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APPLICATIONS DES MATHEMATIQUES
' A LA BIOLOGIE!?

PAR

Vito VorTErrA (Rome).

§ I

Les fondements de la Science des nombres et de la Géométrie
_ appartiennent aux époques les plus reculées de la civilisation. Ils
ont donné une base aux études sur le mouvement des astres et se
sont introduits peu & peu dans toutes les branches de la Science.
. Les applications de la mécanique doivent leur développement
aux mathématiques et la statique des solides et des fluides était
déja trés développée dans la Science helléne. Tout le monde sait
quels admirables travaux avait accomplis Archimede dans le
domaine des études sur I’équilibre.

Ce n’est que beaucoup plus tard que les mathématiques
servirent de base & la dynamique. A la Renaissance, ’'usage des
artilleries étant devenu courant, il fallut étudier les mouvements
des projectiles et les lois de la chute des graves. Tartaglia,
Cardano, Cavalieri, Galilée, ont la gloire d’avoir fondé la balis-
tique. C’est en méme temps que naissaient et se développaient le
calcul infinitésimal et la dynamique.

Newton réduisit la théorie du systéme du monde & une grande
balistique et la dynamique générale qui fut fondée a cette
époque a abouti & la mécanique de Lagrange.

Le besoin de connaissances sur la résistance des matériaux

1 Lecon faite, le 17 juin 1937, dans la série des Conférences internationales des Sciences
mathématiques organigées par I’Université de Geneéve.

[’Enseignement mathém., 36me année, 1937. 20
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et sur la conductibilité de la chaleur donnérent plus tard naissance
a la théorie mathématique de 1’élasticité et a celle de la propa-
gation de la chaleur, alors que l'optique et I'acoustique avaient
eu 'occasion déja d’employer les méthodes mathématiques.
La thermodynamique et les principes de I’énergétique vinrent
aprés I'invention des machines a feu. Enfin 1’énorme développe-

ment de 1’électricité sous toutes ses formes et avec ses Innom- !

brables applications a la vie moderne, donna & la physique
mathématique son épanouissement actuel. ‘

C’est ainsi que les mathématiques ont pénétré dans le
domaine de la physique et ont contribué largement a ses
progrés. Le tour de la Chimie vint plus tard et Pon peut dire
qu’elle aussi, dans beaucoup de ses branches, fut aidée par les
mathématiques. Aujourd’hui un bon chimiste ne peut se passer
d’appliqier les mathématiques dans une foule de questions qui
se présentent tous les jours. C’est d’hier, enfin, que Phydro-
dynamique théorique a été renouvelée en vue des besoins créés
par la nécessité de parcourir les voies aériennes.

En biologie, on ne peut pas passer sous silence le fait qu’un
grand nombre de chapitres de la physique mathématique ont
été utilisés pour des questions de physiologie, de biochimie,
de thérapeutique, tout en restant liés & leurs méthodes propres
. et sans donner lieu & des branches nouvelles des mathématiques.

§ 11

Mais ce sont les idées de I’évolution qui, en se développant
dans diverses directions, ont le plus contribué & constituer une
nouvelle philosophie des Sciences naturelles. On est bien loin de
pouvoir poser des conclusions stires tant il y a d’objections, de
difficultés et de contradictions qui se sont accumulées & la suite
d’expériences, d’observations et de discussions. Ainsi tout ce
qui peut éclaircir méme quelques points particuliers de la théorie
est précieux.

Les théories statistiques, les études génétiques sur les popu-
lations, sur leur accroissement, sur Jeurs variations ont énormeé-

ment contribué dans ces derniers temps & ouvrir des nou-
veaux horizons et & faire pénétrer dans le fond des choses.




MATHEMATIQUES ET BIOLOGIE 299

Un des plus illustres statisticiens vivants, Raymond Pearl,
dans la préface & un récent ouvrage d’un naturaliste expérimen-
tateur, Gause, affirme qu’il'y a quelques années la sélection
naturelle semblait étre & son lit de mort, mais qu’elle s’en est
relevée en montrant une surprenante puissance de vie. Selon
Pearl, les écrits et les expériences de laboratoire, depuis 1859,
malgré de remarquables contributions d’auteurs célébres,
n’avaient pas abouti & des conclusions d’une grande portée,
mais l'attitude du monde scientifique aurait totalement changé
dans ces derniers temps. Ce changement dépendrait des
directions nouvelles dans lesquelles la Génétique s’est engagée
et du grand intérét actuellement éveillé par les études mathé-
matiques sur les populations ainsi que par la conviction que la
lutte pour la vie et la sélection naturelle rentrent dans la
dynamique démographique. |

Un mathématicien célebre dont nous regrettons la perte
récente, Karl Pearson, avait fondé en 1900 le journal Biometrica,
qui a obtenu un grand succes et a donné des résultats tres utiles.
Pearson avait reconnu depuis longtemps le role que les statis-
tiques devaient jouer, mais on ne I’avait pas assez écouté. Pearl
le déplore en constatant d’ailleurs que, pendant ces derniéres
années, les recherches mathématiques avaient fait progresser
les questions relatives au transformisme et & I’évolution plus
que ne l'avaient fait les travaux accomplis dans le demi-siécle
précédent, bien que pendant cette longue période les idées
darwiniennes aient eu plus de retentissement que toutes autres.
(’est ainsi que ces idées sont revenues a 'ordre du jour.

Nous allons exposer une suite de recherches destinées & éclair-
cir les bases de la théorie de la lutte pour la vie en donnant
leurs lois fondamentales 1. \

§ 111

Mais avant d’entrer dans les détails de ce sujet, je désire dire
quelques mots sur un chapitre général de Panalyse qui s’est
développé ces derniers temps, qui a eu déja des relations avec

1 Ppur la bibliographie, voir: VoLTERRA -et D’ANcona, Les associations biologiques
gu ﬁ)oznt de vue mathématique. Paris, 1935, Hermann (Actualités scientifiques et indus-
rielles).
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la biologie mathématique et qui est destiné dans l’avenir & en
avoir toujours de plus étroites. Nous aurons I'occasion d’en
parler au cours de cette conférence.

Les phénomeénes de la vie présentent un caractere particulier
dont il faut toujours tenir compte. A savoir I'influence notable
et souvent prépondérante du passé pour déterminer les réactions
dans le présent et I’évolution dans I'avenir.

En vertu de ce caractére nous dirons que dans ces phénoménes
il y a la mémoire du passé ou mieux encore nous parlerons du -
caractére historique des phénomeénes vitaux.

Des faits analogues se présentent aussi en dehors du monde
organique et constituent l’ensemble des phénomenes qui
prennent le nom d’hystéresis, de trainage, etc. et qui ont une
énorme importance dans la technique. Tous les ingénieurs
savent qu’un pont ressent des efforts qu’il a supporte dans le
passé et que dans les machines électrodynamiques le magnétisme
offre des phénomeénes notables de retard.

Dans le monde inorganique le terme hérédité a prévalu pour
les désigner, mais il aménerait des confusions avec le concept
d’hérédité qui est adopté en biologie. Peut-8tre vaut-il mieux
se rallier au terme phénomeénes historiques, tant dans le monde
organique que dans le monde inorganique.

Or, il v a une analyse mathématique pour traiter ces questions;
¢’est Vanalyse fonctionnelle. Bien probablement, celle-ci sera
destinée 4 jouer un role prépondérant dans les questions de
biologie mathématique. Jusqu’a présent elle a donné lieu a
quelques propositions et & un chapitre spécial de la théorie de la
lutte pour la vie.

§ IV

Mais revenons & I’exposé des nouvelles théories.

Elles se présentent.sous une forme extrémement systéma-
tique et qui est tout & fait comparable & celle qu’a adopté
depuis longtemps la dynamique analytique.

On peut, en effet, prendre pour point de départ des propo-
sitions simples et presque évidentes en les regardant comme des
postulats ou des af;iomes et procéder d’une maniére entierement
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déductive en obtenant des équations générales applioable§
- auplus grand nombre-des cas. Ces équations, de type différentiel,
se transforment et s’intégrent comme les équations de la méca-
nique et de la physique mathématique. Elles peuvent prendre
la forme canonique qui appartient aussi aux équations de la
mécanique céleste. On peut enfin les rattacker & un principe
général unique qui est celui qui se retrouve dans un trés grand
nombre de cas, comme principe souverain de la nature. C’est
le principe de minimum d’aprés lequel la nature agit toujours
de maniére a épargner le plus possible. Fermat 1’avait entrevu
comme base de la propagation de la Tumiére, Maupertuis comme
fondement de la mécanique et évoluant, aprés Hamilton, Jacobi
et d’autres savants, il est en train de pénétrer dans tous les
domaines de la philosophie naturelle. ,

Commengons par considérer le cas d’un nombre quelconque
d’especes animales vivant dans le méme milieu et supposons que
les individus de certaines espéces dévorent ceux d’autres espéces.
Nous laissons de coté le cas ou plusieurs espéces se disputent
la méme nourriture, cas qui est beaucoup plus simple que 'autre.
(Voir § XI.) | -

Pour fixer les idées on peut imaginer un cas réel d’animaux
carnivores qui se nourrissent d’animaux herbivores tandis que
ceux-ci se nourrissent de plantes. On peut supposer que les
trois espéces animales et végétales vivent dans une ile séparée
du reste du monde.

Un autre cas pratique fréquent est celui d’insectes nuisibles &
certaines espéces végétales et d’autres insectes qui détruisent
les premiers.

Si une espéce est seule, 'on peut prendre comme équation qui

représente sa multiplication, 1’équation % = e¢N ou N désigne

le nombre des individus ou la population et ¢ le coefficient
d’accroissement. Si celui-ci est positif, on a un accroissement réel
de Pespéce, s’il est négatif, on a au contraire un épuisement.
Cette équation exprime la loi malthusienne (fig. 1 et 2). On peut
prendre le coefficient constant si les conditions-de vie sont telles
que la nourriture ne vient jamais a manquer ou & subir des
perturbations. ‘

Son intégrale est N — Noest ou N, est la valeur de N pour
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t = 0. Si au contraire les conditions de vie sont affectées par
Paccroissement de 1'espéce, alors il faut diminuer le coefficient

Fig. 1.

Croissance libre d’une espéce
(courbe exponentielle croissante).

Fig. 2.

Epuisement libre d’une espéce
(courbe exponentielle décroissante).

d’accroissement et en premiére approximation on peut le diminuer
proportionnellement aux nombres des individus existants. On
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trouve ainsi I'équation ‘2—? = (e — AN)N qui s’intégre facile-

ment et qui améne & la loi de Verhulst-Pearl représentée par
la, formule
eN,e?

N =
e + Nya(e? —1)

et par la courbe bien connue que nous reproduisons dans la
figure 3. La figure 4 donne des résultats expérimentaux qui
vérifient la théorie.

NI
Fig. 3.
Courbe logistique.
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Fig. 4.

Accroissement d’une population de Drosophila
(d’aprés PrArL).

J’ai étudié aussi le cas ot1 des produits métaboliques se forment,
lesquels empoisonnent le milieu. Méme alors I’analyse mathéma-
tique peut étre appliquée, tout en devenant beaucoup plus com-
pliquée: il faut tenir compte que Pempoisonnement croit peu
a peu et que le passé a une influence sur les conditions actuelles.

3
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- (’est donc un cas historique et pour le traiter il faut recourir
aux équations intégro-différentielles qui forment un chapitre
de 'analyse fonctionnelle (fig. 5).

a

)\

Courbes de croissance d’une population.
A. Courbe logistique. — B. Courbe de l’intoxication pure. — C. Courbe
mixte de Pearl et de l’intoxication constante. ‘

§ V

Mais laissons le cas d’une seule espéce et passons a celui de
plusieurs espéces. A cause de leur action mutuelle les coefficients
d’accroissement seront modifiés et on pourra en premiére approxi-
mation considérer ces modifications comme proportionnelles aux
nombres des individus des différentes espéces. Or, si dans la lutte
pour la vie les uns dévorent les autres, ces modifications seront
avantageuses pour les especes dévorantes et défaverables aux
espéces dévorées.

Pour mettre effectivement en équation le probléme, le plus
simple est de recourir au principe des renconires.

Soit N, le nombre des individus de ’espéce r et N, le nombre
des individus de l’espéce s. Alors-la probabilité qu’un indi-
vidu de la premiére espéce rencontre un individu de la seconde
espéce sera proportionnelle &

& NTNS
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et par suite on pourra exprimer par |

Mg Nr Ns

le nombre des rencontres qui auront lieu dans chaque unité de

temps. _
Supposons qu’a chaque rencontre soient détruits

Py (Pps = 1)

individus d’une des deux espéces, par exemple de la premiére.
Dans ce cas il y en aura
Prg Mg Ny, N

qui seront détruits dans 'unité de temps.

Ceci arrive & la premiere espece. Comment pourra-t-on
calculer la modification subie par la seconde espéce ? On peut
faire un calcul trés grossier de la maniére suivante. Désignons

par
Bla 62 ’ Bn

les poids moyens des individus des n espéces et par P;, P,, ... P,
les poids totaux de tous les individus appartenant a chaque
espece.

On aura évidemment

P, . _P P,

1 o
By’

N

Or si un individu de Despéce r est dévors par des individus
de I’espéce s le poids P, deviendra P, — 8, tandis que le poids P,
deviendra P, + B,; par suite les nombres des individus des deux
especes deviendront (cela d’une maniére approchée, mais tout a
fait grossiére)

Done, en restant toujours au point de vue approché, on pourra
dire que, dans I'unité de temps, & cause des rencontres des
individus de I'espéce r avec les individus de ’espéce s, on aura
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une diminution des individus de ’espéce r donnée par p,,m,, N, N,
tandis qu’il y aura une augmentation des individus de ’espéce s

donnée par p,,m, N,N, %1
" .
En posant a,; = p, m,B,, la diminution des individus de

. |
Pespéce r sera exprimée par —°N, N, et I’augmentation des
r

individus de I'espéce s par %—N N,.

On pourra toujours parler d’augmentation en introduisant
des nombres négatifs. Nous conviendrons donc de poser
aps = — @y, > 0. Dés lors les deux espéces r, s augmentent
algébriquement dans P'unité de temps, en vertu de leurs ren-

o a a .
contres, respectivement de ‘ger N, et de é—SNT N, ou I’on admet
- r 8
qu’une augmentation négative soit une diminution.

On en déduit que les augmentations des deux espéces dans le

temps dt seront

On peut répéter le méme raisonnement pour chaque couple.
(’est pourquoi les nombres

1

seront pris comme équivalents des individus des différentes

especes. En effet, étant supposé que —g~ individus de ’espéce r
2
1

peuvent se transformer en B individus de I’espece s nous avons
8

: 1 . 4. . ‘ . N
admis que — individus de I’espéce r sont équivalents & — indi-
r 8

vidus de Pespéce s.

Nous avons pris dans ce qui précéde (et cela en nous basant
sur un raisonnement trés grossier) les valeurs inverses des poids
moyens comme équivalents mais il nous suffira d’admettre
Pexistence d’équivalents, méme §’ils ne sont pas les inverses des
poids moyens, pour obtenir le résultat que nous venons d’ex-
poser. |
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§ VI

Nous sommes maintenant en mesure d’écrire les équations
générales de la lutte pour la vie.

Soit en effet ¢, le coefficient d’ accrmssement de l’espece r
lorsqu’elle est seule; en supposant que toutes les espéces co-
existent, accroissement de la population N, dans le temps dt
sera donné par

(sr +%- > aerS> N di

r

D’ou les équations différentielles

dN 1
—_— e (€r+

= ‘B;Zsaers) N, , (1)

qui sont équivalentes a

dN , ,
Br_dz;t = (&6, + Zsaers) N, (1)
ou a
d 8y N ' ”
7 log N,! = ¢,8, + Z a, N, (1”)
dans lesquelles
V Agp = — Qg » Cpp = 0

Nous pouvons envisager des cas particuliers intéressants.
(Se référer aux fig. 6, 7, 8, § XI.) Si I’on n’a, par exemple, que
deux espéces, les équations précédentes deVIennent

d—M = <€1 + '1‘“21N2>N1 ) @“2 = <€ﬂ + i4112N1>N2
1

dt B dt 2B,
ou
dN, dN
”ZZ?I = (g, — v1 Ng) Ny , T‘EZ = (—& + v.NyN, . (2)

On suppose, lorsqu’on écrit ces équations, que la seconde

espéce dévore la premiére et ¢,, ¢, T1r Ya soient positifs et que
Pon remplace ¢, par —-«¢,.
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Si on a trois espéces, dont la seconde dévore la premiere, la
premiére dévore la troisiéme et la troisieme la seconde, il viendra

dN dN |
%i_%l_:a—}—qN:;——er, %—dtz _———b+rN1—~f pN; ,
dN /
_ﬁi_ﬁz:chpNg-—qu (2')

ol a, b, ¢ remplacent g, By, €, By, €5 B3, tandis que p, ¢, r rem-
placent ay3, agy, @43 et ou tous ces coefficients sont positifs.

Et ainsi de suite car on peut multiplier les exemples autant
que 'on veut.

Ces équations jouent dans la dynamique démographique un
role analogue aux équations de Lagrange dans la dynamique
des corps. '

Un simple examen de ces équations au point de vue analytique
nous révéle une propriété trés importante; c’est le principe de
la conservation des espéces. On peut 1’énoncer en disant que:
si une espéce existe a un certain instant, elle existera toujours et
aura toujours existé.

1l ne faut pas s’étonner de ce résultat qui, au premier abord,
peut paraitre paradoxal; il faut tenir compte du fait que les
associations que nous envisageons sont des étres idéaux tout &
fait comparables aux étres théoriques utilisés depuis longtemps
dans les autres sciences et que 'on définit par une idéalisation
des étres réels. Clest ainsi qu’on suppose en mécanique ration-
nelle que les corps solides sont indéformables, que les contacts
ont lieu sans frottement; et il est bien connu que pour pou-
voir appliquer les mathématiques, une telle idéalisation est

nécessaire, c¢’est-a-dire qu’il est nécessaire d’attribuer des

propriétés absolues aux étres qu’on étudie. Ces propriétés ne

sont réalisées que d’une maniére approchée dans le monde réel.

D’autre part, méme dans le cas théorique traité, le nombre des

individus d’une espéce peut se réduire & zéro, mais il faut pour

cela un temps infiniment long. Dans ce cas on dit que lespéce
s’éputse. '
§ VII

~ Dans bien des cas il est préférable de mettre les équations
générales sous une autre forme. I1 faut pour cela introduire un
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nouveau concept destiné a jouer un role important en statistique;
c’est la quantité de vie. . |

Rapportons-nous & une représentation graphique: dans une
bande verticale correspondant & un certain milieu, dessinons des
bandes horizontales égales et consécutives qui correspondent & des
années qui se suivent les unes les autres en partant d’une bande
qui est & 'origine des temps. Menons des segments verticaux,
chacun desquels part de 'année ou commence la vie de chaque
individu d’une certaine espéce, vivant dans le milieu envisagé,
et continue pendant toute sa vie en s’arrétant a I’année ou finit
son existence. La vie de chaque individu est mesurée par le
nombre des bandes horizontales rencontrées par chaque segment
et, & la fin d’un certain temps, on peut regarder le nombre total
de ces rencontres comme exprimant la quantité de vie de 'espece
a partir de l'origine des temps jusqu’a I'année ou l'on s’est
arrété.

Le nombre des rencontres d’une bande horizontale avec les
segments verticaux donne la population de I’espéce dans I’année
correspondant & cette bande. Par suite, la somme des popula-
tions des diverses années depuis l'origine des temps jusqu’a
une certaine année est égale & la totalité des rencontres que
nous venons de considérer. Elle peut étre regardée comme la
mesure de la quantité de oie de Pespéce pendant la méme durée
de temps.

Si I'on appelle N, la population dans I’année #,

m

exprime la quantité de vie de I’espéce depuis Iorigine des temps
jusquw’a 'année m. Si Von passe du discontinu au continu en
appelant N () la population au temps ¢,

t
X zt/aN(t) di

exprime la quantité de vie de I'espéce pendant I'intervalle de
temps 0, £. On peut s’attacher dans les caleuls statlsthues mdﬂ—
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féremment a la considération de N ou & celle de X car ces quan-
tités sont liées entre elles par les relations

t.
iX ,
| X—.-be(t)dt, N="%2=x".

Revenons aux n espéces ayant les populations Ny, Ny, ... N,,.
Leurs quantités de vie sont

t , ; ‘
X, = "‘[Nl(t) dt X, = ./Nz(t) i, ... X, = an(t) at
0 0 0

et en introduisant les éléments

4 4 4

Xy, Xgp o X, 5 X =N, X =N, .. X =N

n

ol
S
1\
k
=
3

on peut remplacer les équations (1) par les suivantes

d? X,. .
Pr de?

2 n
<e,~ b, + ESasrX;>X; . o
5 1

Nous verrons tout 4 ’heure que la substitution des équations
(3) aux équations (1’) est bien loin d’étre une substitution banale
comme il pourrait paraitre au premier abord.

§ VIII

Dans 'étude des équations (1), la premiére question qui se
pose est de chercher les conditions dans lesquelles les populations
restent constantes. ‘

Ce sont les conditions d’équilibre ou de I'état stationnaire.

Ces conditions sont |

n
<e,,, By = Zsasr Ns> N, =0
1

les racines de ces équations étant positives. Nous pouvons
supposer, par exemple, N, = 0; mais dans ce cas, en vertu du
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principe de la conservation de I’espéce, N, reste nul. Cela revient
évidemment & supprimer I’espéce r de I’association, qui est par
suite réduite. Considérons donc les cas ou ’

les racines de ces équations étant positives.

- Nous les appellerons les cas @’équilibre de Passociation, les
autres étant négligées.

Une étude approfondie des équations (4) exige une analyse
tres délicate que nous ne reproduisons pas. Il nous suffit de dire
qu’il faut distinguer le cas out le nombre des espéces.est pair de
celui ou il est impair. C’est le premier cas qui est le plus intéres-
sant. Dans. I'autre, I’association ne peut pas se conserver en
état d’équilibre parce que quelques especes s’épuisent ou tendent
& croitre indéfiniment.

Rapportons-nous donc & un nombre pair d’espéces. On voit
facilement que si tous les coefficients d’accroissement ont le
méme signe, I’équilibre n’est pas possible et que si nous augmen-
tons ou diminuons simultanément ces coefficients, les populations
d’équilibre de quelques espéces augmenteront et celles d’autres
espéces diminueront. Or, on peut aller beaucoup plus loin dans
la distinction entre les premiéres et les secondes. En effet, on
peut distinguer dans une association biologique trois catégories
d’especes:

1. Les espéces qui dévorent les autres sans étre dévorées par
aucune;

2. Celles qui sont dévorées par d’autres sans en devorer
aucune;

3. Celles qui sont dévorées par d’autres especes et en devorent
aussi d’autres.

Il peut arriver que toutes les catégories ex1stent ou qu’il en
existe deux. S’il n’en existe qu’une seule, elle d01t étre de la
troisiéme sorte. :

Supposons maintenant qu on diminue tous les coefficients
d’accroissement; on peut démontrer alors, par un raisonnement
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trés subtil, qu’il y aura au moins une espéce appartenant a la
seconde ou & la troisiéme catégorie dont la population d’équilibre
augmentera et qu’il y en aura une au moins qui appartient a la
premiére ou & la troisiéme catégorie dont la population diminuera.

Ce résultat a un grand intérét pour ce qui suit parce qu’il est
a la base de l'une des lois fondamentales des fluctuations
biologiques.

§ 1X

On sait que, dans la mécanique, on déduit des équations
fondamentales certaines intégrales qui ont un intérét considé-
rable par les conséquences qu’on en tire. De méme ici on peut
trouver des intégrales importantes des équations (3). Nous ne
développerons pas I’analyse qui permet de les obtenir, ni méme
nous ne les écrirons toutes, mais nous nous attacherons a la
considération des lois générales qui en sont les conséquences.

Commencons par établir le principe que nous avons appelé
de la conservation de I'énergie démographique.

Posons '

n n
) 6N, = >8,X
1 ‘ 1

Puisque g— est I’équivalent de chaque individu de l'espece,
r .

3 peut étre regardé comme sa valeur et par suite L= >, 8. N
T

est la valeur de toute association. Au point de vue biologique,
on peut la regarder comme une énergie démographique actuelle

n
tandis que M — C— 5’ B.c, X, sera considérée comme une
énergie démographique potentzelle étant suppose que la constante C
est la limite supérieure de 2 B¢, X,, appelé potentiel démo-

graphique. Or, la premiere 1ntegrale qu’on tire des équations (3)

est
L + M = const.
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Cette intégrale exprime que la somme de deux énergies démo-
graphiques est constante, ¢’est-a-dire que l’une se transforme dans
Uautre. Cette proposition est analogue au théoréme des forces
vives en mécanique.

Nous avons fait déja allusion aux produits cataboliques émis
quelquefois par les individus et dit que ces produits sont capables,
dans certains cas, d’une intoxication du milieu (voir § IV).
S1 nous envisageons l'action de ces produits cataboliques d’une
maniére tout & fait générale, nous sommes conduits & un pro-
bléeme d’analyse historique qui s’exprime par des équations
mtégrodifférentielles. Mais on peut le simplifier en supposant
que I'action due & chaque espéce reste constante. Dans ce cas
elle sera & chaque instant proportionnelle & la quantité de
vie de espéce. Il est alors possible de modifier les coefficients
d’accroissement de chaque espéce en y ajoutant une expression
linéaire des quantités de vie. ,

Si les actions d’intoxication sont réciproques, on peut in-
troduire un potentiel démographique en ajoutant une forme
quadratique au potentiel linéaire précédent. L’énergie poten-
tielle démographique devient alors égale & une constante dimi-
nuée de la valeur totale du potentiel (§ XIII).

Le principe de la conservation de I’énergie démographique
ne subit ainsi aucune altération de forme.

§ X

Etablissons maintenant les lois des fluctuations biologiques.
Elles se déduisent de certaines intégrales des équations fonda-
mentales.

On peut d’abord donner & celles-ci une interprétation ciné-
matique.

Supposons par exemple que le nombre des espéces soit trois,
alors on voit que les seconds membres des équations (2) sont
les formules bien connues de la cinématique des corps rigides a
trois dimensions ou les translations correspondent & a, b, c, les
- rotations correspondent & p, ¢, r et les coordonnées sont,
N17 NZ’ N3' -

L’Enseignement mathém., 36me année, 1937, - 21
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Dans le cas général les seconds membres des équations (1)
peuvent étre envisagés comme donnant les composantes d’un
déplacement infiniment petit ou de la pitesse d’un point apparte-
nant 4 un espace rigide & n dimensions, les populations étant
les coordonnées, les produits ¢, B, les translations, et les coeffi-
cients a, les rotations.

Mais, tandis qu’en cinématique les premiers membres sont les
dérivées des coordonnées, dans les formules (1") les premiers

membres sont les dérivées des logarithmes des puissances N,?r des
populations. Cela déforme complétement 'image du mouvement.

Si les équations (4) ont les racines ¢y, s, »- In il y a un centre
de rotation et si ’on prend, pour un instant, celui-ci comme
origine des coordonnées, la somme des produits des seconds
membres par les coordonnées est nulle et par suite la somme
des produits des premiers membres par les coordonnées est
qussi nulle. Or cette somme est la dérivée exacte d’une expres-
sion qu’on calcule facilement. Cette derniére est donc constante
et par suite on obtient une intégrale. Elle s’écrit

n

Zr 8,.(N, — g, log N,) = const (5)
1

Ol ¢y, G, - §n €tant positives dénotent les populations d’équi-
libre.

Si 'une des quantités N, croit indéfiniment ou tend vers zéro,
le premier membre de I’équation précédente croit indéfiniment,
ce qui est contradictoire au fait qu’il doit &tre toujours égal a une
constante finie. On en déduit que chacun des nombres N, Ny, ... N,
doit se conserver compris entre deux nombres positifs finis.

Iexistence des fluctuations est ainsi démontrée.

Les fluctuations ne peuvent pas s’amortir, car on peut
démontrer que toutes les quantités N,, N,, ... N, ne peuvent
tendre vers des limites. Il faut donc qu’elles oscillent indéfini-
ment.

La moyenne d'un nombre N(f) pendant un intervalle de
‘temps (¢, t) est le rapport

t

X () — Xt
tim/N(t)dt: S R 1L
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. S1 nous supposons que cet intervalle de temps augmente
indéfiniment, la limite de ce rapport s’appelle la moyenne
asymptotique de N (2).

Or, les équations (1) montrent que ces moyennes asympto-
tiques existent et sont les valeurs des nombres des individus
des espéces dans ’état d’équilibre. On peut donc appliquer les
propriétés que nous avons trouvées pour les populations d’équi-
“libre aux moyennes asymptotiques. En particulier on pourra
énoncer le théoréme suivant: St lon diminue tous les coeffi-
cients d’ accroissement, les moyennes asymptotiques de quelques-unes
des espéces dévorantes diminuent et les moyennes asymptotiques des
quelques-unes des espéces dévorées augmentent. |

En outre, on voit que les moyennes asymptotiques e’cant égales
aux populations d’équilibre, qui ne sont pas affectées par les
états initlaux, les dites moyennes ne dépendent pas des condi-
tions initiales. |

Nous sommes maintenant en mesure d’énoncer les trois lois
fondamentales des fluctuations, qui résument les résultats que
nous venons d’obtenir.

Premiére loi. — Lot de la conservation des fluctuations.

Les nombres des individus des différentes espéces sont compris
entre des nombres positifs, et il existe toujours des fluctuations
qui ne s’amortissent pas. '

Deuxieme loi. — Loi de la conservation des moyennes.

Si 'on prend, comme moyennes des nombres des individus
des différentes especes, les limites de leurs moyennes pour des
durées de temps infiniment longues (moyennes asymptotiques),
ces moyennes sont des constantes indépendantes des valeurs
initiales des nombres des individus des espéces.

Troisiéme lov. — Lot de la perturbation des moyennes.

Si 'on détruit toutes les espéces uniformément et propor-
tionnellement aux nombres des individus il y aura tou;ours des
espéces qui en seront avantagées (c’est-a-dire dont les moyennes
augmenteront) et il y aura toujours des espéces défavorisées.
(c’est-a-dire dont les moyennes diminueront).
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Parmi les premiéres, il y en aura une au moins.de celles qui
sont dévorées par d’autres et parmi les secondes, il y en aura
une au moins de celles qui en dévorent d’autres.

§ X1

Il est intéressant de particulariser ces lois au cas de deux
espéces, la deuxiéme dévorant la premiere. L’intégrale (5) devient
[en tenant compte des équations (2)]

—%(Nl — 22 log N1> + %(Nz — = log N2> — const  (5)
et, en regardant les nombres positifs Ny, Ny comme les coordon-
nées cartésiennes d’un point du plan, on obtient un cycle fermé.
Le phénomeéne est donc périodique et les moyennes asympto-
tiques sont les moyennes pendant une période. Elles sont les
populations d’équilibre. |

Les trois lois des fluctuations biologiques deviennent alors:

Premiére loi. — Loi du cycle périodique.

Les fluctuations de deux espéces sont périodiques.

Deuzxieéme loi. — Loi de la conservation des moyennes.

Les moyennes des nombres des individus de deux especes
pendant une période sont constantes et ne dépendent pas des
valeurs initiales.

Troisiéme loi. — Loi de la perturbation des moyennes.

Si I’on détruit les deux espéces uniformément et proportionnel-
lement aux nombres de leurs individus, la moyenne du nombre
d’individus de I’espéce dévorée croit et la moyenne du nombre
des individus de espéce dévorante diminue.

Le cas de deux espéces a donné lieu & beaucoup de vérifica-
tions pratiques.

‘Chapmann et son école ont fait dans ce domaine des études
sur les insectes. Chapmann a étudié spécialement 1'augmenta-
tion de la population du tribolium confusum, coléoptére vivant
dans la farine, c’est-a-dire dans un milieu dont il est aisé de
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maintenir constante la température, ’humidité et la quantité
de nourriture. Ses recherches ont été poursuivies- et étendues.
par Park et Stanley. -

Gause a examiné une association constituée de deux especes
“dont Pune dévore l’autre et a pu établir que, sous certaines
conditions, les fluctuations prévues par le calcul sont vérifiées.
Les espéces envisagées étaient des acares de la farine ainsi que
des protozoaires. |

Gause avait d’abord étudié le cas des deux espéces qui se dis-
" putent la méme nourriture, dont nous avons laissé de coté le
développement’ mathématique. (Cf. § IV.) Il avait commence
ses expériences en se servant de deux especes de levures, le
Saccharomices cerevisae et le Schizosaccharomices kefir. Dans
ses recherches ultérieures il a étudié les vicissitudes de deux
espéces de protozoaires, le Paramecium caudatum et le Para-
mecium aurelia. Lorsque la nourriture, constituée par des bac-
téries et des levures, est épuisée, une des deux espéces prend
le dessus, tandis que 'autre diminue. Il arrive méme qu’une
espéce s'épuise complétement et cela en accord avec les résul-
tats du calcul.

Mais Gause a examiné aussi des cas qui correspondent a

ceux qu'on a développés mathématiquement. Cest ainsi qu’il
a expérimenté sur une association de deux especes de proto-
zoaires, dont 'une, le Didinium nasutum, dévore Pautre, le
Paramecium caudatum. Lorsqu’il y a des intervalles constants
d’immigrations des individus des deux especes on obtient des
fluctuations périodiques. Cela correspond au fait que si la
destruction d’une espéce par I'autre est tres active, les fluctua-
tions deviennent imperceptibles.
Dans une expérience réalisée par Gause l'intensité de destruc-
tion était par elle-méme peu élevée. Il s’agissait d’une association
constituée par le Paramecium bursaria et Paramecium aurelia
dévorant les levures Schizosaccharomices pombe et Saccharomices
exiguus. Par d’opportunes dispositions les fluctuations prévues
par le calcul apparaissaient de fagon tout & fait évidente.

Nous ne rappellerons pas d’autres expériences de Gause qui
vérifient d’une maniére assez satisfaisante les résultats théoriques.
D’Ancona a étudié les statistiques des marchés de poissons
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de Trieste, de Fiume et de Venise pour les années 1910 & 1923.
D’aprés les chiffres indiquant les pourcentages pour chaque
espeéce de poissons vendus sur les marchés mentionnés il apparut
qu’a la suite de l'interruption de la péche pendant la période
de guerre de 1914-1918, il y avait eu une diminution relative, .
pour certaines espéces, et une augmentation pour d’autres. Les
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Fig. 6.

Diagramme du cycle de fluctuations de deux espéces dont 1'une dévore
Pautre. Les coordonnées N, et N, dénotent les populations des deux espéces.

espéces dont on constatait 'augmentation étaient pour la plupart
des espéces voraces (particuliérement les Sélaciens) qui dévorent
d’autres poissons, tandis que les espéces en diminution étaient
celles qui se nourrissent de végétaux ou d’animaux inver-
tébrés et qui sont souvent la proie des especes voraces.
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La constatation de ces faits amena D’Ancona & la conclusion
suivante: tandis que la péche, telle qu’on la pratiquait dans
les années précédant la guerre, avait déplacé ’équilibre naturel
qui existe entre les espéces de proie et les especes moins pro-
tégées a 'avantage de ces derniéres, la suspension de la péche
pendant la guerre avait rétabli les conditions primitives, en
favorisant de nouveau le développement plus vigoureux des
especes de proie. o

Selon D’Ancona il y aurait un optimum dans I'intensité avec
laquelle se pratique la péche; en laissant tomber cette activité
au-dessous d’un certain niveau, on favorise les espéces plus
voraces au détriment des autres; en dépassant la mesure dans
le sens opposé, on détermine la diminution de toutes les especes
(fig. 7).

On voit que cet enseignement, tiré des statistiques, s’accorde
avec notre troisiéme loi, celle de la perturbationi des moyennes.
Or, nous l'avions formulée avant de connaitre les résultats
auxquels était parvenu D’Ancona.

Des recherches semblables ont été faites par Marchi (1929)
sur les produits du marché de Cagliari, en Sardaigne. Il fut amene
a des conclusions qui se rapprochent de celles de D’Ancona;
lui aussi remarqua une augmentation des Sélaciens pendant la
période qui suivit immédiatement la guerre. |

Nous avons vu que ’équation (5') peut étre représentée par
un cycle fermé d’ou 'on a déduit la périodicité du phénomeéne.
Mais cette périodicité ainsi que P’allure des fluctuations peut
dtre mise en évidence beaucoup mieux en dessinant les courbes
qui représentent les nombres des individus de deux espéces en
fonction du temps. Nous reproduisons ici ces courbes tres
caractéristiques qui sont devenues aujourd’hui tres. connues
(fig. 8).

La troisiéme loi, c’est-a-dire la loi de perturbation des
moyennes, nous dit que si I'on cherche & détruire les espéces il y
en a qui s’en trouvent avantagées. Parmi celles-ci il y a des
espéces dévorées tandis qu’il y a des espéces qui sont défavo-
risées, parmi lesquelles il y a des especes dévorantes. |

Darwin avait eu lintuition que quelque chose d’analogue
devait se produire dans la nature lorsqu’il a dit que la chasse,
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au lieu d’étre nuisible, est quelquefois avantageuse pour les
espéces les plus utiles.

Dans le cas de deux espéces un probléme se pose: jusqu’a
quelle limite la destruction est-elle avantageuse a I’espece

N,

| m

Fig. 7.

Diagramme des changements du cycle de fluctuations de deux espéces dont
I'une dévore ’autre, lorsqu’on cherche & les détruire simultanément.
Courbe I: Lorsqu’on est au-dessous de la limite compléte de destruction
d’une espece.

Courbe 1I: Lorsqu’on rejoint cette limite.

Courbe II1: Lorsqu’on la dépasse.

_Fig. 8.
Fluctuations de deux espéces dont l'une dévore ’autre: les conditions
en fonction du temps.

dévorée ? Et quand est-ce qu’en dépassant cette limite la destruc-
tion est nuisible pour les deux espéces ? On peut résoudre
complétement ces questions qui ont un intérét pratique.
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Mais les calculs nécessaires sont compliqués, c’est pourquoi
nous nous bornerons a n’en donner qu’une simple indication et
une représentation graphique (fig. 7).

§ XII

Nous avons parlé, dans le cas d’une seule espéce, des modifica-
" tions apportées a la loi de Malthus. '

Si nous tenons compte de ce que I'augmentation de la popula-
tion diminue la quantité disponible de nourriture, nous avons
énoncé la loi de Verhulst-Pearl.

On peut examiner une question analogue lorsqu’on a une
association de plusieurs espéces et que l'on suppose que le
coefficient d’accroissement de ehacune est affecté par le nombre
des individus de cette espéce.

I1 suffit pour cela d’ajouter dans le second membre de chacune
des équations un terme contenant le carré de la population de
Pespéce correspondante affecté d’un coefficient négatif. On
constate alors que, §’il existe un état stationnaire, 1’association
tend vers cet état asymptotiquement ou au travers de fluctua-
tions amorties. Mais on peut méme étendre ces considérations
et parvenir & une distinction essentielle des associations biolo-
giques.

Remplacons les équations (1) par

dN "
r — OV

ou les p,, sont des coefficients quelconques et considérons la
forme quadratique

n n
DD P NG N,
1 1

r 8

Dans le cas des équations (1) elle est identiquement nulle, mais
d’ailleurs on pourrait supposer qu’elle ne le soit pas.

Dans le cas particulier qui-a été examiné tout a ’heure, cette
forme est définie positive. On peut démontrer qu’en général, si la
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forme est définie et positive, 'association biologique est stable,
c’est-a-dire que I'association ne peut pas s’épuiser et aucune
des populations ne peut croitre indéfiniment. En outre, s’il
existe un état stationnaire, I’association biologique s’approchera
indéfiniment de cet état.

D’aprés les définitions que nous avons données, la valeur de
Passociation biologique ou son énergie actuelle est donnée par

V=L=> 8N,.

1 r

Dans un temps infiniment petit, ’augmentation de cette
valeur est constituée de deux parties

n n

n
°
dVy = ErsrﬁrNrdt ’ AV = — 21‘ ZspersNrdt .
1 1 1

La premiére est due aux causes constantes d’accroissement
ou de diminution de chaque espece. La seconde est due aux
actions réciproques des individus des différentes espéces. Si
celle-ci est nulle, ’association s’appellera conservative. Les
associations biologiques conservatives sont justement celles
que nous avons étudiées d’abord. Elles sont des étres idéaux
dont la nature s’approche. Si la forme fondamentale est définie
et positive, les actions réciproques entre individus tendent a
diminuer la valeur ou ’énergie actuelle de l’association. Nous
dirons alors que I’association est dissipative.

La loi de la conservation de 1’énergie démographique n’est
plus vérifiée, car I’énergie totale diminue comme §’il existait
un frottement interne au sein de ’association.

§ XIII

Ayant indiqué les conséquences des intégrales, nous allons
établir d’autres principes qui nous rapprochent des theorles
classiques de la mécanique analytique.

Nous avons déja annoncé I’existence d’un principe de minimum
dont on aurait pu déduire toutes les lois de la lutte pour la vie.
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Nous allons maintenant I’établir. Pour cela, il faut employer
dN

les équations (3). N, étant la population d’une espéce, -~ est
.

son accroissement relatif élémentaire. Si nous faisons la somme
de tous ces accroissements élémentaires depuis I'existence d’un
individu jusqu’a ’existence de N, individus, nous trouvons

N, -
*dN

'/ F == IOgNr ;

0

On peut prendre comme mesure de Vaction vitale élémentaire
le produit |

B, logN, dX, = B, log N, N,dt = B, log X, - X\dt

et s1 nous ajoutons toutes les actions vitales élémentaires pendant
un intervalle de temps (0, ¢) nous aurons pour 'espéce r

t
(8, 1og N, - X,dt .
0

Si nous envisageons toutes les espéces de I’association Paction
vitale totale sera donnée par

t n S
A= [S8,1lgN, N,di .
0 1

Considérons maintenant la forme bilinéaire

) n n

~ ’
Z = Er ZS%XTXS ,
17

et le potentiel démographique P qui s’écrit (§ IX):

n
1
P = ;rgrerXr + 5 Z,.Z6, X, X

ou
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Alors en introduisant la fonction

n
—\ ’ ’ 1
o = %_JTBrXr log X, + 5%+ P

on peut mettre les équations fondamentales (3) sous la forme

480 30 _,, (6)

qui est la forme eulérienne des équations du calcul des variations.

L’importance de cette transformation consiste dans le fait
qu’elle relie la question de la lutte pour la vie & un probléme
du calcul des variations.

§ XTIV

Nous allons dire un mot en général au sujet de ce chapitre
de 'analyse. )

Le calcul différentiel est né du probléme des maxima et
minima des fonctions. Si une quantité variable est représentée
par une fonction dérivable on trouvera ses maxima et ses
minima en annulant sa dérivée. Mais il peut arriver que la dérivée
s’annule sans que Pon ait & faire ni & un maximum ni 4 un
minimum. On dit alors que la fonction est stationnaire.

(Vest 13 le cas le plus simple, mais on peut avoir aussl a
chercher des maxima ou des minima de quantités qui ne dépen-
dent pas d’une ou de plusieurs variables, mais qui dépendent
d’une courbe variable. C’est ainsi que se présente le probleme de
trouver la forme qu’il faut donner au profil d’'un projectile pour
qu’il rencontre la moindre résistance dans Pair, ou la forme qu’il
faut donner & la courbe de descente d’un corps pesant pour que le
temps de la chute soit un minimum. Le calcul qui traite de ces
problémes est le calcul des variations.

Or le probléme général de la mécanique se réduit & un probleme
du calcul des variations. C’est Lagrange qui I’a vu d’une maniére
claire pour la premiére fois et le principe général correspondant
a été formulé sous sa forme définitive par Hamilton, d’ou son
nom de principe de Hamilton.




MATHEMATIQUES ET BIOLOGIE 325

‘Mais de méme que dans le vas simple des maxima et des

minima, ou les équations qu’on trouve ne donnent pas toujours’

des maxima ou des minima, mais quelquefois des cas station-
naires, de méme le principe de Hamilton correspond quelquefois
a des cas stationnaires.

Dans le calcul des variations ¢’est une intégrale qui doit étre
rendue maximum ou minimum, ou en général stationnaire, et on
cherche les conditions correspondantes que doivent satisfaire
les fonctions figurant dans cette intégrale.

D’une maniére analogue a ce que l'on a en Mécanique, dans
le cas de la dynamique démographique, la question peut étre
reconduite & un probléme de calcul des variations et de fait &
annuler la variation de I'intégrale

t
:/'(Ddt.
0

Lorsqu’on parle d’annuler la variation de cette intégrale, on
- suppose que l'on fait varier infiniment peu les quantités de vie
de maniére & obtenir une variation nulle de cette intégrale.
Cette proposition est démontrée par la forme eulérienne sous
laquelle se présentent les équations (6).

Dans ces derniers temps on a toujours eu la tendance a ramener
tous les problémes qui se présentent dans la physique et plus
spécialement dans la nouvelle physique au principe de Hamilton
et nous voyons maintenant que méme les lois démographiques
appartiennent comme les autres lois de la philosophie naturelle
4 la méme branche des mathématiques. |

Je tiens & ajouter que le calcul des variations n’est que le
premier chapitre de I’analyse fonctionnelle. Cette analyse
embrasse donc, méme & ce point de vue, une grande partie des
sciences de la nature, s’étend jusqu’a la théorie des populations,
a la lutte pour la vie et elle se relie aux problémes de I’évolution
et du transformisme.

§ XV

Toutes les conséquences que 'on tire en mécanique du prin-
cipe de Hamilton peuvent étre transportées dans le domaine de
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la biologie. C’est ainsi qu’on peut mettre les équations fonda-
mentales de la lutte pour la vie sous la forme canonique.

On peut les réduire & une équation aux dérivées partielles du
type de Jacobi et faire usage des méthodes d’intégration que
Pon emploie pour celle-ci en cherchant par exemple des inté-
grales en involution. Par cette voie on se rend compte que si les
coefficients a,, ont la forme

aps = €0, Bs(ms — mr)

les my, m,, ... m, étant des constantes, le probleme d’intégrer
les équations fondamentales se réduit aux quadratures. Ayant
trouvé cette propriété, on peut en suivre la trace dans les équa-
tions sous la forme primitive. Celles-ci peuvent étre ramenées a
la forme

1 d
B—r'jtlogNr == mrN—}— I
ou
n
N = ZSQSBSNS ’ I =1—X.8;N;m N

et, en éliminant N et I, on obtient des équations qu1 s’inteégrent
immeédiatement.

Nous venons de prouver que les lois de la lutte pour la vie
peuvent étre ramenées & un principe analogue a celui de
Hamilton et nous avons vu que non seulement on peut trouver
des maxima ou des minima mais aussi une intégrale stationnaire.

Nous pouvons aller beaucoup plus loin et aboutir & un vrai
principe de minimum qu’on peut appeler le principe de la moindre
action vitale en biologie et qui a peut-étre une importance plus
grande que les autres lois dont nous nous sommes occupes
jusqu’ici. Nous en avons déja fait allusion précédemment, mais
je pense qu’il n’est pas inutile d’y revenir plus en détail.

En mécanique on peut passer du principe de Hamilton au
principe de la moindre action de plusieurs maniéres. Jacobi a
insisté beaucoup sur la forme que prend ce principe par 1’élimi-
nation du temps. 1l y consacre un chapitre de ses admirables
Legons de dynamique et réussit a le reconduire a un-théoréme
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géométrique de maniére que toute question de dynamique
devient le probléme des géodésiques dans un espace & plusieurs
dimensions. | |

Mais on peut prendre la question & un autre point de vue et
a la place de démontrer que la résolution d’un probléme de
dynamique peut étre obtenue par la résolution d’un probléme
de minimum, on peut prouver (outre le principe de Hamilton)
que, dans tout phénoméne de mouvement, il y a une quantité
qui, sous certaines conditions, est un minimum ou au moins est
stationnaire. C’est sous ce point de vue qu’il faut prendre la
question en biologie.

Nous avons appelé action vitale totale d’une association bio-
logique la quantité

t n t n
A= [ 8N, logN,di = ['3 8,X, log X, dt
0 1 0 1

et nous pouvons regarder comme travail d’accroissement ou
travail démographique virtuel la quantité

n n
S = ;r("r B, + ;Sasr Xs) AX,

calculée pour les changements virtuels AX,, des quantités de
vies. Alors si, en conservant les X, invariables aux limites 0,1t
du temps, nous changeons 4 chaque instant les X,en X, + AX,,
S étant nul, A augmente. On tire de 14 le théoréme: M odifions de
mantére isochrone le passage naturel d’une association biologique
d'un état & un autre en variant les populations des différentes
especes. Laction vitale augmente si les quantités de vie ¢ Uinstant
initial et o Uinstant final ne changent pas et si le travail démeo-
graphique est nul & chaque instant. 11 s’agit donce dun minimum
effectif de D'action vitale, ce qui constitue le principe de la
moindre action en biologie. |

On peut insister qu’en biologie il s’agit effectivement d’un
minimum de action, ce qui n’est pas toujours vrai dans la
meécanique des systémes matériels. |
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Cette circonstance ne doit pas nous surprendre parce que les
‘principes généraux que nous venons de comparer, tout en ayant
une apparence analogue, different entre eux a cause des fonctions
qui expriment, d’un coté Paction mécanique, et d’un autre cote
Paction vitale.

§ XVI

Nous avons parlé a plusieurs reprises de I’analyse fonction-
nelle et nous avons montré Pexistence de nombreuses liaisons
entre les questions biologiques que nous avons traitées et cette
analyse. Nous avons fait aussi allusion au fait que, dans les
phénomeénes vitaux, le passé a une influence prépondérante sur
état actuel, si bien que celui-ci dépend d'une infinité de va-
riables: celles qui caractérisent les états passés, et c’est justement
le domaine de I’analyse fonctionnelle, que celui out 'on envisage
des quantités variables dépendant d’une infinité d’autres
variables.

1’6tude approfondie du probléme de la lutte pour la vie
conduit directement a ce genre de questions. En effet, Paccrois-
sement d’une espéce ne dépend pas seulement de sa nourri-
ture actuelle mais elle dépend aussi de son alimentation au
temps passé. |

Si T'on veut tenir compte de cette circonstance capitale il
faut modifier les équations fondamentales. Pour simplifier,
rapportons-nous au cas de deux espéces dont l'une dévore
Pautre. Le coefficient d’accroissement de espéce dévorante ne
doit alors pas étre affecté du terme 7 N, qui ne dépend que
de Détat actuel de 'espéce dévorée, mais doit étre affecté d’un
terme dépendant des valeurs de la population de Pespéce
dévorée dans tous les instants précédents.

Si on suppose une dépendance linéaire, il faut donc remplacer
le terme v, N; par un terme de la forme

t
/F(t-—— )N, (7) dt
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et les deux équations ‘des fluctuations [voir équation (2)]
s’écriront

dN ¢
dtl = N, (1) (81_ YlNz(t)) ;

‘ ' t
dzz = Nz(t)(\—-sz + fF(th)Nl(T)dt> -

Par symétrie analytique, on peut les mettre sous la forme

; t
%1‘ = N; (1) <51‘_ Y1N2.(t) HO/.F1 (t — 7) Ny(7) dT>

: t
dia = N, () (_ g 4 Yo Ny () + beg(t—— T)Nl('T)d"r> )

Une analyse trés délicate appliquée & ces équations permet
de retrouver les lois des fluctuations méme dans ce cas histo-
rique. La premiére loi s’énonce toujours: il y a un état station-
naire autour duquel les populations des deux espéces oscillent
indéfiniment. La seconde loi aussi ne change pas, ni la troisieme.
Ce qui change, c’est le fait que la périodicité des fluctuations,
reconnue dans le cas de deux espéces, disparait.

§ XVII

Nous avons donné un tres court apercu des calculs mathéma-
tiques liés a la lutte pour la vie et aux fluctuations des popula-
tions qui en dépendent. Mais nous n’avons pas pu toucher aux
rapports existants entre ces études et d’autres recherches scienti-
fiques. Il y a, par exemple, une branche de la zoologie appliquée
qui s’occupe de la destruction des animaux nuisibles & Pagricul-
ture. On réalise souvent cette lutte en introduisant d’autres
animaux parmi les animaux & détruire. Nous n’avons pu dire
quun mot a ce sujet dans cette conférence, mais nous tenons &
ajouter que la lutte biologique a rendu nécessaire la création de
nouveaux laboratoires et lorganisation des terrains d’expé-
riences pour les essals nécessaires. Les résultats obtenus sont

L’Enseignement mathém., 36me année, 1937. . : gR
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de la plus grande importance au point de vue théorique comme
au point de vue pratique. Des savants spécialisés parcourent
divers pays a la recherche d’insectes et d’autres animaux dont
on puisse se servir. L’intérét de cette lutte s’accroit a cause des
relations toujours plus nombreuses et étroites entre les diftérents
pays. Certaines espéces nuisibles sont par suite transportées faci-
lement d’un pays & un autre. Dans leur pays d’origine elles
avaient des adversaires naturels qui en entravaient Paction. 11
s’agit de trouver dans les régions ou elles ont éte transportées des
adversaires capables aussi de freiner leur diffusion. Il est évident
que les théories sur la population dont nous avons parlé jouent
un role de premier ordre dans cette science nouvelle.

Parmi les études en rapport avec les considérations que nous
avons développées il faut citer les recherches sur la lutte micro-
bienne dans lesquelles les produits métaboliques et leurs actions
sont de premiére importance et ou il faut tenir compte des
phénomeénes de défense des organismes. Les cas les plus simples
d’action de produits métaboliques ont été envisagés au cours de
cette conférence. |

Ces questions engagent méme a considérer des branches de la
médecine. Bien souvent des phénoménes qui se présentent dans -
les maladies épidémiques, en particulier leurs fluctuations,
semblent avoir des rapports avec les fluctuations biologiques
dont nous nous sommes occupes. |

Les sciences sociologiques, enfin, ne doivent pas négliger les
recherches qui ont formé le sujet de notre conférence. Pensons,
en effet, aux questions de population et aux lois démographiques
qui nous conduisent directement vers la sociologie et 1’économie
politique. On a déja tenté d’appliquer dans ces domaines les
théories que nous avons exposees, mais nous ne pouvons pas
entrer dans des détails sur ce sujet car nous serions entrainés
trop loin et nous dépasserions les limites que nous nous sommes
imposées dans cette conférence.
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