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INTRODUCTION A LA THEORIE DES SERIES
D’EQUIVALENCE SUR UNE SURFACE ALGEBRIQUE?!

PAR

E. G. TocriarTr (Génes).

1. — La Géométrie algébrique, c’est-a-dire la Géométrie des
variétés algébriques au point de vue des transformations bira-
tionnelles des variétés mémes, s’est enrichie récemment d’un
nouveau chapitre dont I'importance est bien remarquable. 11
s’agit d’une maniére nouvelle de construire sur les surfaces
algébriques (et, plus généralement, sur les variétés algébriques
& plus de deux dimensions) une théorie analogue a celle des séries
linéaires de groupes de points sur les courbes algébriques: la
théorie des séries d’équivalence de groupes de points.

Le premier travail dans cet ordre d’idées est un Mémoire de
M. F. Severi, publié en 1932 dans les Comm. Math. Helo. a
I’occasion du dernier Congrés international des Mathématiciens;
I’école géométrique italienne, et surtout M. Severi, ont ensuite
développé la nouvelle théorie, dont 'intérét ne fait qu’augmenter,
soit a cause des résultats qu’on en a déja tirés dans le domaine
de la géométrie, soit a cause des points de contact, nombreux
et suggestifs, qu’elle présente avec d’autres théories de la géomé-
trie et de I’analyse. Dans cette introduction je me propose de
vous présenter, le plus rapidement possible, la définition géomeé-
trique des séries d’équivalence sur une surface algébrique, et de
vous exposer quelques-unes des liaisons entre la théorie dont il
est question et la Topologie des surfaces algébriques, en laissant
toujours de coté les détails des démonstrations.

1 Conférence faite le 22 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par 1’Université de Genéve; série consacrée a
Quelques questions de Géométrie et de Topologie.
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2. — Soit C une courbe algébrique irréductible dans un
espace linéaire S, & r dimensions (r = 2); nous indiquerons
par ,; ... 2, les coordonnées homogeénes d’un point dans cet.
espace. On appelle série linéaire sur C I'ensemble des groupes
de points qui sont découpés sur C par les hypersurfaces d’un
systéme linéaire:

Nfolx;) + Mflx) + o + A fla;) =0 (t =0,1,..,7) ; (1)

on peut dire aussi: ’ensemble des groupes de niveau constant
d’une fonction rationnelle sur la courbe C:
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Si ’on prend une surface algébrique F au lieu d’une courbe C,
on voit aussitot deux généralisations possibles de cette notion.
Avant tout, on peut considérer sur F, que nous supposerons
encore appartenant a S, (r > 3), les courbes d’intersection avec
les hypersurfaces d’un systéme linéaire (1), ¢c’est-a-dire les courbes
de niveau constant d’une fonction rationnelle ¢ sur F; elles
forment un systéme linéaire de courbes sur F. Ou bien I'on peut,
soit prendre les points d’intersection de I avec des variétés
algébriques V, , a r — 2 dimensions (donc avec des courbes, en
général gauches, lorsque I est une surface de I'espace ordinaire
a trois dimensions), soit considérer en méme temps sur F deux
fonctions rationnelles indépendantes ¢, ¢ avec leurs groupes de
niveaux constants simultanés; tant par I’'une que par 'autre de
ces deux constructions, on obtient sur I' des ensembles de groupes
de points, dont nous allons préciser la définition, qui sont ana-
logues aux séries linéaires sur une courbe, et qui ont recu le nom
de séries d’équivalence de groupes de points sur F. Systémes
linéaires de courbes et séries d’équivalence de groupes de points
sont sans doute deux idées bien différentes, car elles sont liées
respectivement & une seule ou bien & deux fonctions rationnelles
sur F. En passant des courbes aux surfaces elles se présentent
I'une et 'autre assez naturellement; mais tandis que la premiére,
la théorie des systemes linéaires de courbes, est depuis longtemps
une théorie organique, moyen puissant de recherche dans la

I’Enseignement mathém., 35me année, 1936. 17
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géométrie des variétés algébriques & deux dimensions, la
deuxiéme, qui se présente du premier abord comme bien plus
difficile, a été étudiée seulement dans ces derniéres années.

La définition méme d’une série d’équivalence de groupes de
points sur une surface n’est pas immédiate & énoncer. Elle a
traversé, dés le commencement de la théorie, plusieurs modifica-
tions dont il ne peut pas étre question ici; et cela est assez naturel:
les développements ultérieurs possibles de la théorie étant impré-
visibles, on ne pouvait choisir a priori avec certitude, parmi les
propriétés caractéristiques des séries linéaires sur une courbe,
la plus convenable a imiter. La définition que je vais exposer,
et qui semble désormais définitive, est la plus commode pour
organiser d’une facon simple la théorie; elle est intrinséque a la
surface que ’on considére, et rend en méme temps évident que
ce que I'on définit est invariant par rapport aux transformations
birationnelles de la surface. On commence par définir certaines
séries élémentaires, a partir desquelles on obtient les séries les
plus générales & I'aide des opérations de somme et de différence;
de la maniére suivante.

On appelle série d’équivalence élémentaire sur F Uensemble des
groupes de niveaux constants simultanés de deux fonctions ration-
nelles indépendantes ¢, U, a considérer sur F. Ces groupes de
points sont les intersections d’une courbe de niveau de ¢ et
d’une courbe de niveau de ¢, de toutes les manieres possibles;
et puisque les courbes de niveau constant de ¢, ¢ forment deux
systemes linéaires ] Cy ‘ et f Co |, on peut dire aussi, d’une facon
plus géométrique, mais encore intrinséque et invariante, qu’une
série élémentaire se compose des groupes des points d’inlersection
de deux courbes qui varient sur I appartenant a deux systémes
linéaires donnés; d’ou le nom de séries d’intersection compléte
qu’on avait donné aussi aux séries élémentaires.

Si les deux systémes linéaires ‘ Cq [ et ] Cy ] ont des points-base
en commun, ceux-ci appartiennent & tous les groupes de la série
élémentaire; on peut les négliger.

On peut faire rentrer dans la définition qui vient d’étre donnée
les cas particuliers suivants. Si | C;| et | Cy| se réduisent a
deux courbes fixes C; et Gy, la série élémentaire se compose d’un
seul groupe de points fixes de F. Si ] G, ‘ se réduit a une courbe
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fixe C;, tous les groupes de la série appartiennent a G;; la série
s’appelle alors une série d’équivalence curviligne, en opposition
aux séries superficielles dont les groupes recouvrent I toute
entiére; on dit aussi que les groupes de la série sont semifizes
sur C;; si C; est irréductible, la série considérée est une série
linéaire, découpée sur C; par le systéme }Cz ]; et toute série
linéaire sur une C; irréductible est une série élémentaire parti-
culiére sur F. Enfin, si toutes les courbes de , Cy ’, par exemple,
contiennent une composante fixe v, trréductible ou non, les
groupes de la série élémentaire contiennent tous un certain
nombre de points semifixes sur v,.

3. — Ces derniéres remarques montrent la nécessité de cons-
truire une théorie des séries de groupes de points sur les courbes
algébriques réductibles avant de commencer une théorie quel-
conque des séries d’équivalence sur une surface; en effet, comme
un groupe de points qui varie sur une courbe peut contenir des
points fixes, il est bien évident, méme a priori, qu'un groupe
de points variables sur une surface peut contenir soit des points
fixes soit des points qui peuvent varier seulement sur une courbe.
Cette théorie, tentée par M. NoETHER en 1886, a été développée
par M. SEveRrr en 1932. Il a défini une série d’équivalence sur
une courbe réductible C comme I’ensemble des groupes des
points qui sont découpés sur C par les hypersurfaces d’un systéme
linéaire; et parmi les choses fondamentales il a trouvé qu’une
telle série peut étre découpée sur C par un systéeme linéaire
d’hypersurfaces dont les éléments correspondent birationnelle-
ment aux groupes de la série; et qu'une série d’équivalence
compléte sur une courbe composée C; + C, + ... + G, s’obtient
toujours en prenant des séries linéaires complétes g,, g,, ...
sur les courbes composantes (ou sur quelques-unes seulement de
ces courbes), et en réunissant, de toutes les maniéres possibles,
un groupe de g, avec un groupe de g, , etc.

On comprend aussi qu’en passant des courbes irréductibles
aux courbes réductibles et aux surfaces, on doit abandonner le
nom de série linéaire, car les groupes, par exemple, d’une série
compléte sur une courbe réductible ne peuvent plus étre mis en
correspondance birationnelle sans aucune exception avec les
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points d’un espace linéaire, comme dans le cas d’une- courbe
irréductible.

Mais 1l faut ajouter que les groupes d’une série élémentaire o,
qui ne se compose pas d’un seul groupe de points fixes, forment
toujours une variété rationnelle. En effet, si ¢ n’est pas une série
curviligne, il y a une correspondance birationnelle entre les
groupes de o et les couples d’éléments de deux variétés linéaires
} Cy ‘ et l Cy ); tandis que, lorsque o est une série curviligne, ses
groupes correspondent birationnellement, nous 'avons dit tout
a I’heure, aux courbes d’un systéeme linéaire convenable.

4. — S1 T'on dispose d’un modéle projectif de F dans I’espace
ordinaire, on peut donner pour une série élémentaire la cons-
truction suivante. Les deux systémes linéaires | Cy | et | C,| qui
définissent la série sont découpés sur I, en excluant certaines
courbes fixes éventuelles, par deux systémes linéaires de sur-
faces X; et X,; l'intersection d’une surface de 2; avec une
surface de 2, est alors une courbe, en général gauche, qui varie
dans un systéme continu S de courbes, et qui rencontre F en
les points d’un groupe de la série donnée (et peut-étre encore
dans des points fixes que I'on peut négliger). La construction
s’applique encore dans tous les cas particuliers que la série peut
présenter; si X,, par exemple, admet une courbe-base apparte-
nant & F, tous les groupes de la série contiennent une partie
semifixe.

5. — Soient maintenant o, o, deux séries élémentaires; on
peut alors parler de la série somme o; + o6,. S1 64, 6, sont décou-
pées sur I’ par des systémes continus S, et S, de courbes, la
série 6; -+ o, sera découpée sur I' par le systéeme S; + S,.

S’il y a dans ¢, des groupes chacun contenant un groupe de o,,
les groupes résidus forment une série ¢ qu’on appelle la différence
6, — G,. Lia série ainsi obtenue peut étre découpée sur I’ elle
aussi a 1’aide de courbes convenables 1.

1 En effet, soient S;, S, les deux systémes de courbes qui découpent sur F les séries
données nq, 5y, €n dehors de certains groupes de points fixes A;, A,; et soit G un groupe
variable de o; — oo. I1 ¥y aura alors une courbe C; de S; qui découpe sur F les points
de G, ceux de A, et ceux d’un groupe G, de oy; et il y aura aussi une courbe C, de S,
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Si, par exemple, o; est une série élémentaire dont les groupes
contiennent une partie semifixe qui varie dans une série élémen-
taire (curviligne) o,, alors o, — o, s’obtient de &, en négligeant
dans tous ses groupes la partie semifixe; on Pappelle une série
d’intersection partielle.

De tout ce qui précéde on déduit que, lorsqu’on connait sur F
des séries élémentaires o4 6y ..., c;l' 6; ..., on peut considérer aussi
une série du type Zo, — Xa;, pourvu qu'il existe des groupes
de T, qui contiennent chacun un groupe de Zo;. Voila les séries
d’équivalence les plus générales: Une série d’équivalence sur une
surface algébrique F est donc un ensemble de groupes de points
qu’on peut obtenir a U'aide des opérations de somme et de différence
en partant d’un nombre fini de séries élémentaires.

6. — On peut démontrer encore que tout systeme continu S
de courbes découpe sur F une série d’équivalence, méme lorsque
la courbe générale C de S n’est pas 'intersection compléte de
deux surfaces comme au n° 4. L.a démonstration, bien simple,
s’appuie sur la représentation monoidale des courbes gauches
et de la maniere suivante. La courbe C est I'intersection partielle
du cone, qu’on obtient en la projetant d’un point O de I’espace,
avec une surface monoidale X; bien déterminée, de sommet O,
dont 'ordre ne change pas lorsque C décrit S. La partie restante
de I'intersection (XX;) est & son tour I'intersection compléte du
méme cone X avec une surface convenable X,. La série découpée
sur I par les courbes C de S est done la différence des deux séries
découpées sur I par les deux courbes variables d’intersection
complete (22;) et (XX,).

Toutes ces constructions peuvent g’étendre sans aucune
difficulté aux surfaces d’un espace S, & r > 3 dimensions; on
parlera alors de variétés V., & r — 2 dimensions au lieu de
parler de courbes de S;. En conclusion: Les séries d’équivalence

découpant F en G, et A,; c’est-a-dire:

(C]_a F) = G + Al —i“ G2 (] (025 F) = Gz + AZ ;
on en déduit:

Donc G est découpé sur F par la courbe Cy — Gy, en dehors du groupe fixe A; — A,.
Il- est bien possible que tout cela doive é&tre entendu au sens virtuel, comme il arrive
bien souvent dans la théorie des opérations sur les séries et les systémes linéaires.
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sur une surface F peuvent s’obtenir en découpant F par les V,_,

d’une famille continue, ou bien comme différence de deux séries.
ainsi construites.

Un résultat annoncé tres récemment par M. SEVERI a précisé
davantage la construction d’une série d’équivalence, dans le
sens que les groupes d’une telle série sont toujours les inter-
sections de F avec une V,_,, variable d’une maniere continue,
en dehors, peut-étre, d’un groupe de points fixes et d’un groupe
semifixe sur une courbe irréductible de F.

La définition et la construction des séries d’équivalence sur
une surface deviennent ainsi complétes et parfaites.

7. — Laissons de c6té maintenant ’aspect algébrico-géomé-
trique de la théorie pour traiter des liaisons entre les séries
d’équivalence que nous venons de définir et les propriétés
topologiques de la surface F. Le probléme fondamental qui se
présente ici est de caractériser une série d’équivalence ¢ donnée
sur F' au moyen de propriétés topologiques; a cet effet il faut
considérer sur la Riemannienne, a quatre dimensions, de F les
cycles formés par des groupes de o, c¢’est-a-dire les cycles qu’on
peut obtenir en faisant varier sur I' un groupe de . On voit
mieux la chose au travers d’une variété V qui représente bira-
tionnellement les groupes de o; V aura la méme dimension
(complexe) r de o; on peut 'obtenir bien simplement comme une
variété contenue dans une image birationnelle de tous les groupes
de n points de F. On aura alors entre V, et I une certaine corres-
pondance algébrique, par laquelle & tout point P’ de V, corres-
pondent sur F les n points Py, P,, ..., P, d’un groupe de o, tandis
qu’a un point P de F correspondent sur V, tous les points P’ qui
sont les images des groupes de ¢ contenant P. Lorsque P’ décrit
sur V, un cycle A’; on peut démontrer que les points corres-
pondants sur I décriront eux aussi un cycle A, ayant la méme
dimension que A’. On peut se borner aux cycles & une ou a deux
dimensions, soit & cause de la dualité topologique qui fait
correspondre les cycles & une et ceux a trois dimensions sur la
Riemannienne de F, soit parce qu'un cycle A" de dimension plus
grande que trois donne lieu sur I a des cycles sans intérét ™.

1 L’affirmation précédente est facile & établir. Lorsque A’ est un cycle linéaire,
A aussi est évidemment un cycle linéaire. Supposons alors que A’ soit un cycle & deux
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On voit aussi tout de suite que si A’ est nul, A aussi est nul;
et que, & cause du caractére algébrique de la correspondance
entre V. et F, si A’ est algébrique A V’est aussi.

Choisissons alors sur I une base pour les cycles a une et
4 deux dimensions; la premiére se compose de 2¢ cycles
I, T4 .., T8, ou ¢ =p,— p, est Virrégularité de F; la
deuxiéme comprend, en général, p cycles algébriques non nuls

s 15, ...y T8, 0, cycles qui ne'sont pas algébriques et qui sont
homologiquement indépendants des cycles algébriques
et T+ .. T¥™ et enfin v — 1 cycles diviseurs de zéro
Dyttt . Tgtet=l. on sait que p est le nombre-base de
MM. Picarp et SEVERI pour la totalité des courbes algébriques
existant sur F, p, est le nombre des intégrales doubles de la
deuxiéme espéce appartenant a F; au point de vue topologique
e + g, est l'ordre de connexion superficielle de F, tandis que o
est ié & la torsion superficielle de F.

Soient encore AT et A* deux bases pour les cycles & une et
&4 deux dimensions de V,.

Si A" et A¥ sont les cycles de F qui correspondent & A™ et &

A, on pourra écrire les relations suivantes:

24
A? s Ekhiri )
i=1

k 3)

? %0 1
5 . — , .
/ Ay NE&LMP;+ EMMF‘;+1+ EVMI‘%_;—‘G‘H_% .
i=1 1=1 i=1

'

On pourrait écrire ces formules pour toute série algébrique de
groupes de points sur I'; mais dans notre cas il s’agit d’une série

dimensions. La variété V, contient une variété¢ dirimante ®, qui est lieu des points
de V, qui représentent les groupes de n points de - contenant des points confondus;
si’on suppose qu’un groupe de o se compose en général de n points différents, la variété
@ aura au plus 2r — 2 dimensions réelles; et le cycle A’, ou bien un cycle homologue
tres voisin, aura un nombre fini de points communs avec @ ; entourons tous ces points
de A’ par des petites cellules & deux dimensions qui les contiennent a leur intérieur;
A’ deviendra une surface ouverte A‘g, qu’on peut recouvrir par un complexe R’; &
chaque cellule & deux dimensions de k’ correspondent, sur F, n cellules analogues toutes
différentes et qui ne présentent pas de points communs; & k’ correspond donc un
complexe k & deux dimensions qui recouvre la surface g correspondante & A% ; au
contour de k’ correspond le contour de k; en passant & la limite, lorsque A% tend vers a’,
Ao se fermera en méme temps que A’y et tendra vers A qui sera donc un cycle 4 deux
dimensions. Selon donc que A’ est linéaire ou &4 deux dimensions, A est aussi linéaire
ou a deux dimensions. :
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d’équivalence. Quelles particularités présentent alors les coeffi-
cients A, p, 1, v ? On comprend bien, en effet, que ces coefficients
doivent jouer un role trés important dans notre théorie.

Supposons en premier lieu que o soit une série élémentaire,
qui ne se réduise pas a un seul groupe de points fixes. V, est dans
ce cas une variété rationnelle. On en déduit que tout cycle
linéaire A" de V, est nul; le cycle correspondant A sur F sera
nul aussi, et les coefficients A seront tous nuls. Tout cycle & deux
dimensions de V, peut étre transporté sur une surface rationnelle
contenue dans V,; il est done algébrique et il n’est pas un diviseur
de zéro; le cycle correspondant sur F aura les mémes propriétés;
done tous les coefficients w et v seront nuls.

A ce point 1l convient de donner quelques définitions. On dira
qu'une série algébrique de groupes de points sur I est:

a) a circulation linéaire nulle, lorsque les coefficients A des
formules (3) sont tous nuls, c’est-a-dire lorsque a tout cycle
linéaire de I'image V, de la série correspond sur F un cycle
linéaire nul;

b) a circulation superficielle algébrique, lorsque les coeffi-
cients p. sont tous nuls, ¢’est-a-dire lorsque & tout cycle a deux
dimensions de V, correspond sur I' un cycle algébrique;

¢) a cycle-torston nulle lorsque les coeflicients v sont tous nuls,
de sorte qu’a tout diviseur de zéro & deux dimensions de V
correspond sur F un cycle nul. On emploie le terme «cycle-
torsion », sans dire simplement « torsion », parce que V peut bien
avoir une torsion superficielle.

Une série élémentaire est donc en méme temps a circulation
linéaire nulle, & circulation superficielle algébrique et a cycle-
torsion nulle. Il faut remarquer que, méme pour une série
élémentaire, les coefficients p. ne seront pas en général tous nuls;
en effet, si la série est I'intersection des deux systémes linéaires
| Cy | et | Cy |, une courbe de | C; | donne lieu sur F & un cycle a
deux dimensions, lieu de groupes de la série, et qui n’est pas en
général nul; done, si 'on cherche une définition topologique des
séries d’équivalence, 1l ne faut pas exiger la condition que la
circulation superficielle soit complétement nulle. |

Les mémes propriétés sont évidemment vraies aussi pour la
somme de deux séries élémentaires.
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Pour passer a la différence o, — o, de deux séries élémentaires,
il faut dire d’avance que si une série o a la propriété a) ou b) ou ¢),
et si o’ est une série contenue dans o, elle aura aussi la propriété a)
ou b) ou ¢); la chose est presque évidente, et vient de ce que
I'image V' de o’ est contenue dans I'image V de o. Soit donc
6 = 6, — 0,; & tout groupe G de ¢ on pourra associer un groupe
G, de o, et un groupe G; de o, de maniére que G = G; — Gy;
lorsque G varie dans o, les lieux de G; et de G, seront deux séries
o-l' et o;, qui pourront étre différentes de o, et o,, mais qui seront
certainement contenues dans o, et o,. Si la correspondance entre
les groupes G, G,, G, est univoque, on pourra représenter o
et o, sur la méme variété V., qui représente déja o; et alors un
cycle A’ de V, donnera lieu a trois cycles A, A;, A, de F, lieux
de groupes de o, o, 65, et Pon aura A = A; — A,. Done, si A’
est linéaire, A, et A,, et donc A aussi, seront nuls car o, et o,
sont contenues dans o, et c,; de méme, si A’ a deux dimensions,
A, et A,, et donc A aussi, seront algébriques et ne seront pas des
diviseurs de zéro. 1l faut procéder avec un peu plus d’attention
lorsque a tout groupe G, (ou G,) correspondent plusieurs groupes
G: dans ce cas o, et o, ne peuvent plus étre représentées bira-
tionnellement sur V,, mais seulement sur des involutions ou sur
des systémes de variétés contenues dans V,; mais ces involutions
ou systémes seront en tous cas des nouvelles variétés algébriques
Vi, et Vig; de sorte qu’on passera du cycle A" aux cycles A,
et A, & travers deux cycles sur ces variétés nouvelles.

En conclusion: Toute série d’équivalence est a circulaiion linéaire
nulle, a circulation superficielle algébrique et a cycle-torsion nulle.

La propriété inverse est-elle vraie ? 11 y a des raisons pour le
supposer; les séries d’équivalence seraient alors complétement
caractérisées au point de vue topologique. Mais la démonstration
de la propriété inverse n’existe pas encore; avenir dira si les
suppositions en sa faveur sont justifiées ou non.

8. — Les questions nouvelles qui se présentent ici, et dont les
solutions ne sont pas encore toutes connues, sont vraiment
nombreuses et importantes.

En premier lieu, les considérations topologiques que nous
avons rapidement développées suggeérent tout naturellement
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une question qui n’a pas d’analogue dans la théorie des courbes
algébriques. Sur une telle courbe les groupes G d’une série
continue sont équivalents entre eux s’il existe un nombre £ > 1
tel que les groupes kG soient équivalents; sur une surface les
groupes kG peuvent bien appartenir a une série d’équivalence
sans que les groupes G appartiennent & une série d’équivalence.
Cela dépend de la circonstance que les surfaces algébriques
peuvent avoir une torsion topologique. Il faut done introduire
aussi des séries de pseudoéquivalence, qui sont définies par la
propriété qu’on vient de dire. Pour ces autres séries il est possible
de donner une définition topologique compléte: elles sont les
seules séries dont la circulation superficielle est algébrique, et
dont la circulation linéaire est pseudonulle; cette derniére
condition se traduit sur les coefficients A des formules (3), et
signifie que tout cycle linéaire de I rempli par des groupes de la
série est un diviseur de zéro. Les séries d’équivalence sont des
cas particuliers des séries de pseudoéquivalence.

On a cherché aussi & établir quelles sont les surfaces dont les
points sont deux & deux pseudoéquivalents; les surfaces en
question sont les surfaces réguliéres dont le genre géométrique
est nul. Si on veut, en particulier, des surfaces dont les points
solent deux a deux équivalents, il faut ajouter la condition que
sur la surface que l'on considere la division des courbes soit
univoque; les trois conditions sont vérifiées en méme temps par
les surfaces rationnelles, mais 'on ne sait pas encore si elles
entrainent nécessairement la rationalité de la surface.

Une autre question fondamentale est celle des séries d’équi-
valence complétes. 11 y a ici une grande différence entre la théorie
des courbes et celle des surfaces; en effet, si les groupes de points
A, B, C d’une surface sont deux a deux équivalents; on ne peut
dire que les trois séries d’équivalence complétes et irréductibles
définies par A, B; B, C; C, A représentent toujours une seule
et méme série.

Je rappelle enfin ’application qu’on a faite de la notion des
séries d’équivalence & la théorie générale des correspondances
algébriques entre deux surfaces algébriques. Cette théorie, qui
a été abordée par M. G. ALBANESE en partant des propriétés des
systémes continus complets de courbes existant sur une surface
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algébrique, a été développée par M. SEVERI comme application
de la théorie des séries d’équivalence, d’une maniére qui montre
lumineusement quels sont les traits essentiels de la question,
et qui permet d’arriver & un principe général de correspondance
pour les surfaces algébriques; le principe que M. ZEUTHEN avait
donné en 1906 y rentre comme un cas particulier. |

Et je voudrais vous parler encore des invariants nouveaux
d’une surface algébrique qu’on peut déja entrevoir & 1'aide de la
théorie des séries d’équivalence.

Mais j’ai déja trop abusé de votre patience ! J’espére que le
peu que j’ai dit suffira pour vous montrer que la géométrie des
variétés algébriques, loin d’étre épuisée, a trouvé un terrain
encore inconnu dont on ne peut pas encore prévoir toute I'im-
portance et toutes les ressources. Et quant aux rapports entre
la géométrie algébrique et la topologie, j’espere que la géométrie
algébrique donnera encore une fois aux spécialistes de la
topologie des exemples précieux, des idées fécondes.
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