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APPLICATIONS DES MATHÉMATIQUES

A LA BIOLOGIE1

PAR

Vito Vojlterra (Rome).

§ I

Les fondements de la Science des nombres et de la Géométrie

appartiennent aux époques les plus reculées de la civilisation. Ils
ont donné une base aux études sur le mouvement des astres et se

sont introduits peu à peu dans toutes les branches de la Science.

Lès applications de la mécanique doivent leur développement
aux mathématiques et la statique des solides et des fluides était
déjà très développée dans la Science hellène. Tout le monde sait

quels admirables travaux avait accomplis Archimède dans le

domaine des études sur l'équilibre.
Ce n'est que beaucoup plus tard que les mathématiques

servirent de base à la dynamique. A la Renaissance, l'usage des

artilleries étant devenu courant, il fallut étudier les mouvements
des projectiles et les lois de la chute des graves. Tartaglia,
Cardano, Cavalieri, Galilée, ont la gloire d'avoir fondé la
balistique. C'est en même temps que naissaient et se développaient le

calcul infinitésimal et la dynamique.
Newton réduisit la théorie du système du monde à une grande

balistique et la. dynamique générale qui fut fondée à cette
époque a abouti à la mécanique de Lagrange.

Le besoin de connaissances sur la résistance des matériaux

1 Leçon faite, le 17 juin 1937, dans la série des Conférences internationales des Sciences
mathématiques organisées par l'Université de Genève.
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et sur la conductibilité de la chaleur donnèrent plus tard naissance

à la théorie mathématique de l'élasticité et à celle de la propagation

de la chaleur, alors que l'optique et l'acoustique avaient

eu l'occasion déjà d'employer les méthodes mathématiques.

La thermodynamique et les principes de l'énergétique vinrent

après l'invention des machines à feu. Enfin l'énorme développement

de l'électricité sous toutes ses formes et avec ses

innombrables applications à la vie moderne, donna à la physique

mathématique son épanouissement actuel.

C'est ainsi que les mathématiques ont pénétré dans le

domaine de la physique et ont contribué largement à ses

progrès. Le tour de la Chimie vint plus tard et l'on peut dire

qu'elle aussi, dans beaucoup de ses branches, fut aidée par les

mathématiques. Aujourd'hui un bon chimiste ne peut se passer

d'appliquer les mathématiques dans une foule de questions qui
se présentent tous les jours. C'est d'hier, enfin, que 1

hydrodynamique théorique a été renouvelée en vue des besoins créés

par la nécessité de parcourir les voies aériennes.

En biologie, on ne peut pas passer sous silence le fait qu'un

grand nombre de chapitres de la physique mathématique ont

été utilisés pour des questions de physiologie, de biochimie,

de thérapeutique, tout en restant liés à leurs méthodes propres

et sans donner lieu à des branches nouvelles des mathématiques.

§ II

Mais ce sont les idées de l'évolution qui, en se développant

dans diverses directions, ont le plus contribué à constituer une

nouvelle philosophie des Sciences naturelles. On est bien loin de

pouvoir poser des conclusions sûres tant il y a d'objections, de

difficultés et de contradictions qui se sont accumulées à la suite

d'expériences, d'observations et de discussions. Ainsi tout ce

qui peut éclaircir même quelques points particuliers de la théorie

est précieux.
Les théories statistiques, les études génétiques sur les

populations, sur leur accroissement, sur leurs variations ont énormément

contribué dans ces derniers temps à ouvrir des

nouveaux horizons et à faire pénétrer dans le fond des choses.
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Un des plus illustres statisticiens vivants, Raymond Pearl,
dans la préface à un récent ouvrage d'un naturaliste expérimentateur,

Gause, affirme qu'il' y a quelques années la sélection

naturelle semblait être à son lit de mort, mais qu'elle s'en est

relevée en montrant une surprenante puissance de vie. Selon

Pearl, les écrits et les expériences de laboratoire, depuis 1859,

malgré de remarquables contributions d'auteurs célèbres,
n'avaient pas abouti à des conclusions d'une grande portée,
mais l'attitude du monde scientifique aurait totalement changé
dans ces derniers temps. Ce changement dépendrait des

directions nouvelles dans lesquelles la Génétique s'est engagée
et du grand intérêt actuellement éveillé par les études
mathématiques sur les populations ainsi que par la conviction que la
lutte pour la vie et la sélection naturelle rentrent dans la
dynamique démographique.

Un mathématicien célèbre dont nous regrettons la perte
récente, Karl Pearson, avait fondé en 1900 le journal Biometrica,
qui a obtenu un grand succès et a donné des résultats très utiles.
Pearson avait reconnu depuis longtemps le rôle que les statistiques

devaient jouer, mais on ne l'avait pas assez écouté. Pearl
le déplore en constatant d'ailleurs que, pendant ces dernières
années, les recherches mathématiques avaient fait progresser
les questions relatives au transformisme et à l'évolution plus
que ne l'avaient fait les travaux accomplis dans le demi-siècle
précédent, bien que pendant cette longue période les idées
darwiniennes aient eu plus de retentissement que toutes autres.
C'est ainsi que ces idées sont revenues à l'ordre du jour.

Nous allons exposer une suite de recherches destinées à éclair-
cir les bases de la théorie de la lutte pour la vie en donnant
leurs lois fondamentales1.

§ HI

Mais avant d'entrer dans les détails de ce sujet, je désire dire
quelques mots sur un chapitre général de l'analyse qui s'est
développé ces derniers temps, qui a eu déjà des relations avec

i Pour la bibliographie, voir: Volterra et D'Ancona, Les associations biologiques
au point de vue mathématique. Paris, 1935, Hermann (Actualités scientifiques et
industrielles).
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la biologie mathématique et qui est destiné dans l'avenir à en

avoir toujours de plus étroites. Nous aurons l'occasion d'en

parler au cours de cette conférence.
Les phénomènes de la vie présentent un caractère particulier

dont il faut toujours tenir compte. A savoir l'influence notable

et souvent prépondérante du passé pour déterminer les réactions

dans le présent et l'évolution dans l'avenir.
En vertu de ce caractère nous dirons que dans ces phénomènes

il y a la mémoire du passé ou mieux encore nous parlerons du

caractère historique des phénomènes vitaux.
Des faits analogues se présentent aussi en dehors du monde

organique et constituent l'ensemble des phénomènes qui

prennent le nom d'hystérésis, de traînage, etc. et qui ont une

énorme importance dans la technique. Tous les ingénieurs
savent qu'un pont ressent des efforts qu'il a supporté dans le

passé et que dans les machines électrodynamiques le magnétisme
offre des phénomènes notables de retard.

Dans le monde inorganique le terme hérédité a prévalu pour
les désigner, mais il amènerait des confusions avec le concept
d'hérédité qui est adopté en biologie. Peut-être vaut-il mieux

se rallier au terme phénomènes historiques, tant dans le monde

organique que dans le monde inorganique.
Or, il y a une analyse mathématique pour traiter ces questions;

c'est l'analyse fonctionnelle. Bien probablement, celle-ci sera

destinée à jouer un rôle prépondérant dans les questions de

biologie mathématique. Jusqu'à présent elle a donné lieu à

quelques propositions et à un chapitre spécial de la théorie de la

lutte pour la vie.

§ IV

Mais revenons à l'exposé des nouvelles théories.

Elles se présentent. sous une forme extrêmement systématique

et qui est tout à fait comparable à celle qu'a adopté

depuis longtemps la dynamique analytique.
On peut, en effet, prendre pour point de départ des

propositions simples et presque évidentes en les regardant comme des

postulats ou des axiomes et procéder d'une manière entièrement
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déductive en obtenant des équations générales applicables
au plus grand nombre des cas. Ces équations, de type différentiel,
se transforment et s'intégrent comme les équations de la mécanique

et de la physique mathématique. Elles peuvent prendre
la forme canonique qui appartient aussi aux équations de la
mécanique céleste. On peut enfin les rattacher à un principe
général unique qui est celui qui se retrouve dans un très grand
nombre de cas, comme principe souverain de la nature. C'est
le principe de minimum d'après lequel la nature agit toujours
de manière à épargner le plus possible. Fermât l'avait entrevu
comme base de la propagation de la lumière, Maupertuis comme
fondement de la mécanique et évoluant, après Hamilton, Jacobi
et d'autres savants, il est en train de pénétrer dans tous les
domaines de la philosophie naturelle.

Commençons par considérer le cas d'un nombre quelconque
d'espèces animales vivant dans le même milieu et supposons que
les individus de certaines espèces dévorent ceux d'autres espèces.
Nous laissons de côté le cas où plusieurs espèces se disputent
la même nourriture, cas qui est beaucoup plus simple que l'autre.
(Voir § XI.)

Pour fixer les idées on peut imaginer un cas réel d'animaux
carnivores qui se nourrissent d'animaux herbivores tandis que
ceux-ci se nourrissent de plantes. On peut supposer que les
trois espèces animales et végétales vivent dans une île séparée
du reste du monde.

Un autre cas pratique fréquent est celui d'insectes nuisibles à
certaines espèces végétales et d'autres insectes qui détruisent
les premiers.

Si une espèce est seule, l'on peut prendre comme équation qui
représente sa multiplication, l'équation^ zN où N désigne
le nombre des individus ou la population et s le coefficient
d accroissement. Si celui-ci est positif, on a un accroissement réel
de 1 espèce, s il est négatif, on a au contraire un épuisement.
Cette équation exprime la loi malthusienne (fig. 1 et 2). On peut
prendre le coefficient constant si les conditions de vie sont telles
que la nourriture ne vient jamais à manquer ou à subir des
perturbations.

Son intégrale est N - N0e^ où N0 est la valeur de N pour
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t ~ 0. Si au contraire les conditions de vie sont affectées par
l'accroissement de l'espèce, alors il faut diminuer le coefficient

Fig. 1.

Croissance libre d'une espèce
(courbe exponentielle croissante)

Fig. 2.

Epuisement libre d'une espèce
(courbe exponentielle décroissante)

d'accroissement et en première approximation on peut le diminuer
proportionnellement aux nombres des individus existants. On
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trouve ainsi l'équation ^ (s — XN) N qui s'intègre facilement

et qui amène à la loi de Verhulst-Pearl représentée par
la formule

__ sNp e

£ + N0 X (ezt — 1)

et par la courbe bien connue que nous reproduisons dans la
figure 3. La figure 4 donne des résultats expérimentaux qui
vérifient la théorie.

Fig. 3.

Courbe logistique.

0 6 12 18 24 30 5 11 17

OCT. NOV.

Fig. 4.

Accroissement d'une population de Drosophila
(d'après Pearl).

J'ai étudié aussi le cas où des produits métaboliques se forment,
lesquels empoisonnent le milieu. Même alors l'analyse mathématique

peut être appliquée, tout en devenant beaucoup plus
compliquée: il faut tenir compte que l'empoisonnement croît peuà peu et que le passé a une influence sur les conditions actuelles.
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C'est donc un cas historique et pour le traiter il faut recourir
aux équations intégro-différentielles qui forment un chapitre
de l'analyse fonctionnelle (fig. 5).

Fig. 5.

Courbes de croissance d'une population.
A. Courbe logistique. — B. Courbe de l'intoxication pure. — C. Courbe

mixte de Pearl et de l'intoxication constante.

§ v

Mais laissons le cas d'une seule espèce et passons à celui de

plusieurs espèces. A cause de leur action mutuelle les coefficients
d'accroissement seront modifiés et on pourra en première approximation

considérer ces modifications comme proportionnelles aux
nombres des individus des différentes espèces. Or, si dans la lutte
pour la vie les uns dévorent les autres, ces modifications seront
avantageuses pour les espèces dévorantes et défavorables aux
espèces dévorées.

Pour mettre effectivement en équation le problème, le plus
simple est de recourir au principe des rencontres.

Soit Nr le nombre des individus de l'espèce r et Ns le nombre
des individus de l'espèce s. Alors la probabilité qu'un individu

de la première espèce rencontre un individu de la seconde

espèce sera proportionnelle à

N Ns
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et par suite on pourra exprimer par

rsNrN s

le nombre des rencontres qui auront lieu dans chaque unité de

temps.
Supposons qu'à chaque rencontre soient détruits

Prs (Prs ~

individus d'une des deux espèces, par exemple de la première.
Dans ce cas il y en aura

» m NN^rs rs r s

qui seront détruits dans l'unité de temps.
Ceci arrive à la première espèce. Comment pourra-t-on

calculer la modification subie par la seconde espèce On peut
faire un calcul très grossier de la manière suivante. Désignons

par
ßi » ß2 I •••ßn

les poids moyens des individus des n espèces et par Px, P2, Pn
les poids totaux de tous les individus appartenant à chaque
espèce.

On aura évidemment

n2 — N —ßi ' 2
ß2 ' - n ßn

Or si un individu de l'espèce r est dévoré par des individus
de l'espèce s le poids Pr deviendra Pr — ßr tandis que le poids Ps
deviendra Ps -f- ßr ; par suite les nombres des individus des deux
espèces deviendront (cela d'une manière approchée, mais tout à
fait grossière)

Pr Ps + ßr

Donc, en restant toujours au point de vue approché, on pourra
dire que, dans l'unité de temps, à cause des rencontres des
individus de l'espèce r avec les individus de Pespèce 5, on aura
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une diminution des individus de l'espèce r donnée par prs mrs Nr Ns
tandis qu'il y aura une augmentation des individus de l'espèce s

donnée par prs mrs Nr Ns ^.
En posant arsprsmrsßr,la diminution des individus de

l'espèce rsera exprimée par -^NrNs et l'augmentation des
Pr

individus de l'espèce 5 par j?NrNs.
On pourra toujours parler d'augmentation en introduisant

des nombres négatifs. Nous conviendrons donc de poser
ars > 0. Dès lors les deux espèces r, s augmentent

algébriquement dans l'unité de temps, en vertu de leurs

rencontres, respectivement de —rNrNs et de ^NrNs, où l'on admet
Pr Ps

qu'une augmentation négative soit une diminution.
On en déduit que les augmentations des deux espèces dans le

temps dt seront

J£NrNsdt -gNrN8dt

On peut répéter le même raisonnement pour chaque couple.
C'est pourquoi les nombres

JL i_ ißi ' ß2
' " K

seront pris comme équivalents des individus des différentes
lespèces. En effet, étant supposé que — individus de l'espèce r
p2

lpeuvent se transformer en — individus de l'espèce s nous avons
Ps

admis que -r- individus de l'espèce r sont équivalents à ~ indi-
<r Ps

vidus de l'espèce s.

Nous avons pris dans ce qui précède (et cela en nous basant
sur un raisonnement très grossier) les valeurs inverses des poids
moyens comme équivalents mais il nous suffira d'admettre
l'existence d' équivalents,mêmes'ils ne sont pas les inverses des

poids moyens, pour obtenir le résultat que nous venons
d'exposer.
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§VI

Nous sommes maintenant en mesure d'écrire les équations
générales de la lutte pour la vie.

Soit en effet sr le coefficient d'accroissement de l'espèce r
lorsqu'elle est seule; en supposant que toutes les espèces
coexistent, l'accroissement de la population Nr dans le temps dt
sera donné par

(er + |;SsasrNs)Nr&

D'où les équations différentielles

dN 1 \
~dT \r + ' M

qui sont équivalentes à

n (!')

ou à

log N^, srß,. + SsasrNs (1")

dans lesquelles
asr — ars '

Nous pouvons envisager des cas particuliers intéressants.
(Se référer aux fig. 6, 7, 8, § XI.) Si l'on n'a, par exemple, que
deux espèces, les équations précédentes deviennent

(El + fca,lN,)Nl '

OU

^ («1 - Yi N2) Nx (- s2 + Ï2 NJ N2 (2)

On suppose, lorsqu'on écrit ces équations, que la seconde
espèce dévore la première et s1; s2, Tl, Ï2 soient positifs et que
l'on remplace s2 par —s2.
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Si on a trois espèces, dont la seconde dévore la première, la

première dévore la troisième et la troisième la seconde, il viendra

il,,*,»,-,»,,
où a, by c remplacent ex ßl5 s2 ^2? £3 ß3> tandis que />, g, r
remplacent a23, asly als et où tous ces coefficients sont positifs.

Et ainsi de suite car on peut multiplier les exemples autant

que l'on veut.
Ces équations jouent dans la dynamique démographique un

rôle analogue aux équations de Lagrange dans la dynamique

des corps.
Un simple examen de ces équations au point de vue analytique

nous révèle une propriété très importante; c'est le principe de

la conservation des espèces. On peut l'énoncer en disant que.

si une espèce existe à un certain instanty elle existera toujours et

aura toujours existé.

Il ne faut pas s'étonner de ce résultat qui, au premier abord,

peut paraître paradoxal; il faut tenir compte du fait que les

associations que nous envisageons sont des êtres idéaux tout à

fait comparables aux êtres théoriques utilisés depuis longtemps

dans les autres sciences et que l'on définit par une idéalisation

des êtres réels. C'est ainsi qu'on suppose en mécanique rationnelle

que les corps solides sont indéformables, que les contacts

ont lieu sans frottement; et il est bien connu que pour pouvoir

appliquer les mathématiques, une telle idéalisation est

nécessaire, c'est-à-dire qu'il est nécessaire d attribuer des

propriétés absolues aux êtres qu'on étudie. Ces propriétés ne

sont réalisées que d'une manière approchée dans le monde réel.

D'autre part, même dans le cas théorique traité, le nombre des

individus d'une espèce peut se réduire à zéro, mais il faut pour

cela un temps infiniment long. Dans ce cas on dit que l espèce

s^épuise.
§ VII

Dans bien des cas il est préférable de mettre les équations

générales sous une autre forme. Il faut pour cela introduire un
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nouveau concept destiné à jouer un rôle important en statistique ;

c'est la quantité de vie.

Rapportons-nous à une représentation graphique: dans une
bande verticale correspondant à un certain milieu, dessinons des

bandes horizontales égales et consécutives qui correspondent à des

années qui se suivent les unes les autres en partant d'une bande

qui est à l'origine des temps. Menons des segments verticaux,
chacun desquels part de l'année où commence la vie de chaque
individu d'une certaine espèce, vivant dans le milieu envisagé,
et continue pendant toute sa vie en s'arrêtant à l'année où finit
son existence. La vie de chaque individu est mesurée par le
nombre des bandes horizontales rencontrées par chaque segment
et, à la fin d'un certain temps, on peut regarder le nombre total
de ces rencontres comme exprimant la quantité de vie de l'espèce
à partir de l'origine des temps jusqu'à l'année où l'on s'est
arrêté.

Le nombre des rencontres d'une bande horizontale avec les

segments verticaux donne la population de l'espèce dans l'année
correspondant à cette bande. Par suite, la somme des populations

des diverses années depuis l'origine des temps jusqu'à
une certaine année est égale à la totalité des rencontres que
nous venons de considérer. Elle peut être regardée comme la
mesure de la quantité de vie de l'espèce pendant la même durée
de temps.

Si l'on appelle Nh la population dans l'année A,

m

S»«»,
1

exprime la quantité de vie de l'espèce depuis l'origine des temps
jusqu'à l'année m.Sil'on passe du discontinu au continu en
appelant N (t)la population au temps

t

X fx(t)dt
o

exprime la quantité de vie de l'espèce pendant l'intervalle de
temps 0, t. On peut s'attacher dans les calculs statistiques indif-
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féremment à la considération de N ou à celle de X car ces quantités

sont liées entre elles par les relations

t

X /* N (t) N ^ X'
o

Revenons aux n espèces ayant les populations N1? N2,... Nn.
Leurs quantités de vie sont

t t t

X, f ISUt) dt X2 fNdt X„ fN dt
'o 0 o

et en introduisant les éléments

X1; X,, xn ; x; N, x; N2, x; Nn

on peut remplacer les équations (1') par les suivantes

(Erß,+ 2>X^)X; • O)

Nous verrons tout à l'heure que la substitution des équations

(3) aux équations (1') est bien loin d'être une substitution banale

comme il pourrait paraître au premier abord.

§ VIII

Dans l'étude des équations (1), la première question qui se

pose est de chercher les conditions dans lesquelles les populations
restent constantes.

Ce sont les conditions d'équilibre ou de Y état stationnaire.

Ces conditions sont

(sA+!>Na)Nr-=0

les racines de ces équations étant positives. Nous pouvons

supposer, par exemple, Nr 0; mais dans ce cas, en vertu du
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principe de la conservation de l'espèce, Nr reste nul. Gela revient
évidemment à supprimer l'espèce r de l'association, qui est par
suite réduite. Considérons donc les cas où

n

£rßr+ 2 «rsNs 0
> (4)

Is

les racines de ces équations étant positives.
Nous les appellerons les cas d'équilibre de l'association, les

autres étant négligées.
Une étude approfondie des équations (4) exige une analyse

très délicate que nous ne reproduisons pas. Il nous suffit de dire
qu'il faut distinguer le cas où le nombre des espèces.est pair de
celui où il est impair. C'est le premier cas qui est le plus intéressant.

Dans l'autre, l'association ne peut pas se conserver en
état d'équilibre parce que quelques espèces.s'épuisent ou tendent
à croître indéfiniment.

Rapportons-nous donc à un nombre pair d'espèces. On voit
facilement que si tous les coefficients d'accroissement ont le
même signe, l'équilibre n'est pas possible et que si nous augmentons

ou diminuons simultanément ces coefficients, les populations
d'équilibre de quelques espèces augmenteront et celles d'autres
espèces diminueront. Or, on peut aller beaucoup plus loin dans
la distinction entre les premières et les secondes. En effet, on
peut distinguer dans une association biologique trois catégories
d'espèces :

1. Les espèces qui dévorent les autres sans être dévorées par
• aucune;

2. Celles qui sont dévorées par d'autres sans en dévorer
aucune ;

3. Celles qui sont dévorées par d'autres espèces et en dévorent
aussi d'autres.

Il peut arriver que toutes les catégories existent, ou qu'il en
existe deux. S'il n'en existe qu'une seule, elle doit être de la
troisième sorte.

Supposons maintenant qu'on diminue tous les coefficients
d accroissement; on peut démontrer alors, par un raisonnement
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très subtil, qu'il y aura au moins une espèce appartenant à la

seconde ou à la troisième catégorie dont la population d'équilibre
augmentera et qu'il y en aura une au moins qui appartient à la

première ou à la troisième catégorie dont la population diminuera.
Ce résultat a un grand intérêt pour ce qui suit parce qu'il est

à la base de l'une des lois fondamentales des fluctuations

biologiques.

§ IX

On sait que, dans la mécanique, on déduit des équations

fondamentales certaines intégrales qui ont un intérêt considérable

par les conséquences qu'on en tire. De même ici on peut

trouver des intégrales importantes des équations (3). Nous ne

développerons pas l'analyse qui permet de les obtenir, ni même

nous ne les écrirons toutes, mais nous nous attacherons à la

considération des lois générales qui en sont les conséquences.

Commençons par établir le principe que nous avons appelé

de la conservation de Vénergie démographique.

Posons
n n

2 ßrNr L •

1 r 1

Puisque ~ est l'équivalent de chaque individu de l'espèce,
rf n

ßr peut être regardé comme sa valeur et par suite L 2r ßr
1

est la valeur de toute Vassociation.Aupoint de vue biologique,

on peut la regarder comme une énergie démographique actuelle
n

tandis que M =C —2rßrerXr sera considérée comme une

énergie démographique potentielle, étant supposé que la constante C

n
est la limite supérieure de 2 ßr £r Xr, appelé potentiel démo-

1
r

graphique. Or, la pi^emière intégrale qu'on tire des équations (3)

est
L + M const.
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Cette intégrale exprime que la somme de deux énergies
démographiques est constante,c'est-à-direque l'une se transforme dans
Vautre. Cette proposition est analogue au théorème des forces
vives en mécanique.

Nous avons fait déjà allusion aux produits cataboliques émis
quelquefois par les individus et dit que ces produits sont capables,
dans certains cas, d'une intoxication du milieu (voir § IV).
Si nous envisageons l'action de ces produits cataboliques d'une
manière tout à fait générale, nous sommes conduits à un
problème d'analyse historique qui s'exprime par des équations
intégrodifïérentielles. Mais on peut le simplifier en supposant
que l'action due à chaque espèce reste constante. Dans ce cas
elle sera à chaque instant proportionnelle à la quantité de
vie de l'espèce. Il est alors possible de modifier les coefficients
d'accroissement de chaque espèce en y ajoutant une expression
linéaire des quantités de vie.

Si les actions d'intoxication sont réciproques, on peut
introduire un potentiel démographique en ajoutant une forme
quadratique au potentiel linéaire précédent. L'énergie potentielle

démographique devient alors égale à une constante diminuée

de la valeur totale du potentiel (§ XIII).
Le principe de la conservation de l'énergie démographique

ne subit ainsi aucune altération de forme.

§ x

Etablissons maintenant les lois des fluctuations biologiques.
Elles se déduisent de certaines intégrales des équations
fondamentales.

On peut d'abord donner à celles-ci une interprétation
cinématique.

Supposons par exemple que le nombre des espèces soit trois,
alors on voit que les seconds membres des équations (2) sont
les formules bien connues de la cinématique des corps rigides à
trois dimensions où les translations correspondent à a, b, c, les
rotations correspondent à p, q,retles coordonnées sont
N1; N2, N3.

L'Enseignement mathém., 36me année, 1937. 21
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Dans le cas général les seconds membres des équations (1")

peuvent être envisagés comme donnant les composantes d'un

déplacement infiniment petit ou de la vitesse d un point appartenant

à un espace rigide à n dimensions, les populations étant

les coordonnées, les produits srßr les translations, et les coefficients

ars les rotations.
Mais, tandis qu'en cinématique les premiers membres sont les

dérivées des coordonnées, dans les formules (1") les premiers

membres sont les dérivées des logarithmes des puissances Nfr des

populations. Cela déforme complètement l'image du mouvement.

Si les équations (4) ont les racines q1, un centre

de rotation et si l'on prend, pour un instant, celui-ci comme

origine des coordonnées, la somme des produits des seconds

membres par les coordonnées est nulle et par suite la somme

des produits des premiers membres par les coordonnées est

aussi nulle. Or cette somme est la dérivée exacte d'une expression

qu'on calcule facilement. Cette dernière est donc constante

et par suite on obtient une intégrale. Elle s'écrit

n

ßr (Nr. — % loS Nr> COnSt (5)

1

où qx, q2, qn étant positives dénotent les populations d'équilibre.

Si l'une des quantités Nr croit indéfiniment ou tend vers zero,

le premier membre de l'équation précédente croît indéfiniment,

ce qui est contradictoire au fait qu'il doit être toujours égal à une

constante finie. On en déduit que chacun des nombres Nl5 N2,... N„

doit se conserver compris entre deux nombres positifs finis.

L'existence des fluctuations est ainsi démontrée.

Les fluctuations ne peuvent pas s'amortir, car on peut

démontrer que toutes les quantités Nl5 N2, N„ ne peuvent

tendre vers des limites. Il faut donc qu'elles oscillent indéfiniment.

i, j
La moyenne d'un nombre N(0 pendant un intervalle de

temps («o, t) est le rapport

t — t0J t —to
to
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Si nous supposons que cet intervalle de temps augmente
indéfiniment, la limite de ce rapport s'appelle la moyenne
asymptotique de N (£).

Or, les équations (1) montrent que ces moyennes asympto-
tiques existent et sont les valeurs des nombres des individus
des espèces dans l'état d'équilibre. On peut donc appliquer les

propriétés que nous avons trouvées pour les populations d'équilibre

aux moyennes asymptotiques. En particulier on pourra
énoncer le théorème suivant: Si Von diminue tous les
coefficients d'accroissement, les moyennes asymptotiques de quelques-unes
des espèces dévorantes diminuent et les moyennes asymptotiques des

quelques-unes des espèces dévorées augmentent.
En outre, on voit que les moyennes asymptotiques étant égales

aux populations d'équilibre, qui ne sont pas affectées par les

états initiaux, les dites moyennes ne dépendent pas des conditions

initiales.
Nous sommes maintenant en mesure d'énoncer les trois lois

fondamentales des fluctuations, qui résument les résultats que
nous venons d'obtenir.

Première loi. — Loi de la conservation des fluctuations.

Les nombres des individus des différentes espèces sont compris
entre des nombres positifs, et il existe toujours des fluctuations
qui ne s'amortissent pas.

Deuxième loi. — Loi de la conservation des moyennes.

Si l'on prend, comme moyennes des nombres des individus
des différentes espèces, les limites de leurs moyennes pour des
durées de temps infiniment longues (moyennes asymptotiques),
ces moyennes sont des constantes indépendantes des valeurs
initiales des nombres des individus des espèces.

Troisième loi. — Loi de la perturbation des moyennes.
Si l'on détruit toutes les espèces uniformément et

proportionnellement aux nombres des individus il y aura toujours des
espèces qui en seront avantagées (c'est-à-dire dont les moyennes
augmenteront) et il y aura toujours des espèces défavorisées,
(c'est-à-dire dont les moyennes diminueront).



316 VITO VOLTERRA

Parmi les premières, il y en aura une au moins de celles qui

sont dévorées par d'autres et parmi les secondes, il y en aura

une au moins de celles qui en dévorent d autres.

§ XI

Il est intéressant de particulariser ces lois au cas de deux

espèces, la deuxième dévorant la première. L'intégrale (5) devient

[en tenant compte des équations (2)]

JL ^Ni _ h. log Na) + y,(Na- 5"l0g Na) COnSt (5,>
'

et, en regardant les nombres positifs N1? N2 comme les coordonnées

cartésiennes d'un point du plan, on obtient un cycle fermé.

Le phénomène est donc périodique et les moyennes asympto-

tiques sont les moyennes pendant une période. Elles sont les

populations d'équilibre.
Les trois lois des fluctuations biologiques deviennent alors:

jPremière loi.— Loi du cycle périodique.

Les fluctuations de deux espèces sont périodiques.

Deuxième loi. — Loi de la conservation des moyennes.

• Les moyennes des nombres des individus de deux espèces

pendant une période sont constantes et ne dépendent pas des

valeurs initiales.

Troisième loi. — Loi de la perturbation des moyennes.

Si l'on détruit les deux espèces uniformément et proportionnellement

aux nombres de leurs individus, la moyenne du nombre

d'individus de l'espèce dévorée croît et la moyenne du nombre

des individus de l'espèce dévorante diminue.

Le cas de deux espèces a donné lieu à beaucoup de

vérifications'pratiques.

Chapmann et son école ont fait dans ce domaine des etudes

sur les insectes. Chapmann a étudié spécialement l'augmentation

de la population du tribolium confusum, coléoptère vivant

dans la farine, c'est-à-dire dans un milieu dont il est aisé de
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maintenir constante la température, l'humidité et la quantité

de nourriture. Ses recherches ont été poursuivies et étendues

par Park et Stanley. '

Gause a examiné une association constituée de deux espèces

dont l'une dévore l'autre et a pu établir que, sous certaines

conditions, les fluctuations prévues par le calcul sont vérifiées.

Les espèces envisagées étaient des acares de la farine ainsi que

des protozoaires.
Gause avait d'abord étudié le cas des deux espèces qui se

disputent la même nourriture, dont nous avons laissé de côté le

développement mathématique. (Cf. § IV.) Il avait commencé

ses expériences en se servant de deux espèces de levures, le

Saccharomices cerevisaeet le Siceskefir. Dans

ses recherches ultérieures il a étudié les vicissitudes de deux

espèces de protozoaires, le Paramecium caudatum et le

Paramecium aurelia. Lorsque la nourriture, constituée par des

bactéries et des levures, est épuisée, une des deux espèces prend

le dessus, tandis que l'autre diminue. Il arrive même qu'une

espèce s'épuise complètement et cela en accord avec les résultats

du calcul.
Mais Gause a examiné aussi des cas qui correspondent à

ceux qu'on a développés mathématiquement. C est ainsi qu il
a expérimenté sur une association de deux espèces de

protozoaires, dont l'une, le Didinium dévore l'autre, le

Paramecium caudatum. Lorsqu'il y a des intervalles constants

d'immigrations des individus des deux espèces on obtient des

fluctuations périodiques. Cela correspond au fait que si la

destruction d'une espèce par l'autre est très active, les fluctuations

deviennent imperceptibles.
Dans une expérience réalisée par Gause l'intensité de destruction

était par elle-même peu élevée. Il s'agissait d'une association

constituée par le Paramecium bursaria et Paramecium aurelia

dévorant les levures Schizosaccharomices pombe et Saccharomices

exiguus. Par d'opportunes dispositions les fluctuations prévues

par le calcul apparaissaient de façon tout à fait évidente.
Nous ne rappellerons pas d'autres expériences de Gause qui

vérifient d'une manière assez satisfaisante les résultats théoriques.
D'Ancona a étudié les statistiques des marchés de poissons

;
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de Trieste, de Fiume et de Venise pour les années 1910 à 1923.

D'après les chiffres indiquant les pourcentages pour chaque

espèce de poissons vendus sur les marchés mentionnés il apparut
qu'à la suite de l'interruption de la pêche pendant la période

de guerre de 1914-1918, il y avait eu une diminution relative,

pour certaines espèces, et une augmentation pour d'autres. Les
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Fig. 6.

Diagramme du cycle de fluctuations de deux espèces dont l'une dévore

l'autre. Les coordonnées Nx et N2 dénotent les populations des deux espèces.

espèces dont on constatait l'augmentation étaient pour la plupart
des espèces voraces (particulièrement les Sélaciens) qui dévorent

d'autres poissons, tandis que les espèces en diminution étaient

celles qui se nourrissent de végétaux ou d'animaux
invertébrés et qui sont souvent la proie des espèces voraces.
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La constatation de ces faits amena D'Ancona à la conclusion

suivante: tandis que la pêche, telle qu'on la pratiquait dans

les années précédant la guerre, avait déplacé l'équilibre naturel

qui existe entre les espèces de proie et les espèces moins

protégées à l'avantage de ces dernières, la suspension de la pêche

pendant la guerre avait rétabli les conditions primitives, en

favorisant de nouveau le développement plus vigoureux des

espèces de proie.
Selon D'Ancona il y aurait un optimum dans l'intensité avec

laquelle se pratique la pêche; en laissant tomber cette activité
au-dessous d'un certain niveau, on favorise les espèces plus

voraces au détriment des autres; en dépassant la mesure dans

le sens opposé, on détermine la diminution de toutes les espèces

(%. 7).
On voit que cet enseignement, tiré des statistiques, s'accorde

avec notre troisième loi, celle de la perturbation des moyennes.
Or, nous l'avions formulée avant de connaître les résultats

auxquels était parvenu D'Ancona.
Des recherches semblables ont été faites par Marchi (1929)

sur les produits du marché de Cagliari, en Sardaigne. Il fut amené

à des conclusions qui se rapprochent de celles de D'Ancona;
lui aussi remarqua une augmentation des Sélaciens pendant la
période qui suivit immédiatement la guerre.

Nous avons vu que l'équation (5') peut être représentée par
un cycle fermé d'où l'on a déduit la périodicité du phénomène.
Mais cette périodicité ainsi que l'allure des fluctuations peut
être mise en évidence beaucoup mieux en dessinant les courbes

qui représentent les nombres des individus de deux espèces en

fonction du temps. Nous reproduisons ici ces courbes très

caractéristiques qui sont devenues aujourd'hui très connues

(fig. 8).
La troisième loi, c'est-à-dire là loi de perturbation des

moyennes, nous dit que si l'on cherche à détruire les espèces il y
en a qui s'en trouvent avantagées. Parmi celles-ci il y a des

espèces dévorées tandis qu'il y a des espèces qui sont défavorisées,

parmi lesquelles il y a des espèces dévorantes.
Darwin avait eu l'intuition que quelque chose d'analogue

devait se produire dans la nature lorsqu'il a dit que la chasse,
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au lieu d'être nuisible, est quelquefois avantageuse pour les

espèces les plus utiles.
Dans le cas de deux espèces un problème se pose: jusqu'à

quelle limite la destruction est-elle avantageuse à l'espèce

Fig. 7.

Diagramme des changements du cycle de fluctuations de deux espèces dont

l'une dévore l'autre, lorsqu'on cherche à les détruire simultanément.

Courbe I : Lorsqu'on est au-dessous de la limite complète de destruction
d'une espèce.

Courbe II : Lorsqu'on rejoint cette limite.
Courbe III: Lorsqu'on la dépasse.

N, i

HS yJSi ZI ïc-"* V*

4-

.Fig. 8.

Fluctuations de deux espèces dont l'une dévore l'autre: les conditions

en fonction du temps.

dévorée Et quand est-ce qu'en dépassant cette limite la destruc-

tion est nuisible pour les deux espèces On peut résoudre

complètement ces questions qui ont un intérêt pratique.



MATHÉMATIQUES ET BIOLOGIE 321

Mais les calculs nécessaires sont compliqués, c'est pourquoi

nous nous bornerons à n'en donner qu'une simple indication et

une représentation graphique (fig. 7).

Nous avons parlé, dans le cas d'une seule espèce, des modifications

apportées à la loi de Malthus.
Si nous tenons compte de ce que l'augmentation de la population

diminue la quantité disponible de nourriture, nous avons
énoncé la loi de Verhulst-Pearl.

On peut examiner une question analogue lorsqu'on a une
association de plusieurs espèces et que l'on suppose que le

coefficient d'accroissement de chacune est affecté par le nombre
des individus de cette espèce.

Il suffit pour cela d'ajouter dans le second membre de chacune
des équations un terme contenant le carré de la population de

l'espèce correspondante affecté d'un coefficient négatif. On

constate alors que, s'il existe un état stationnaire, l'association
tend vers cet état asymptotiquement ou au travers de fluctuations

amorties. Mais on peut même étendre ces considérations
et parvenir à une distinction essentielle des associations
biologiques.

Remplaçons les équations (1) par

où les prs sont des coefficients quelconques et considérons la
forme quadratique

Dans le cas des équations (1) elle est identiquement nulle, mais
d'ailleurs on pourrait supposer qu'elle ne le soit pas.

Dans le cas particulier qui a été examiné tout à l'heure, cette
forme est définie positive. On peut démontrer qu'en général, si la

§ XII

n n

2lr Ss^srNsNr *
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forme est définie et positive, l'association biologique est stable,
c'est-à-dire que l'association ne peut pas s'épuiser et aucune
des populations ne peut croître indéfiniment. En outre, s'il
existe un état stationnaire, l'association biologique s'approchera
indéfiniment de cet état.

D'après les définitions que nous avons données, la valeur de

l'association biologique ou son énergie actuelle est donnée par

n

Y L 2 ßrNr •

1 r

Dans un temps infiniment petit, l'augmentation de cette
valeur est constituée de deux parties

n n n
dVx 2 «rßrNr* ' ^ /VNsNr^ •

1 r 1 r Is

La première est due aux causes constantes d'accroissement
ou de diminution de chaque espèce. La seconde est due aux
actions réciproques des individus des différentes espèces. Si
celle-ci est nulle, l'association s'appellera conservative. Les
associations biologiques conservatives sont justement celles

que nous avons étudiées d'abord. Elles sont des êtres idéaux
dont la nature s'approche. Si la forme fondamentale est définie
et positive, les actions réciproques entre individus tendent à

diminuer la valeur ou l'énergie actuelle de l'association. Nous
dirons alors que l'association est dissipative.

La loi de la conservation de l'énergie démographique n'est

plus vérifiée, car l'énergie totale diminue comme s'il existait
un frottement interne au sein de l'association.

§ XIII

Ayant indiqué les conséquences des intégrales, nous allons

établir d'autres principes qui nous rapprochent des théories

classiques de la mécanique analytique.
Nous avons déjà annoncé l'existence d'un principe de minimum

dont on aurait pu déduire toutes les lois de la lutte pour la vie.
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Nous allons maintenant l'établir. Pour cela, il faut employer

les équations (3). Nr étant la population d'une espèce, est
r

son accroissement relatif élémentaire. Si nous faisons la somme
de tous ces accroissements élémentaires depuis l'existence d'un
individu jusqu'à l'existence de Nr individus, nous trouvons

/' 1 \TJn5" i°g Nr
o

On peut prendre comme mesure de Taction vitale élémentaire
le produit

ßr log Nr dXr ßr log Nr • Nrdt= ßr log X; • X>

et si nous ajoutons toutes les actions vitales élémentaires pendant
un intervalle de temps (0, t) nous aurons pour l'espèce r

t

f ß,. log Nr • X'rdt.0

Si nous envisageons toutes les espèces de l'association Taction
vitale totale sera donnée par

t n

A =/2M°gNr-Nrdî
0 1

Considérons maintenant la forme bilinéaire

z
1 1

et le potentiel démographique P qui s'écrit (§ IX):
n

P 2rMrXr+!2r2sCrsXrX3
r /

OÙ
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Alors en introduisant la fonction

<X> 2 ßr log Z + P

on peut mettre les équations fondamentales (3) sous la foi me

qui est la forme eulérienne des équations du calcul des variations.

L'importance de cette transformation consiste dans le fait

qu'elle relie la question de la lutte pour la vie à un problème

du calcul des variations.

Nous allons dire un mot en général au sujet de ce chapitre

de l'analyse.
Le calcul différentiel est né du problème des maxima et

minima des fonctions. Si une quantité variable est représentée

par une fonction dérivable on trouvera ses maxima et ses

minima en annulant sa dérivée. Mais il peut arriver que la dérivée

s'annule sans que l'on ait à faire ni à un maximum ni à un

minimum. On dit alors que la fonction est stationnaire.

C'est là le cas le plus simple, mais on peut avoir aussi à

chercher des maxima ou des minima de quantités qui ne dépendent

pas d'une ou de plusieurs variables, mais qui dépendent

d'une courbe variable. C'est ainsi que se présente le problème de

trouver la forme qu'il faut donner au profil d'un projectile pour

qu'il rencontre la moindre résistance dans l'air, ou la forme qu'il

faut donner à la courbe de descente d'un corps pesant pour que le

temps de la chute soit un minimum. Le calcul qui traite de ces

problèmes est le calcul des variations.

Or le problème général de la mécanique se réduit à un problème

du calcul des variations. C'est Lagrange qui l'a vu d'une manière

claire pour la première fois et le principe général correspondant

a été formulé sous sa forme définitive par Hamilton, d'où son

nom de principe de Hamilton.

d ô<D

dt à
(6)

§ xiv
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Mais de même que dans le cas simple des maxima et des

minima, où les équations qu'on trouve ne donnent pas toujours'
des maxima ou des minima, mais quelquefois des cas station-

naires, de même le principe de Hamilton correspond quelquefois

à des cas stationnaires.
Dans le calcul des variations c'est une intégrale qui doit être

rendue maximum ou minimum, ou en général stationnaire, et on

cherche les conditions correspondantes que doivent satisfaire

les fonctions figurant dans cette intégrale.
D'une manière analogue à ce que l'on a en Mécanique, dans

le cas de la dynamique démographique, la question peut être

reconduite à un problème de calcul des variations et de fait à

annuler la variation de l'intégrale

Lorsqu'on parle d'annuler la variation de cette intégrale, on

suppose que l'on fait varier infiniment peu les quantités de vie
de manière à obtenir une variation nulle de cette intégrale.
Cette proposition est démontrée par la forme eulérienne sous

laquelle se présentent les équations (6).
Dans ces derniers temps on a toujours eu la tendance à ramener

tous les problèmes qui se présentent dans la physique et plus
spécialement dans la nouvelle physique au principe de Hamilton
et nous voyons maintenant que même les lois démographiques
appartiennent comme les autres lois de la philosophie naturelle
à la même branche des mathématiques.

Je tiens à ajouter que le calcul des variations n'est que le

premier chapitre de l'analyse fonctionnelle. Cette analyse
embrasse donc, même à ce point de vue, une grande partie des

sciences de la nature, s'étend jusqu'à la théorie des populations,
à la lutte pour la vie et elle se relie aux problèmes de l'évolution
et du transformisme.

o

§ XV

Toutes les conséquences que l'on tiré en mécanique du principe

de Hamilton peuvent être transportées dans le domaine de
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la biologie. C'est ainsi qu'on peut mettre les équations
fondamentales de la lutte pour la vie sous la forme canonique.

On peut les réduire à une équation aux dérivées partielles du
type de Jacobi et faire usage des méthodes d'intégration que
l'on emploie pour celle-ci en cherchant par exemple des

intégrales en involution. Par cette voie on se rend compte que si les

coefficients ars ont la forme

ars £rßr£sßsK — mr)

les m-L, m2, mn étant des constantes, le problème d'intégrer
les équations fondamentales se réduit aux quadratures. Ayant
trouvé cette propriété, on peut en suivre la trace dans les équations

sous la forme primitive. Celles-ci peuvent être ramenées à

la forme

où
n

N S esßsNs 1 1- SscsßsNsmsNs
1

S

et, en éliminant N et I, on obtient des équations qui s'intègrent
immédiatement.

Nous venons de prouver que les lois de la lutte pour la vie

peuvent être ramenées à un principe analogue à celui de

Hamilton et nous avons vu que non seulement on peut trouver
des maxima ou des minima mais aussi une intégrale stationnaire.

Nous pouvons alle.r beaucoup plus loin et aboutir à un vrai
principe de minimum qu'on peut appeler le principe de la moindre
action vitale en biologie et qui a peut-être une importance plus
grande que les autres lois dont nous nous sommes occupés

jusqu'ici. Nous en avons déjà fait allusion précédemment, mais

je pense qu'il n'est pas inutile d'y revenir plus en détail.
En mécanique on peut passer du principe de Hamilton au

principe de la moindre action de plusieurs manières. Jacobi a

insisté beaucoup sur la forme que prend ce principe par l'élimination

du temps. 11 y consacre un chapitre de ses admirables
Leçons de dynamique et réussit à le reconduire à un théorème
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géométrique de manière que toute question de dynamique
devient le problème des géodésiques dans un espace à plusieurs
dimensions.

Mais on peut prendre la question à un autre point de vue et
à la place de démontrer que la résolution d'un problème de
dynamique peut être obtenue par la résolution d'un problème
de minimum, on peut prouver (outre le principe de Hamilton)
que, dans tout phénomène de mouvement, il y a une quantité
qui, sous certaines conditions, est un minimum ou au moins est
stationnaire. C'est sous ce point de vue qu'il faut prendre la
question en biologie.

Nous avons appelé action vitale totale d'une association
biologique la quantité

t n t n
A S2r fv Nr los n,& f ßr K log x; dt

0 1 0 1

et nous pouvons regarder comme travail d'accroissement ou
travail démographique virtuel la quantité

calculée pour les changements virtuels AXr, des quantités de
vies. Alors si, en conservant les X,. invariables aux limites t
du temps, nous changeons à chaque instant les Xr en Xr -j- Ax'r,
S étant nul, A augmente. On tire de là le théorème : Modifions de
manière isochrone le passage naturel d'une association biologique
d'un état à un autre en variant les populations des différentes
espèces. L'action vitale augmente si les quantités de vie à l'instant
initial et à l'instant final ne changent pas et si le travail
démographique est nul à chaque instant. Il s'agit donc d'un minimum
effectif de l'action vitale, ce qui constitue le principe de la
moindre action en biologie.

On peut insister qu'en biologie il s'agit effectivement d'un
minimum de l'action, ce qui n'est pas toujours vrai dans la
mécanique des systèmes matériels.
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Cette circonstance ne doit pas nous surprendre parce que les

principes généraux que nous venons de comparer, tout en ayant

une apparence analogue, diffèrent entre eux à cause des fonctions

qui expriment, d'un côté Vaction et d'un autre cote

l'action vitale.

XYI

Nous avons parlé à plusieurs reprises de l'analyse fonctionnelle

et nous avons montré l'existence de nombreuses liaisons

entre les questions biologiques que nous avons traitées et cette

analyse. Nous avons fait aussi allusion au fait que, dans es

phénomènes vitaux, le passé a une influence prépondérante sur

l'état actuel, si bien que celui-ci dépend d'une infini e e

variables: celles qui caractérisent les états passés, et c est justement

le domaine de l'analyse fonctionnelle, que celui où l'on envisage

des quantités variables dépendant d'une infinite d autres

L'étude approfondie du problème de la lutte pour la vie

conduit directement à ce genre de questions. En effet, 1 accroissement

d'une espèce ne dépend pas seulement de sa nourriture

actuelle mais elle dépend aussi de son alimentation au

temps'Passent ^ de cette circonstance capitale il

faut modifier les équations fondamentales. Pour simplifier,

rapportons-nous au cas de deux espèces dont l une devore

l'autre Le coefficient d'accroissement de l'espece devoran e

doit alors pas être affecté du terme ï?Ni qui ne depend que

de l'état actuel de l'espèce dévorée, mais doit etre affecte d u

terme dépendant des valeurs de la population de lespece

dévorée dans tous les instants précédents.

Si on suppose une dépendance linéaire, il faut donc remplacer

le terme Y2Ni par un terme de la forme

t

JF(f — T)Na(r)rf{
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et les deux équations des fluctuations [voir équation (2)]

s'écriront

^ =.N1(t)(s1- YiN.(t))

=» N.W^-e. + /F(t—T)Nx(T)dtV
\ —00 '

Par symétrie analytique, on peut les mettre soiis la forme

' ^ Yi N2(î) -/Fi (< - t)N2(t)^

^ Nl(t) % + y2N + f F — vJNiK) Äxj •

Une analyse très délicate appliquée à ces équations permet
de retrouver les lois des fluctuations même dans ce cas

historique. La première loi s'énonce toujours: il y a un état station-
naire autour duquel les populations des deux espèces oscillent
indéfiniment. La seconde loi aussi ne change pas, ni la troisième.
Ce qui change, c'est le fait que la périodicité des fluctuations,
reconnue dans le cas de deux espèces, disparaît.

§ XVII

Nous avons donné un très court aperçu des calculs mathématiques

liés à la lutte pour la vie et aux fluctuations des populations

qui en dépendent. Mais nous n'avons pas pu toucher aux
rapports existants entre ces études et d'autres recherches scientifiques.

Il y a, par exemple, une branche de la zoologie appliquée
qui s'occupe de la destruction des animaux nuisibles à Pagricul-
ture. On réalise souvent cette lutte en introduisant d'autres
animaux parmi les animaux à détruire. Nous n'avons pu dire
qu'un mot à ce sujet dans cette conférence, mais nous tenons à

ajouter que la lutte biologique a rendu nécessaire la création de

nouveaux laboratoires et l'organisation des terrains d'expériences

pour les essais nécessaires. Les résultats obtenus sont

L'Enseignement mathém., 36rae année, 1937.
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de la plus grande importance au point de vue théorique comme

au point de vue pratique. Des savants spécialisés parcourent

divers pays à la recherche d'insectes et d'autres animaux dont

on puisse se servir. L'intérêt de cette lutte s'accroît à cause des

relations toujours plus nombreuses et étroites entre les différents

pays. Certaines espèces nuisibles sont par suite transportées

facilement d'un pays à un autre. Dans leur pays d'origine elles

avaient des adversaires naturels qui en entravaient l'action. Il
s'agit de trouver dans les régions où elles ont été transportées des

adversaires capables aussi de freiner leur diffusion. Il est évident

que les théories sur la population dont nous avons parlé jouent

un rôle de premier ordre dans cette science nouvelle.

Parmi les études en rapport avec les considérations que nous

avons développées il faut citer les recherches sur la lutte
microbienne dans lesquelles les produits métaboliques et leurs actions

sont de première importance et où il faut tenir compte des

phénomènes de défense des organismes. Les cas les plus simples

d'action de produits métaboliques ont été envisagés au cours de

cette conférence.
Ces questions engagent même à considérer des branches de la

médecine. Bien souvent des phénomènes qui se présentent dans

les maladies épidémiques, en particulier leurs fluctuations,

semblent avoir des rapports avec les fluctuations biologiques

dont nous nous sommes occupés.

Les sciences sociologiques, enfin, ne doivent pas négliger les

recherches qui ont formé le sujet de notre conférence. Pensons,

en effet, aux questions de population et aux lois démographiques

qui nous conduisent directement vers la sociologie et l'économie

politique. On a déjà tenté d'appliquer dans ces domaines les

théories que nous avons exposées, mais nous ne pouvons pas

entrer dans des détails sur ce sujet car nous serions entraînés

trop loin et nous dépasserions les limites que nous nous sommes

imposées dans cette conférence.
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