau partiel, on peut considérer un
front d’onde correspondant & une fonction ® différente d’ou,
de canal 4 canal, un émiettement corpusculaire dont chaque
corpuscule ne cesse d’étre piloté par un front d’onde.

Voyons maintenant comment tout ceci peut étre mis en rela-
tion avec I’équation de Schrodinger. Posons

2F = 2AM, N) (M, M, — M, N ) = uo, — ouy |

; 2G = 2A M, N)(M,M, — M, N, = uo, — ou, | (7)
\

2H = 2A M, N)(M,M, — M Ny = wo, —ou,
Si I’on forme la divergence identiquement évanouissante

Fo+ G, +H, =0, (8)

d’apres les expressions en M et N données par les relations (7),
on voit que c’est cet évanouissement qui permet la formule (3),
dont Pintégrale double peut alors s’écrire

ff(ch + BG + yH)do ,

et qui permet, de méme, tous les raisonnements qui suivent. . §
Essayons maintenant d’obtenir (8) avec les derniers membres
des relations (7). On aura immédiatement

ulho —9oAu =0
si A est le laplacien & trois variables. Or ceci peut encore s’écrire

wlAp + Qo) —o(Au + Qu) = 0
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en désignant par Q une fonction donnee Q (z,y,2) qui est,
pour z et ¢, un simple coefficient.” Donc, si w et ¢ sont deur
solutions distinctes de I'équation de Schrodinger |

At 4+ Qr =0, (9)

on pourra former les derniers membres de (7), puis déterminer
des fonctions M et N, toujours d’apres (7), et on associera ainsli,
a Iéquation de Schrodinger (9), des canaux propagateurs. pour
les fronts d’ondes transversaux qui transportent des intégrales (6)
invariantes. Cette détermination des fonctions M et N se présente
trés simplement; ce sont deux intégrales distinctes de I’équation

00
ox

36 6
F +G~a7/+H—a—é__0 (10)
et leur détermination laisse indéterminée la fonction A (M, N)
qui devra finalement étre déterminée par (D).
Remarquons que les équations (8) et (10) peuvent s’écrire

respectivement

LI O =0, F6%+G%+Hb%=0.
Elles sont constituées toutes deux avec les mémes opérateurs
non permutables et cependant permutés. Nouvelle raison de
considérer qu’'une détermination de canaux est un scheéme
fatalement associé aux théories reposant sur I’évanouissement
d’une divergence. '

Lorsque les canaux sont déterminés, la recherche des ondes
intégrales transversales, dépendant jusqu’ici de Péquation (4),
peut tre considérablement généralisée. On peut, dans le second
membre de (4), remplacer A, (®, M, N) par une fonction qui
contiendrait les constructions les plus diverses en @, par exemple
des dérivées partielles en ® jusqu’a un ordre quelconque, sous
la seule réserve que la nouvelle fonction A, pour ® =0, se
réduirait encore & A, (0, M, N).

Bref, il y a des propagations, & la fois ondulatoires et corpus-
culaires, qui peuvent notamment dépendre d’équations aux
dérivées partielles d’ordre quelconque; c’est dire combien 1l est
vain d’imaginer quelque représentation physico—géoniétrique
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qui, pour de telles propagations, aurait quelque chose d’unique
et de définitif. 5

Il faut considérer aussi que I’équation de Schrédinger (9)
n’est pas véritablement unique. La fonction Q admet différentes
formes dépendant de différentes valeurs d’une constante; en
d’autres termes cette fonction Q est quantifiée. Il y a évidem-
ment des quantifications correspondantes dans I’espace & canaux
et dans les ondes plus ou moins corpusculaires qui s’y trans-
portent.

Tout ceci parait appartenir & une science assez élevée. Mais il
est précisément fort remarquable qu’on puisse, avec la théorie
des espaces & canaux, descendre vers une science élémentaire et
trés ancienne. Celle-ci ne sera pas d’un secours négligeable pour
‘remonter ensuite vers les cas modernes. |

Ainsi soit une spheére S, un cylindre circonscrit C et un diamétre
D de S paralléle aux génératrices de C. Tous les conoides.droits,
de directrice rectiligne D et de génératrices perpendiculaires & D,
propagent l’aire sphérique jusqu’a son application invariante
sur C. Que lon fasse glisser la sphére S dans le cylindre C, les
canaux conoidaux restant invariables et immobiles, et 1’on
assistera a la propagation des aires sphériques dans ces canaux.
Ces résultats étaient connus d’Archiméde et donnent lieu, en
particulier, & la figure qui fut gravée sur le tombeau de I'illustre
geometre. ,

On peut généraliser ce résultat pour une quadrique quelconque
et établir notamment que foutes les associations d’aires planes
peuvent se transporter sur une quadrique par procédés algébrico-
logarithmiques [2], [4].

Voici encore un bel exemple de canaux fibrés circulairement,
exemple qui m’a été signalé par M. P. Delens.

Toute surface sphérique ABC... se projette, en vraie grandeur
A'B'C’..., sur un cone circonscrit & la sphére, lorsque chaque point
A, B, G, ... est projeté, sur la surface conique, en A’, B', C/, ...
par des arcs de cercle AA’, BB', CC/, ... ayant pour centre le som-
met S du céne circonscrit [5].

De tels exemples doivent évidemment donner I'idée de toute
une géométrie concernant la propagation des aires, géométrie
déja notablement développée dans les publications citées. On
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passe immédiatement, de 13, & la propagation de masses, de
charges, etc., sur fronts d’ondes intégraux susceptibles de se
corpusculariser dans des canaux aussi filiformes qu’on le voudra.
~ Certes, ceci est trop géoméirique pour représenter les véritables
propagations ondulatoires et corpusculaires du monde micro-
cosmique. Mais c’est une théorie d’approche, trés simplifiée et
mise en relation, comme la théorie véritable, avec les groupes
et I’équation de Schrodinger.

2. Quantification. — Les précédentes allusions & la quantifica-

tion portent a revenir a cette question en commengant non pas
par les cas difficiles envisagés en Mécanique ondulatoire mais
en recherchant des formes mathématiques simples incluses dans
quelque définition générale.
. On peut dire que des équations, des systémes, des formules,
contenant des paraméires, présentent un phénoméne de quanti-
ficatton quand ces équations, ces systemes, ces formules ne sont
vérifiées ou vérifiables que pour certaines valeurs (dites ¢aleurs
quantiques) des paramétres en question.

Ou encore lorsque la vérification ne peut avoir lieu que pour
certaines relations, établies ou a établir, entre les paramétres
considérés.

Ainsi ce serait un probleme quantique que de rechercher une
fonction égale & sa dérivée; la fonction e* ne satisfait a la question
que pour une valeur déterminée de e. Et ceci est peut-étre tres
naturellement d’accord avec le role extrémement important que
joue jusqu’ici 'exponentielle dans les problémes quantiques les
plus élevés.

Revenons a (1) et a la formule de Stokes (2), étendue au cas
de n variables, pour un systéme de n formes de Pfaff linéaires.
C’est considérer l'identité

P Oy OP\
EJ L xi—fsf bxj bxh T 11) .

(’est une question immédiate, simple et absolument fondamen-
tale, pour d’immenses théories (dont la Théorie des groupes de
Lle) que de rechercher si la forme de Pfaff du second ordre, placée
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sous l'intégrale double, est toujours absolument nécessaire, si
elle ne pourrait pas étre remplacée par des combinaisons linéaires,
a coefficients constants, des formes placées sous l'intégrale
simple. En d’autres termes, peut-on avoir

[Prde; = &, | f (P das)) (P das) (12)
S

les ¢ & trois indices étant des constantes. Il faut, pour cela, que

0P  OP; g |
om; Oxh = am Py Py - 13)

Tel est le systéme de Maurer-Cartan [6], [7]. On voit combien
il nait simplement, immédiatement avec la notion de forme

différentielle elle-méme. .
Or ce systéme, tout comme I’égalité (12), sont & ranger dans
les formules quantiques. On a d’abord évidemment

S+ C%m = 0. A (14!

D’autre part 'identité

s 9_ ‘6
d 0 3 |—o,
o0x, bxj bxh
Pf Pg PZ

aprés: quelques transformations appuyées sur (13) et quelques |
permutations d’indices de sommation, se resout en

m .S m. s 3 m S __
Cgi Cip T CojChi T CerCyj = O - (15)

La question considérée, ’égalité (12), le systéme de Maurer- |
Cartan (13), n’ont de sens que siles constantes cj,, satisfont aux

conditions (14) et (15).
Considérons maintenant des formes linéaires aux dérivées |

partielles telles que

X;(f) = aika%{; ; | | | (16)
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les variables z;, étant les mémes que précédemment. Les opéra-
teurs X, ne sont pas permutables mais on sait que I’expression

(X X)) = X X, — X X,

ne contient que des dérivées partielles du premier ordre. On a
aussi 'tdentité de Jacobi

X, X; X,
X, X5 Xy 1 =0,
X; X5 X

a développer sous la forme
(Xa(X; X)) + (XX, X)) + (X,(X; X)) =
Supposons maintenant des formes X;, telles que

(X;X;) = ¢ X, , (17)
les ¢ & trois indices étant des constantes. On voit immédiatement
que ces relations (17) ne peuvent avoir lieu que si les relations (14)
et (15) ont lieu, les égalités (15) se déduisant alors de I'identité
de Jacobi.

Voici done deux théories, celle des formes de Pfaff

= P}dz; (18)

et celle de certains opérateurs (16), théories qui, au premier
abord, ne se ressemblent guére et qui cependant n’existent
qu’avec les mémes conditions quantiques. Il doit y avoir, de
ce fait, un rapprochement possible entre elles, une synthése qui
les réunit. Cette synthése est la Théorie des groupes de Lie.
I n’y a sans doute pas de maniére plus breve d’1mposer celle-ci
a Iattention.

A la notion (18) joignons celle de la derwatwn extérieure qui
permet d’écrire (11)

~ [ e = f o)
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Alors le systéme de Maurer-Cartan (13) est a remplacer par
[=%] + Crsnn[TCmTCn] =0, (19)

le produit des facteurs entre crochets devant étre un produit
extérieur, dans lequel

dz;dmy = — dgydz; ,  da} = 0 .

A remarquer que, dans (13), on a réuni, dans le premier -
membre, le coefficient de dx; dz;, au coefficient de dz, dz; . 11 faut
faire de méme pour le second. Ce faisant, on conserve au complet
le jeu des indices de sommation m et n; il faut donc affecter le
second membre de (13) du diviseur 2.

Remarque analogue pour (19). Si, de plus, on change le signe de
toutes les constantes c2_, le systeme de Maurer-Cartan (19) prend
bien la forme (6) donnée, dans le volume précédent (p. 193), par
M. Cartan. Ce léger désaccord de notations provient de ce qu’ici,
nous nous sommes permis de conserver celles de notre fascicule [7].
On trouvera aussi, dans ce fascicule, tous les développements
nécessaires quant 4 la recherche des formes de Pfaff satisfaisant
& un systéme de Maurer-Cartan de structure donnée.

3. Transformations pfaffiennes. — Reprenons la notation (18)
et un systéme d’égalités, entre formes différentielles, tel que

@°(z) = w°(y) . (20)

I1'y a autant d’équations que de variables z et de variables Y.
Dans ces conditions, les équations (20) peuvent-elles 8tre inté- -
grables, de maniére & équivaloir & des relations finies entre les x
et les y, relations qui seraient celles d’un véritable changement
de variables ? . ’

Si on pouvait transformer ainsi

j oS en ‘ S,
C T
on devrait pouvoir transformer de méme

. {7 e J Jror

—
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et rien n’indique, en général, qu’on puisse le faire, & moins que,
précisément, les formes @° et w® ne soient solutions du systéme
de Maurer-Cartan (19), car alors nos deux derniéres intégrales
doubles pourraient s’écrire respectivement

g [froma [ [,

ce qui permettrait de les transformer immeédiatement I'une en
I'autre d’aprés (20). Bref le systéme de Maurer-Cartan (19)
est condition d’intégrabilité pour un systeme (20); il doit étre
vérifié lorsqu’on y remplace = par @ et par w. A remarquer cette
intervention de deux solutions du systéme de Maurer-Cartan (20);
elle est a rapprocher de lintervention de deuz solutions de
Péquation de Schrodinger (9) dans la construction d’espaces a
canaux dépendant d’une telle équation.

Mais, ceci dit, considérons un systéme

0% (z) = @°(3) , (20 a)

i

avec @ dans les deux membres. Si 'on y remplace les z par de
nouvelles et quelconques variables y, il prend la forme (20) et cette
transformation des z en les y fait écrire

@*(z) = o (y)

ce.qui, au nom des variables prés, est précisément (20). Done, &
des changements de variables prés, (20) et (20 @) sont équivalents.

4. Groupes de Lie. — La notion de groupe correspond a la
coexistence des systémes

’

T = fil®y, Ty, ooy Ty 3 Ay, Gy, .., a,) (21)
" 4 4 ’

x; = filey, %, ..., Ty, 5 by, by, ..., b,) , (22)
/4

x; = [i(®, Xy, ooy 2,5 €, Gy e, c,) (23)

et ‘
‘ ci == (Pi(al’ az, ooy a,’. 5 bl’ bg, eey br) . . (24)
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Egalons les seconds membres de (22) et (23). De

L2, b =flx, ),

en traitant les z, les a et les ¢ comme des variables indépendantes,
on déduit |
of, dx; df, db,

o 0a; | 85, 0a,

De méme (24) donne

00, 0bi %9,
0b; 0a; ' Oa,

On peut tirer de la les dérivées des b par rapport aux a et les
porter dans le systéme précédent, d’ou

7

0% _ dlr
b_c;l = ol" & (z') . (25)

Le calcul brut semble donner des o fonctions des a et des b
et des &; fonctions des ' et des b mais (21) doit donner une
vérification de (25) sans b. Aussi, finalement, les of peuvent-ils -
s’exprimer rien qu’avec des a et les gii(z') rien qu’avec des '
Il faudrait maintenant, en s’appuyant sur

dz;  daz; da . 0a
= aa 55 = © a5 Gile)
db,,  da, db, 35, I
établir aussi que
| Ox; im ) »
abm‘_B g (2') (26)

les f™™ ne s’exprimant qu’avec des b. Dés lors, on aurait
ol (a)day, = BI™(b) db,,

d’ou, avec la notation employée en (20),

@ (a) = wl(b) . (27)
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On est ict forcément conduit & considérer un changement de
variables, entre les a et les b, défint par un systéme différentiel (27)
du type (20), systéme qut doit étre intégrable du fait que les formes
@l et o' satisfont a un systéme de Maurer-Cartan (19) qui, lui,
n’existera qu’avec des relations de structure (14) et (15) enire les
constantes c3,, -

Et Uintégration de (27) donnera (24), les v paramétres c; étant
introduits par cette intégration.

Voila les deux phrases essentielles. Les bien comprendre,
¢’est étre & méme de comprendre toute la suite. Ces deux phrases
contiennent les irots théorémes fondamentaux de Lie dans un
ordre qui n’est pas celui ou I'illustre créateur les a placés.

Le point de vue moderne, celui de M. Elie Cartan, qui semble
étre de beaucoup le plus profond, consiste & partir d’une structure
déterminée. Il y a des constantes de structure satisfaisant aux
relations (14) et (15); c’est le troisiéme théoréme de Lie, a base
purement algébrique.

Quand on posséde un systéme de constantes structurales
déterminées, on peut écrire le systéme de Maurer-Cartan (19)
et chercher a en tirer les deux solutions particuliéres qui permettent
les équations de définition (27) lesquelles permettent (25) et (26),
ces derniéres exprimant le premier théoréme de Lie. L’intégration
de (27) conduira a (24), c’est-a-dire aux deux groupes para-
métriques ou & espace groupal & double connexion.

En outre, on n’oubliera pas que, les relations structurales
étant satisfaites, il existe aussi, entre opérateurs X; a déterminer,
des relations du type (17). C’est le deuxiéme théoréme.

Insistons encore sur Péventualité d’avoir deux solutions parti-
culiéres du systéme de Maurer-Cartan (19) pour pouvoir écrire
le systeme (27); elle est analogue & ’éventualité, rencontrée plus
haut, d’avoir deux solutions de 1'équation de Schrodinger (9)
pour construire certains espaces fibrés. Dans les deux cas, il y a
quantification des équations en litige, I’équation (9) n’étant &
considérer généralement que pour des formes quantiques de €
tout comme le systéme (19) qui exige des valeurs spéciales pour
les constantes de structure ¢° .

Naturellement, on doit pouvoir remplacer le systéme (27) par
un systéme ‘

o (a) = @ (p) (27 )
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tout comme on a rerhplacé (20) par (20 a). C’est aboutir aux équa-
tions de définition réindiquées, par M. Elie Cartan, a I'endroit
précité.

Cette construction des groupes de Iie, par des intégrations
évidemment de nature analytique, leur donne tout naturellement
un caractére analytigue ayant méme un substratum algébrique
puisque le systéme structural (14) et (15) est purement algébrique.
Toute cette analyticité est-elle indispensable & la coexistence
d’équations, telles que (21), (22), (23), (24) ? Peut-étre pas. Et
c’est ainsi que 'on arrive & se demander si tous les groupes
continus sont bien des groupes de Lie.

Les conférences topologiques qui précédent répondent d’elles-
mémes & une telle question. Elles généralisent formidablement
les notions différentielles, ce qui est évident maintenant et ce que
M. Vessiot écrivait & M. Bouligand en 1930. Voir, plus haut, page 10
du présent volume.

Or Sophus Lie ne s’est guére servi que des notions différentielles
classiques & la fin du siécle dernier. La topologie groupale doit done
recouvrir son ceuvre et aussi la déborder. C’est un nouveau titre
de gloire & ajouter & ceux, déja si nombreux, de lillustre géométre
norvégien ; car 8’il ne nous avait point donné une ceuvre extensible,
celle-ci n’aurait point été étendue.

Plus généralement les précédentes Conférences de Genéve
semblent étre d’une utilité de premier ordre. Elles ont rapproché
des géometres du plus grand talent qui avaient cependant le léger
tort de ne point se connaitre suffisamment. Lorsque nous avons
rendu compte, ici-méme (31, 1932, p. 297), de la belle Kurcentheorie
de M. Karl Menger, nous disions regretter de ne point trouver dans
ce livre le nom de M. Georges Bouligand. Mais, depuis, M. Menger §
a bien réparé les choses. Voir, par exemple, notre précédent volume,
pp. 362 et 371. 1

Dans le présent volume (p. 5), M. Bouligand commence par
citer M. Menger. La conjugaison de telles productions est I'une §
des formes les plus grandioses des progrés analytico-géométriques
de Pépoque actuelle. ' 1
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