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322 VITO VOLTERRA

forme est définie et positive, l'association biologique est stable,
c'est-à-dire que l'association ne peut pas s'épuiser et aucune
des populations ne peut croître indéfiniment. En outre, s'il
existe un état stationnaire, l'association biologique s'approchera
indéfiniment de cet état.

D'après les définitions que nous avons données, la valeur de

l'association biologique ou son énergie actuelle est donnée par

n
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Dans un temps infiniment petit, l'augmentation de cette
valeur est constituée de deux parties
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La première est due aux causes constantes d'accroissement
ou de diminution de chaque espèce. La seconde est due aux
actions réciproques des individus des différentes espèces. Si
celle-ci est nulle, l'association s'appellera conservative. Les
associations biologiques conservatives sont justement celles

que nous avons étudiées d'abord. Elles sont des êtres idéaux
dont la nature s'approche. Si la forme fondamentale est définie
et positive, les actions réciproques entre individus tendent à

diminuer la valeur ou l'énergie actuelle de l'association. Nous
dirons alors que l'association est dissipative.

La loi de la conservation de l'énergie démographique n'est

plus vérifiée, car l'énergie totale diminue comme s'il existait
un frottement interne au sein de l'association.

§ XIII

Ayant indiqué les conséquences des intégrales, nous allons

établir d'autres principes qui nous rapprochent des théories

classiques de la mécanique analytique.
Nous avons déjà annoncé l'existence d'un principe de minimum

dont on aurait pu déduire toutes les lois de la lutte pour la vie.
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Nous allons maintenant l'établir. Pour cela, il faut employer

les équations (3). Nr étant la population d'une espèce, est
r

son accroissement relatif élémentaire. Si nous faisons la somme
de tous ces accroissements élémentaires depuis l'existence d'un
individu jusqu'à l'existence de Nr individus, nous trouvons

/' 1 \TJn5" i°g Nr
o

On peut prendre comme mesure de Taction vitale élémentaire
le produit

ßr log Nr dXr ßr log Nr • Nrdt= ßr log X; • X>

et si nous ajoutons toutes les actions vitales élémentaires pendant
un intervalle de temps (0, t) nous aurons pour l'espèce r

t

f ß,. log Nr • X'rdt.0

Si nous envisageons toutes les espèces de l'association Taction
vitale totale sera donnée par

t n

A =/2M°gNr-Nrdî
0 1

Considérons maintenant la forme bilinéaire

z
1 1

et le potentiel démographique P qui s'écrit (§ IX):
n
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Alors en introduisant la fonction

<X> 2 ßr log Z + P

on peut mettre les équations fondamentales (3) sous la foi me

qui est la forme eulérienne des équations du calcul des variations.

L'importance de cette transformation consiste dans le fait

qu'elle relie la question de la lutte pour la vie à un problème

du calcul des variations.

Nous allons dire un mot en général au sujet de ce chapitre

de l'analyse.
Le calcul différentiel est né du problème des maxima et

minima des fonctions. Si une quantité variable est représentée

par une fonction dérivable on trouvera ses maxima et ses

minima en annulant sa dérivée. Mais il peut arriver que la dérivée

s'annule sans que l'on ait à faire ni à un maximum ni à un

minimum. On dit alors que la fonction est stationnaire.

C'est là le cas le plus simple, mais on peut avoir aussi à

chercher des maxima ou des minima de quantités qui ne dépendent

pas d'une ou de plusieurs variables, mais qui dépendent

d'une courbe variable. C'est ainsi que se présente le problème de

trouver la forme qu'il faut donner au profil d'un projectile pour

qu'il rencontre la moindre résistance dans l'air, ou la forme qu'il

faut donner à la courbe de descente d'un corps pesant pour que le

temps de la chute soit un minimum. Le calcul qui traite de ces

problèmes est le calcul des variations.

Or le problème général de la mécanique se réduit à un problème

du calcul des variations. C'est Lagrange qui l'a vu d'une manière

claire pour la première fois et le principe général correspondant

a été formulé sous sa forme définitive par Hamilton, d'où son

nom de principe de Hamilton.

d ô<D

dt à
(6)
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