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INTRODUCTION A LA THÉORIE DES SÉRIES

D'ÉQUIVALENCE SUR UNE SURFACE ALGÉBRIQUE1

PAR

E. G. Togliatti (Gênes).

1. — La Géométrie algébrique, c'est-à-dire la Géométrie des
variétés algébriques au point de vue des transformations bira-
tionnelles des variétés mêmes, s'est enrichie récemment d'un
nouveau chapitre dont l'importance est bien remarquable. Il
s'agit d'une manière nouvelle de construire sur les surfaces

algébriques (et, plus généralement, sur les variétés algébriques
à plus de deux dimensions) une théorie analogue à celle des séries

linéaires de groupes de points sur les courbes algébriques: la
théorie des séries d'équivalence de groupes de points.

Le premier travail dans cet ordre d'idées est un Mémoire de

M. F. Severi, publié en 1932 dans les Comm. Math. Helv. à

l'occasion du dernier Congrès international des Mathématiciens;
l'école géométrique italienne, et surtout M. Severi, ont ensuite
développé la nouvelle théorie, dont l'intérêt ne fait qu'augmenter,
soit à cause des résultats qu'on en a déjà tirés dans le domaine
de la géométrie, soit à cause des points de contact, nombreux
et suggestifs, qu'elle présente avec d'autres théories de la géométrie

et de l'analyse. Dans cette introduction je me propose de

vous présenter, le plus rapidement possible, la définition géométrique

des séries d'équivalence sur une surface algébrique, et de

vous exposer quelques-unes des liaisons entre la théorie dont il
est question et la Topologie des surfaces algébriques, en laissant
toujours de côté les détails des démonstrations.

i Conférence faite le 22 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à
Quelques questions de Géométrie et de Topologie.
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2. — Soit C une courbe algébrique irréductible dans un

espace linéaire Sr h r dimensions (r > 2) ; nous indiquerons

par x0x1...xr les coordonnées homogènes d'un point dans cet

espace. On appelle série linéaire sur C l'ensemble des groupes
de points qui sont découpés sur C par les hypersurfaces d'un

système linéaire:

\foiXi) + + ••• + Kfs(xi) ~ 0 (l ~ ' W

on peut dire aussi: l'ensemble des groupes de niveau constant
d'une fonction rationnelle sur la courbe C:

^ Xl/v4+ ""+ Xs/TW (2)

Si l'on prend une surface algébrique F au lieu d'une courbe C,

on voit aussitôt deux généralisations possibles de cette notion.
Avant tout, on peut considérer sur F, que nous supposerons
encore appartenant à Sr (r ^ 3), les courbes d'intersection avec
les hypersurfaces d'un système linéaire (1), c'est-à-dire les courbes
de niveau constant d'une fonction rationnelle 9 sur F ; elles

forment un système linéaire de courbes sur F. Ou bien l'on peut,
soit prendre les points d'intersection de F avec des variétés
algébriques Vr_2 à r — 2 dimensions (donc avec des courbes, en

général gauches, lorsque F est une surface de l'espace ordinaire
à trois dimensions), soit considérer en même temps sur F deux
fonctions rationnelles indépendantes 9, ^ avec leurs groupes de

niveaux constants simultanés; tant par l'une que par l'autre de

ces deux constructions, on obtient sur F des ensembles de groupes
de points, dont nous allons préciser la définition, qui sont
analogues aux séries linéaires sur une courbe, et qui ont reçu le nom
de séries dé équivalence de groupes de points sur F. Systèmes
linéaires de courbes et séries d'équivalence de groupes de points
sont sans doute deux idées bien différentes, car elles sont liées

respectivement à une seule ou bien à deux fonctions rationnelles
sur F. En passant des courbes aux surfaces elles se présentent
l'une et l'autre assez naturellement; mais tandis que la première,
la théorie des systèmes linéaires de courbes, est depuis longtemps
une théorie organique, moyen puissant de recherche dans la

L'Enseignement mathém., 35me année, 1936. 17



258 E. G. TOGLIATTI
géométrie des variétés algébriques à deux dimensions, la
deuxième, qui se présente du premier abord comme bien plus
difficile, a été étudiée seulement dans ces dernières années.

La définition même d'une série d'équivalence de groupes de

points sur une surface n'est pas immédiate à énoncer. Elle a

traversé, dès le commencement de la théorie, plusieurs modifications

dont il ne peut pas être question ici ; et cela est assez naturel :

les développements ultérieurs possibles de la théorie étant
imprévisibles, on ne pouvait choisir a priori avec certitude, parmi les

propriétés caractéristiques des séries linéaires sur une courbe,
la plus convenable à imiter. La définition que je vais exposer,
et qui semble désormais définitive, est la plus.commode pour
organiser d'une façon simple la théorie; elle est intrinsèque à la
surface que l'on considère, et rend en même temps évident que
ce que l'on définit est invariant par rapport aux transformations
birationnelles de la surface. On commence par définir certaines
séries élémentaires, à partir desquelles on obtient les séries les

plus générales à l'aide des opérations de somme et de différence;
de la manière suivante.

On appelle série d'équivalence élémentaire sur F Vensemble des

groupes de niveaux constants simultanés de deux fonctions rationnelles

indépendantes 9, à considérer sur F. Ces groupes de

points sont les intersections d'une courbe de niveau de 9 et
d'une courbe de niveau de <];, de toutes les manières possibles;
et puisque les courbes de niveau constant de 9, ^ forment deux
systèmes linéaires | C2 | et | C21, on peut dire aussi, d'une façon

plus géométrique, mais encore intrinsèque et invariante, qu''une
série élémentaire se compose des groupes des points d'intersection
de deux courbes qui varient sur F appartenant à deux systèmes

linéaires donnés ; d'où le nom de séries d'intersection complète

qu'on avait donné aussi aux séries élémentaires.
Si les deux systèmes linéaires | Gx | et | C21 ont des points-base

en commun, ceux-ci appartiennent à tous les groupes de la série

élémentaire; on peut les négliger.
On peut faire rentrer dans la définition qui vient d'être donnée

les cas particuliers suivants. Si | Gx | et | C21 se réduisent à

deux courbes fixes Ci et C2, la série élémentaire se compose d'un
seul groupe de points fixes de F. Si | Cx | se réduit à une courbe
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fixe Cx, tous les groupes de la série appartiennent à Gx; la série

s'appelle alors une série (Téquivalence curviligne, en opposition
aux séries superficielles dont les groupes recouvrent F toute
entière; on dit aussi que les groupes de la série sont semifixes

sur Cx; si Cx est irréductible, la série considérée est une série

linéaire, découpée sur Cx par le système | C2 | ; et toute série

linéaire sur une Ci irréductible est une série élémentaire
particulière sur F. Enfin, si toutes les courbes de | |, par exemple,
contiennent une composante fixe y1? irréductible ou non, les

groupes de la série élémentaire contiennent tous un certain
nombre de points semifixes sur yx.

3. — Ces dernières remarques montrent la nécessité de
construire une théorie des séries de groupes de points sur les courbes

algébriques réductibles avant de commencer une théorie
quelconque des séries d'équivalence sur une surface; en effet, comme
un groupe de points qui varie sur une courbe peut contenir des

points fixes, il est bien évident, même a priori, qu'un groupe
de points variables sur une surface peut contenir soit des points
fixes soit des points qui peuvent varier seulement sur une courbe.
Cette théorie, tentée par M. Noether en 1886, a été développée

par M. Severi en 1932. Il a défini une série d'équivalence sur
une courbe réductible C comme l'ensemble des groupes des

points qui sont découpés sur C par les hypersurfaces d'un système
linéaire; et parmi les choses fondamentales il a trouvé qu'une
telle série peut être découpée sur C par un système linéaire
d'hypersurfaces dont les éléments correspondent birationnelle-
ment aux groupes de la série; et qu'une série d'équivalence
complète sur une courbe composée Cx + C2 + + C^ s'obtient
toujours en prenant des séries linéaires complètes gnv gn2,

sur les courbes composantes (ou sur quelques-unes seulement de

ces courbes), et en réunissant, de toutes les manières possibles,
un groupe de gn± avec un groupe de gna, etc.

On comprend aussi qu'en passant des courbes irréductibles
aux courbes réductibles et aux surfaces, on doit abandonner le
nom de série linéaire, car les groupes, par exemple, d'une série
complète sur une courbe réductible ne peuvent plus être mis en
correspondance birationnelle sans aucune exception avec les
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points d'un espace linéaire, comme dans le cas d'une courbe
irréductible.

Mais il faut ajouter que les groupes d'une série élémentaire a,
qui ne se compose pas d'un seul groupe de points fixes, forment
toujours une variété rationnelle. En effet, si g n'est pas une série

curviligne, il y a une correspondance birationnelle entre les

groupes de g et les couples d'éléments de deux variétés linéaires
| C-l | et | C21 ; tandis que, lorsque a est une série curviligne, ses

groupes correspondent birationnellement, nous l'avons dit tout
à l'heure, aux courbes d'un système linéaire convenable.

4. — Si l'on dispose d'un modèle projectif de F dans l'espace
ordinaire, on peut donner pour une série élémentaire la
construction suivante. Les deux systèmes linéaires j Cx | et | C2 | qui
définissent la série sont découpés sur F, en excluant certaines
courbes fixes éventuelles, par deux systèmes linéaires de
surfaces et S2; l'intersection d'une surface de avec une
surface de H2 est alors une courbe, en général gauche, qui varie
dans un système continu S de courbes, et qui rencontre F en
les points d'un groupe de la série donnée (et peut-être encore
dans des points fixes que l'on peut négliger). La construction
s'applique encore dans tous les cas particuliers que la série peut
présenter; si 21? par exemple, admet une courbe-base appartenant

à F, tous les groupes de la série contiennent une partie
semifixe.

5. — Soient maintenant cq, g2 deux séries élémentaires; on

peut alors parler de la série somme g1 + g2. Si cq, g2 sont découpées

sur F par des systèmes continus Sx et S2 de courbes, la
série a1 + a2 sera découpée sur F par le système S1 + S2.

S'il y a dans g± des groupes chacun contenant un groupe de cj2,

les groupes résidus forment une série g qu'on appelle la différence

g± — g2. La série ainsi obtenue peut être découpée sur F elle
aussi à l'aide de courbes convenables L

i En effet, soient Sl5 S2 les deux systèmes de courbes qui découpent sur F les séries
données <j2, en dehors de certains groupes de points fixes Av A2; et soit G- un groupe
variable de n1 — n2. il y aura alors une courbe ^ de Sx qui découpe sur F les points
de G-, ceux de Ax et ceux d'un groupe G2 de <r2; et il y aura- aussi une courbe C2 de S2
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Si, par exemple, oq est une série élémentaire dont les groupes
contiennent une partie semifixe qui varie dans une série élémentaire

(curviligne) cr2, alors oq — <j2 s'obtient de g1 en négligeant
dans tous ses groupes la partie semifixe; on l'appelle une série

d'intersection partielle.
De tout ce qui précède on déduit que, lorsqu'on connaît sur F

des séries élémentaires crL cr2 a± cr2..., on peut considérer aussi

une série du type 2^- — 2ar-, pourvu qu'il existe des groupes
de 2^ qui contiennent chacun un groupe de 2cq. Voilà les séries

d'équivalence les plus générales: Une série d'équivalence sur une

surface algébrique F est donc un ensemble de groupes de points
qu'on peut obtenir à l'aide des opérations de somme et de différence

en partant d'un nombre fini de séries élémentaires.

6. — On peut démontrer encore que tout système continu S

de courbes découpe sur F une série d'équivalence, même lorsque
la courbe générale G de S n'est pas l'intersection complète de

deux surfaces comme au n° 4. La démonstration, bien simple,
s'appuie sur la représentation monoïdale des courbes gauches
et de la manière suivante. La courbe C est l'intersection partielle
du cône, qu'on obtient en la projetant d'un point 0 de l'espace,
avec une surface monoïdale 2X bien déterminée, de sommet 0,
dont l'ordre ne change pas lorsque C décrit S. La partie restante
de l'intersection (22x) est à son tour l'intersection complète du
même cône 2 avec une surface convenable 22. La série découpée
sur F par les courbes C de S est donc la différence des deux séries

découpées sur F par les deux courbes variables d'intersection
complète (22x) et (222).

Toutes ces constructions peuvent s'étendre sans aucune
difficulté aux surfaces d'un espace Sr à r > 3 dimensions; on
parlera alors de variétés Vr_2 à r — 2 dimensions au lieu de

parler de courbes de S3. En conclusion: Les séries d'équivalence

découpant F en G2 et A2; c'est-à-dire:

(C, F) «a G + A, + G2 (C2 F) « G2 + A2 ;

on en déduit:
(C, — C2 F) - G + (Ax — A2)

Donc G est découpé sur F par la courbe Ci — C2, en dehors du groupe fixe At — A2.Il est bien possible que tout cela doive être entendu au sens virtuel, comme il arrive
bien souvent dans la théorie des opérations sur les séries et les systèmes linéaires.
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sur une surface F peuvent s'obtenir en découpant F par les Vr_2
d'une famille continue, ou bien comme différence de deux séries

ainsi construites.
Un résultat annoncé très récemment par M. Severi a précisé

davantage la construction d'une série d'équivalence, dans le

sens que les groupes d'une telle série sont toujours les
intersections de F avec une Vr_2, variable d'une manière continue,
en dehors, peut-être, d'un groupe de points fixes et d'un groupe
semifixe sur une courbe irréductible de F.

La définition et la construction des séries d'équivalence sur
une surface deviennent ainsi complètes et parfaites.

7. — Laissons de côté maintenant l'aspect algébrico-géomé-
trique de la théorie pour traiter des liaisons entre les séries

d'équivalence que nous venons de définir et les propriétés
topologiques de la surface F. Le problème fondamental qui se

présente ici est de caractériser une série d'équivalence g donnée

sur F au moyen de propriétés topologiques; à cet effet il faut
considérer sur ]a Riemannienne, à quatre dimensions, de F les

cycles formés par des groupes de cr, c'est-à-dire les cycles qu'on
peut obtenir en faisant varier sur F un groupe de g. On voit
mieux la chose au travers d'une variété V qui représente bira-
tionnellement les groupes de er; V aura la même dimension
(complexe) rde a; on peut l'obtenir bien simplement comme une
variété contenue dans une image birationnelle de tous les groupes
de n points de F. On aura alors entre Vr et F une certaine
correspondance algébrique, par laquelle à tout point P' de Vr
correspondent sur F les n points P1? P2, Pn d'un groupe de cr, tandis
qu'à un point P de F correspondent sur Vr tous les points P' qui
sont les images des groupes de g contenant P. Lorsque P' décrit
sur Vr un cycle À', on peut démontrer que les points
correspondants sur F décriront eux aussi un cycle A, ayant la même
dimension que A'. On peut se borner aux cycles à une ou à deux

dimensions, soit à cause de la dualité topologique qui fait
correspondre les cycles à une et ceux à trois dimensions sur la
Riemannienne de F, soit parce qu'un cycle A' de dimension plus
grande que trois donne lieu sur F à des cycles sans intérêt1.

i L'affirmation précédente est facile à établir. Lorsque a' est un cycle linéaire,
a aussi est évidemment un cycle linéaire. Supposons alors que a' soit un cycle à deux
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On voit aussi tout de suite que si A' est nul, A aussi est nul;
et que, à cause du caractère algébrique de la correspondance
entre Vr et F, si A' est algébrique A l'est aussi.

Choisissons alors sur F une base pour les cycles à une et
à deux dimensions; la première se compose de 2q cycles
Tî, rj, r?3, où q Pg — pa est l'irrégularité de F; la
deuxième comprend, en général, p cycles algébriques non nuls
Tg, Tg, Fl, p0 cycles qui ne\sont pas algébriques et qui sont

homologiquement indépendants des cycles algébriques
rj+1, ri+2, F|+?/ et enfin r — 1 cycles diviseurs de zéro

rs+w+1, n+90+T~1; on sait que p est le nombre-base de

MM. Picard et Severi pour la totalité des courbes algébriques
existant sur F, p0 est le nombre des intégrales doubles de la
deuxième espèce appartenant à F ; au point de vue topologique
p + p0 est l'ordre de connexion superficielle de F, tandis que or

est lié à la torsion superficielle de F.
Soient encore Aj1 et Aj1 deux bases pour les cycles à une et

à deux dimensions de Vr.
Si A^ et Aj sont les cycles de F qui correspondent à A^ et à

A^, on pourra écrire les relations suivantes:

On pourrait écrire ces formules pour toute série algébrique de

groupes de points sur F ; mais dans notre cas il s'agit d'une série

dimensions. La variété Yr contient une variété dirimante 4>, qui est lieu des points
de Yr qui représentent les groupes de n points de contenant des points confondus;
si l'on suppose qu'un groupe de * se compose en général de n points différents, la variété
<J> aura au plus 2r — 2 dimensions réelles; et le cycle V, ou bien un cycle homologue
très voisin, aura un nombre fini de points communs avec 4>; entourons tous ces points
de A' par des petites cellules à deux dimensions qui les contiennent à leur intérieur;a' deviendra une surface ouverte a'0, qu'on peut recouvrir par un complexe h' ; à
chaque cellule à deux dimensions de k' correspondent, sur F, n cellules analogues toutes
différentes et qui ne présentent pas de points communs; à k' correspond donc un
complexe k à deux dimensions qui recouvre la surface a0 correspondante à a'0; aucontour de k' correspond le contour de k ; en passant à la limite, lorsque a'0 tend vers A',
Aq se fermera en même temps que a'0 et tendra vers a qui sera donc un cycle à deux
dimensions. Selon donc que a' est linéaire ou à deux dimensions, a est aussi linéaire
ou à deux dimensions.

(3)
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d'équivalence. Quelles particularités présentent alors les coefficients

X, p., g, v On comprend bien, en effet, que ces coefficients
doivent jouer un rôle très important dans notre théorie.

Supposons en premier lieu que a soit une série élémentaire,
qui ne se réduise pas à un seul groupe de points fixes. Vr est dans
ce cas une variété rationnelle. On en déduit que tout cycle
linéaire A' de Vr est nul; le cycle correspondant A sur F sera
nul aussi, et les coefficients X seront tous nuls. Tout cycle à deux
dimensions de Vr peut être transporté sur une surface rationnelle
contenue dans Vr; il est donc algébrique et il n'est pas un diviseur
de zéro; le cycle correspondant sur F aura les mêmes propriétés;
donc tous les coefficients g et v seront nuls.

A ce point il convient de donner quelques définitions. On dira
qu'une série algébrique de groupes de points sur F est:

a) à circulation linéaire nulle1 lorsque les coefficients X des

formules (3) sont tous nuls, c'est-à-dire lorsque à tout cycle
linéaire de l'image Vr de la série correspond sur F un cycle
linéaire nul;

b) à circulation superficielle algébrique, lorsque les
coefficients g sont tous nuls, c'est-à-dire lorsque à tout cycle à deux
dimensions de Vr correspond sur F un cycle algébrique;

c) à cycle-torsion nulle lorsque les coefficients v sont tous nuls,
de sorte qu'à tout diviseur de zéro à deux dimensions de V
correspond sur F un cycle nul. On emploie le terme « cycle-
torsion », sans dire simplement « torsion », parce que V peut bien
avoir une torsion superficielle.

Une série élémentaire est donc en même temps à circulation
linéaire nulle, à circulation superficielle algébrique et à cycle-
torsion nulle. Il faut remarquer que, même pour une série

élémentaire, les coefficients g ne seront pas en général tous nuls;
en effet, si la série est l'intersection des deux systèmes linéaires
| Cx j et | C2 |, une courbe de | Cx | donne lieu sur F à un cycle à

deux dimensions, lieu de groupes de la série, et qui n'est pas en

général nul; donc, si l'on cherche une définition topologique des

séries d'équivalence, il ne faut pas exiger la condition que la
circulation superficielle soit complètement nulle.

Les mêmes propriétés sont évidemment vraies aussi pour la
somme de deux séries élémentaires.
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Pour passer à la différence gx — cr2 de deux séries élémentaires,

il faut dire d'avance que si une série g a la propriété a) ou b) ou c),

et si a est une série contenue dans g, elle aura aussi la propriété a)

ou b) ou c); la chose est presque évidente, et vient de ce que

l'image V' de g' est contenue dans l'image V de g. Soit donc

c> gx — g2; à tout groupe G de g on pourra associer un groupe
G2 de o"2 et un groupe Gx de gx de manière que G — Gx — G2;

lorsque G varie dans g, les lieux de Gx et de G2 seront deux séries

cq et g^, qui pourront être différentes de cr1 et g2, mais qui seront
certainement contenues dans g1 et g2. Si la correspondance entre
les groupes G, G1? G2 est univoque, on pourra représenter g[

et g2 sur la même variété Vr qui représente déjà g; et alors un
cycle A' de Vr donnera lieu à trois cycles A, A1? A2 de F, lieux
de groupes de g, g2i et l'on aura A Ax — A2. Donc, si A'
est linéaire, Ax et A2, et donc A aussi, seront nuls car a[ et g'2

sont contenues dans gx et g2; de même, si A' a deux dimensions,
Ax et A2, et donc A aussi, seront algébriques et ne seront pas des

diviseurs de zéro. Il faut procéder avec un peu plus d'attention
lorsque à tout groupe Gx (ou G2) correspondent plusieurs groupes
G; dans ce cas g[ et g2 ne peuvent plus être représentées bira-
tionnellement sur Vn mais seulement sur des involutions ou sur
des systèmes de variétés contenues dans Vr; mais ces involutions
ou systèmes seront en tous cas des nouvelles variétés algébriques
V(1} et V[2); de sorte qu'on passera du cycle A' aux cycles Ax
et A2 à travers deux cycles sur ces variétés nouvelles.

En conclusion: Toute série dé équivalence est à circulation linéaire
nulle, à circulation superficielle algébrique et à cycle-torsion nulle.

La propriété inverse est-elle vraie Il y a des raisons pour le

supposer; les séries d'équivalence seraient alors complètement
caractérisées au point de vue topologique. Mais la démonstration
de la propriété inverse n'existe pas encore; l'avenir dira si les

suppositions en sa faveur sont justifiées ou non.

8. — Les questions nouvelles qui se présentent ici, et dont les
solutions ne sont pas encore toutes connues, sont vraiment
nombreuses et importantes.

En premier lieu, les considérations topologiques que nous
avons rapidement développées suggèrent tout naturellement
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une question qui n'a pas d'analogue dans la théorie des courbes
algébriques. Sur une telle courbe les groupes G d'une série
continue sont équivalents entre eux s'il existe un nombre A > 1

tel que les groupes AG soient équivalents; sur une surface les

groupes AG peuvent bien appartenir à une série d'équivalence
sans que les groupes G appartiennent à une série d'équivalence.
Cela dépend de la circonstance que les surfaces algébriques
peuvent avoir une torsion topoîogique. Il faut donc introduire
aussi des séries de pseudoéquivalence, qui sont définies par la
propriété qu'on vient de dire. Pour ces autres séries il est possible
de donner une définition topologique complète: elles sont les

seules séries dont la circulation superficielle est algébrique, et
dont la circulation linéaire est pseudonulle; cette dernière
condition se traduit sur les coefficients X des formules (3), et
signifie que tout cycle linéaire de F rempli par des groupes de la
série est un diviseur de zéro. Les séries d'équivalence sont des

cas particuliers des séries de pseudoéquivalence.
On a cherché aussi à établir quelles sont les surfaces dont les

points sont deux à deux pseudoéquivalents; les surfaces en

question sont les surfaces régulières dont le genre géométrique
est nul. Si l'on veut, en particulier, des surfaces dont les points
soient deux à deux équivalents, il faut ajouter la condition que
sur la surface que l'on considère la division des courbes soit
univoque; les trois conditions sont vérifiées en même temps par
les surfaces rationnelles, mais l'on ne sait pas encore si elles

entraînent nécessairement la rationalité de la surface.
Une autre question fondamentale est celle des séries

d'équivalence complètes. Il y a ici une grande différence entre la théorie
des courbes et celle des surfaces; en effet, si les groupes de points
A, B, C d'une surface sont deux à deux équivalents, on ne peut
dire que les trois séries d'équivalence complètes et irréductibles
définies par A, B; B, C; C, A représentent toujours une seule

et même série.
Je rappelle enfin l'application qu'on a faite de la notion des

séries d'équivalence à la théorie générale des correspondances
algébriques entre deux surfaces algébriques. Cette théorie, qui
a été abordée par M. G. Albanese en partant des propriétés des

systèmes continus complets de courbes existant sur une surface



THÉORIE DES SÉRIES D'ÉQUIVALENCE 267

algébrique, a été développée par M. Severi comme application
de la théorie des séries d'équivalence, d'une manière qui montre
lumineusement quels sont les traits essentiels de la question,
et qui permet d'arriver à un principe général de correspondance

pour les surfaces algébriques; le principe que M. Zeuthen avait
donné en 1906 y rentre comme un cas particulier.

Et je voudrais vous parler encore des invariants nouveaux
d'une surface algébrique qu'on peut déjà entrevoir à l'aide de la
théorie des séries d'équivalence.

Mais j'ai déjà trop abusé de votre patience J'espère que le

peu que j'ai dit suffira pour vous montrer que la géométrie des

variétés algébriques, loin d'être épuisée, a trouvé un terrain
encore inconnu dont on ne peut pas encore prévoir toute
l'importance et toutes les ressources. Et quant aux rapports entre
la géométrie algébrique et la topologie, j'espère que la géométrie
algébrique donnera encore une fois aux spécialistes de la
topologie des exemples précieux, des idées fécondes.
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