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399 VITO VOLTERRA

forme est définie et positive, 'association biologique est stable,
c’est-a-dire que I'association ne peut pas s’épuiser et aucune
des populations ne peut croitre indéfiniment. En outre, s’il
existe un état stationnaire, I’association biologique s’approchera
indéfiniment de cet état.

D’aprés les définitions que nous avons données, la valeur de
Passociation biologique ou son énergie actuelle est donnée par

V=L=> 8N,.

1 r

Dans un temps infiniment petit, ’augmentation de cette
valeur est constituée de deux parties

n n

n
°
dVy = ErsrﬁrNrdt ’ AV = — 21‘ ZspersNrdt .
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La premiére est due aux causes constantes d’accroissement
ou de diminution de chaque espece. La seconde est due aux
actions réciproques des individus des différentes espéces. Si
celle-ci est nulle, ’association s’appellera conservative. Les
associations biologiques conservatives sont justement celles
que nous avons étudiées d’abord. Elles sont des étres idéaux
dont la nature s’approche. Si la forme fondamentale est définie
et positive, les actions réciproques entre individus tendent a
diminuer la valeur ou ’énergie actuelle de l’association. Nous
dirons alors que I’association est dissipative.

La loi de la conservation de 1’énergie démographique n’est
plus vérifiée, car I’énergie totale diminue comme §’il existait
un frottement interne au sein de ’association.

§ XIII

Ayant indiqué les conséquences des intégrales, nous allons
établir d’autres principes qui nous rapprochent des theorles
classiques de la mécanique analytique.

Nous avons déja annoncé I’existence d’un principe de minimum
dont on aurait pu déduire toutes les lois de la lutte pour la vie.
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Nous allons maintenant I’établir. Pour cela, il faut employer
dN

les équations (3). N, étant la population d’une espéce, -~ est
.

son accroissement relatif élémentaire. Si nous faisons la somme
de tous ces accroissements élémentaires depuis I'existence d’un
individu jusqu’a ’existence de N, individus, nous trouvons

N, -
*dN

'/ F == IOgNr ;

0

On peut prendre comme mesure de Vaction vitale élémentaire
le produit |

B, logN, dX, = B, log N, N,dt = B, log X, - X\dt

et s1 nous ajoutons toutes les actions vitales élémentaires pendant
un intervalle de temps (0, ¢) nous aurons pour 'espéce r

t
(8, 1og N, - X,dt .
0

Si nous envisageons toutes les espéces de I’association Paction
vitale totale sera donnée par

t n S
A= [S8,1lgN, N,di .
0 1

Considérons maintenant la forme bilinéaire

) n n

~ ’
Z = Er ZS%XTXS ,
17

et le potentiel démographique P qui s’écrit (§ IX):

n
1
P = ;rgrerXr + 5 Z,.Z6, X, X

ou




324 VITO VOLTERRA

Alors en introduisant la fonction

n
—\ ’ ’ 1
o = %_JTBrXr log X, + 5%+ P

on peut mettre les équations fondamentales (3) sous la forme

480 30 _,, (6)

qui est la forme eulérienne des équations du calcul des variations.

L’importance de cette transformation consiste dans le fait
qu’elle relie la question de la lutte pour la vie & un probléme
du calcul des variations.

§ XTIV

Nous allons dire un mot en général au sujet de ce chapitre
de 'analyse. )

Le calcul différentiel est né du probléme des maxima et
minima des fonctions. Si une quantité variable est représentée
par une fonction dérivable on trouvera ses maxima et ses
minima en annulant sa dérivée. Mais il peut arriver que la dérivée
s’annule sans que Pon ait & faire ni & un maximum ni 4 un
minimum. On dit alors que la fonction est stationnaire.

(Vest 13 le cas le plus simple, mais on peut avoir aussl a
chercher des maxima ou des minima de quantités qui ne dépen-
dent pas d’une ou de plusieurs variables, mais qui dépendent
d’une courbe variable. C’est ainsi que se présente le probleme de
trouver la forme qu’il faut donner au profil d’'un projectile pour
qu’il rencontre la moindre résistance dans Pair, ou la forme qu’il
faut donner & la courbe de descente d’un corps pesant pour que le
temps de la chute soit un minimum. Le calcul qui traite de ces
problémes est le calcul des variations.

Or le probléme général de la mécanique se réduit & un probleme
du calcul des variations. C’est Lagrange qui I’a vu d’une maniére
claire pour la premiére fois et le principe général correspondant
a été formulé sous sa forme définitive par Hamilton, d’ou son
nom de principe de Hamilton.
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