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QUELQUES RÉSULTATS RÉCENTS

DE LA TOPOLOGIE DES VARIÉTÉS *

PAR

W. Threlfall (Dresde).

Nous savons tous que le problème d'homéomorphie des

variétés à n dimensions, posé par Poincaré, est un des plus
intéressants et des plus importants de la Géométrie. Il est
intéressant en soi, car il a donné naissance à la Topologie combina-
toire ou algébrique, théorie comparable par son importance à la
Théorie des fonctions classique. Il est important par ses
applications à la Cosmologie, où il s'agit de déterminer l'aspect de

l'espace de notre intuition et de la physique. Dès l'instant où le

physicien a envisagé la possibilité dé considérer l'espace de notre
intuition, espace où nous vivons, comme clos, la tâche du
mathématicien est de lui proposer un choix d'espaces clos, et même de

les énumérer tous, comme il le ferait pour les polyèdres réguliers.
De plus, les variétés qui ont trait au problème d'homéomorphie,
se présentent comme variétés de solutions de systèmes d'équations

différentielles et sont de ce fait importantes pour les

questions de stabilité. Elles sont encore plus importantes pour
la géométrie algébrique.

Malheureusement le problème n'est complètement résolu que
pour deux dimensions. Je vais vous exposer maintenant les

recherches qui ont été faites récemment et qui ont pour but la
solution du problème pour trois dimensions et plus. Pour
simplifier ma tâche, je vais toutefois me borner à des variétés closes

i Conférence faite le 22 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à
Quelques questions de Géométrie et de Topologie. —- Traduction revue par M. M. Rueff
(Zurich).
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et homogènes; ce sont des variétés qu'il est possible de construire

au moyen d'un nombre fini de simplexes à n dimensions et dont
chaque point possède un voisinage homéomorphe à la sphère
massive à n dimensions.

Comme les variétés de points à n dimensions ne nous sont pas
accessibles dans toute leur généralité, nous nous demanderons
où elles se présentent dans la nature, et s'il ne nous serait pas
possible de connaître à fond certaines classes plus restreintes
qu'on entrevoit dans les applications. Nous restreindrons donc
la notion trop générale, sinon dans son étendue, du moins dans

son contenu. Nous nous bornerons à des variétés qui possèdent
une métrique de Riemann, ou bien sont homéomorphes à des

variétés algébriques. Ainsi, par exemple, en partant des espaces
métriques, nous ferons apparaître des variétés à a dimensions
comme domaines de discontinuité de groupes de mouvements.
On les obtient aussi comme espaces des phases de systèmes
mécaniques, en particulier comme espaces dont les points sont
des éléments d'arcs, de surfaces ou d'autres espaces bien connus;
dans ce cas les variétés sont fibrées. Les «fibres» sont composées
des éléments d'arcs passant par un même point. Ou encore, on
considère des espaces dont les points représentent des mouvements

rigides de la sphère à n dimensions. On peut aussi étudier
des hypersurfaces algébriques, ou encore des variétés groupes,
qu'on généralise ensuite et dont les points représentent les
transformations d'un groupe de Lie. Ou bien, finalement, on
recherche les conditions nécessaires pour qu'une variété à

n dimensions puisse être immergée dans un espace euclidien
à n dimensions.

Voyons d'abord les variétés à 3 dimensions. Au premier coup
d'oeil on pourrait espérer les obtenir toutes en étudiant, pour la
sphère, l'espace euclidien et l'espace hyperbolique, les domaines
de, discontinuité des groupes de mouvements sans points fixes.
Pour deux dimensions, toute surface close peut être obtenue
comme domaine de discontinuité d'un groupe de mouvements
sans points fixes, ou de la sphère, ou du plan euclidien, ou du
plan hyperbolique. En d'autres termes, on peut imposer à toute
surface close une métrique de courbure constante égale à 1,0
ou — 1.
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On pourrait donc espérer retrouver les mêmes propriétés pour

les espaces à 3 dimensions. Malheureusement il n'en est rien.
Le plus simple exemple du contraire est le produit
topologique de la sphère et du cercle qui ne se

trouve pas parmi les domaines de discontinuité. Ceci parce que
sa variété de recouvrement universelle possède deux extrémités
à l'infini. Donc le nombre de Betti à 2 dimensions du recouvrement

universel est p2 — l 1. Or, rappelons le théorème important

suivant: Le groupe fondamental dé un domaine de discontinuité

est le groupe facteur du groupe de mouvements, engendrant
ce domaine de discontinuité, par rapport au plus petit sous-groupe
contenant tous les mouvements à points fixes.

Donc, si le produit topologique cité plus haut était le domaine
de discontinuité d'un groupe de mouvements sans points fixes,
le groupe de mouvements serait son groupe fondamental. Le
recouvrement universel serait par conséquent ou la sphère à

3 dimensions ou l'espace euclidien ou l'espace hyperbolique.
Mais ces trois espaces ont un nombre de Betti p2 — 0 et ne

peuvent donc être homéomorphes au recouvrement universel de

notre produit topologique. Par contre, ce produit topologique
est, pour l'espace euclidien, domaine de discontinuité d'un
groupe de mouvements à points fixes qui peut être engendré par
les trois transformations suivantes, exprimées en coordonnées
cartésiennes:

I. x' — y + 1 y' — x zf z.

II. x' — y — 1 y' x z' ~ z.

III. x' x y' y j
z' z 1.

L'étude de tous les domaines de discontinuité des groupes de

mouvements sans points fixes ne nous fournira pas tous les

espaces à trois dimensions. Mais, contrairement au cas de deux
dimensions, déjà l'étude des domaines de discontinuité

de la sphère nous donne des espaces
intéressants. On sait que l'existence de points fixes, dans un
mouvement de la sphère à n dimensions Sn sur elle-même, conservant

i Les indices supérieurs indiquent toujours la dimension et ne sont pas à confondre
avec des exposants.
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l'orientation, est liée à la parité de n. Tout mouvement sera à

points fixes si n est pair. Dans ce cas le groupe facteur, du groupe
des mouvements par rapport au plus petit sous-groupe contenant
tous les mouvements à points fixes, sera formé d'un seul

élément. Et en vertu du théorème énoncé plus haut, le groupe
fondamental du domaine de discontinuité n'est également
composé que de l'élément unité. Mais pour deux dimensions,
seule la sphère parmi les surfaces closes possède ce groupe
fondamental. Par conséquent, pour deux dimensions, les

domaines de discontinuité des groupes de mouvement conservant

l'orientation ne sont rien de neuf; ils sont tous homéo-

morphes à la sphère à deux dimensions. Le seul groupe de

transformations métriques de la sphère à deux dimensions, sans

points fixes, est d'ordre 2, et son seul élément différent de

l'élément unité est la permutation des points diamétraux.
C'est une transformation inversant l'orientation. Son domaine
de discontinuité est donc une surface non-orientable, à savoir
le plan projectif. Pour 3 dimensions les représentations de la
sphère sur elle-même, inversant l'orientation, possèdent des

points fixes. Par conséquent on n'obtiendra aucun nouveau
domaine de discontinuité clos et non-orientable de l'espace
sphérique. On sait d'une part que les groupes discontinus de

mouvements de la sphère à 3 dimensions sont finis, et d'autre
part que les espaces non-orientables à 3 dimensions ont des

groupes fondamentaux infinis. On voit donc que les espaces
non-orientables à 3 dimensions ne peuvent apparaître comme
domaines de discontinuité de la sphère à 3 dimensions. D'ailleurs,
les domaines de discontinuité des groupes de transformations
de S3 inversant l'orientation ne sont pas même des variétés
homogènes.

Il existe par contre des mouvements sans points fixes de S3

sur elle-même qui conservent l'orientation. Imaginons notre
sphère comme sphère à 3 dimensions et de rayon 1, immergée
dans l'espace euclidien R4. Exprimée en coordonnées cartésiennes
son équation aura la forme:

2,2,2.2X1 I X2 ~r x3 T x4 1
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Un mouvement sans points fixes sera donné, par exemple, par
la transformation:

xi — xi cos 2 tu q[p — x2 sin 2 izq/p

x2 x1 sin 2ixqlp ~f x2 cos lizqjp

x3 x3 cos 2-rulp — x4 sin 2 tujp

x4 x3 sin 2 tu lp H- x4 cos 2n/p

Elle fait tourner le plan x1x2 de l'angle 2tcqjp et le plan x3x4
9 ^de l'angle — Nous supposerons p et q entiers, premiers entre

eux et satisfaisant à: O^q < p. La transformation envisagée
engendre un groupe cyclique de mouvements, groupe dont
l'ordre est p. Tous ces mouvements sont sans points fixes,
l'identité exceptée.

On peut se faire une idée du domaine de discontinuité en

projetant la sphère stéréographiquement sur un
hyperplan x4 0 avec le point (x4 x2 x3x4) (0 0 0 1) comme
centre de projection. Ce plan x4 0 est un espace euclidien à

3 dimensions, dans lequel nous introduirons des coordonnées
cartésiennes xyz de telle sorte que les axes xyz coïncident
respectivement avec les axes x4 x2 x3. Par la projection stéréographique
nous imposons artificiellement à ce plan la métrique sphérique
que la sphère avait reçue de l'espace à 4 dimensions dans lequel
elle fut immergée. Au groupe des mouvements rigides de la
sphère S3 sur elle-même correspond alors dans le plan x4 0

un groupe de « représentations sphériques » de cet espace 1.

Les intersections de la sphère unité S3 avec les hyperplans,
passant par l'origine de R4, c'est-à-dire les grands « hyper-
cercles » de la sphère unité, sont représentés sur des sphères
diamétrales de la sphère unité. Ces sphères diamétrales sont les

sphères qui coupent la sphère x2 + y2 + z2 1 suivant un
grand cercle. Le groupe des représentations sphériques mentionné
est caractérisé par le fait que l'application d'un de ses éléments

ne fait que permuter les sphères diamétrales de la sphère unité.
L'intersection de la sphère unité avec le plan x4 x2 est repré-

i Voir par ex. J. Hadamard, Gréométrie anallagmatique. Nouv. Ann. (6), 2,
p. 257-270.
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sentée sur le cercle unité du plan des xy, celle avec les plans
des x3 x4 est représentée sur l'axe des 2 qui possède dans la

métrique sphérique la longueur 2tc. Un mouvement rigide de la

sphère unité S3, tel que seul le plan des x1 x2 soit tourné d'angle 9,
est donc représenté sur une rotation rigide du cercle unité du

plan des xy. Cette rotation est une rotation rigide autour de

l'axe des 2. Considérons maintenant le mouvement de la sphère

unité qui ne fait que tourner le plan des x3 x4 d'un angle 9. Ce

mouvement est représenté par la transformation qui n'a pour
effet que de faire glisser l'axe des z sur lui-même de 9, grandeur
mesurée sphériquement. Le cercle unité du plan des xy et l'axe
des 2 ne se distinguent, sphériquement parlant, en aucune façon.
Par une transformation sphérique du type considéré on peut
même les transformer l'un dans l'autre. Un mouvement rigide
de la sphère unité, faisant tourner simultanément les plans des

x1 x2 et des x3 x4 d'un angle 9, est représenté par un « mouvement
hélicoïdal sphérique » qui fait tourner le cercle unité sur lui-même
et glisser l'axe des z d'une même grandeur 9. On peut donc
choisir dans l'espace xyz comme domaine de discontinuité de

notre groupe cyclique une lentille massive, limitée par deux
calottes passant par le cercle unité du plan des xy, situées

symétriquement par rapport à ce plan et formant entre elles

l'angle-^-. Le mouvement hélicoïdal dont nous avons parlé,

ordonne deux à deux les points des deux calottes et ceci de la
façon suivante: deux points correspondants s'obtiennent par une

rotation de autour de l'axe des z suivie d'une symétrie par

rappport au plan équatorial de la lentille, le plan des xy. Si nous
identifions deux points équivalents, la lentille devient le domaine
de discontinuité clos qu'est Vespace lenticulaire (p, q)1. Deux

points de l'arête de la lentille séparés par un arc de longueur

sont équivalents. Un tel arc représente donc dans l'espace
lenticulaire clos une courbe fermée, qui pour la première fois sera
un bord lorsqu'on l'aura parcourue p fois, à savoir le bord de la
calotte.

1 M. Gr. de Rham nomme « espaces cycliques » ce que j'appelle « espaces lenticulaires

».
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Pour p 1 et p 2 on obtient deux espaces à trois dimensions

bien connus, l'espace sphérique (sphère à

3 dimensions) et l'espace projectif. Dans ce dernier

cas l'arête de la lentille est une droite projective parcourue
deux fois et sur la lentille qui est une sphère on a à identifier
les points diamétraux. On obtient ces deux espaces en fermant
l'espace euclidien respectivement par un point infini et un plan
infini. C'est par ce fait qu'ils revêtent toute leur importance, car
dans ces espaces fermés les transformations conformes, ou pro-
jectives, sont biunivoques.

Pour un p quelconque on obtient un espace clos à 3 dimensions,

dont le groupe fondamental est cyclique d'ordre p. Comme
les groupes fondamentaux sont des invariants topologiques, deux

espaces lenticulaires issus de p différents, sont différents. C'est

un problème des plus difficiles que de dire quand deux espaces
de même p mais de q différents sont homéomorphes ou non.
Ce problème vient d'être résolu par M. Reidemeister à l'aide de

nouveaux invariants; nous y reviendrons.

Donnons encore deux exemples de domaines de discontinuité
à 3 dimensions. Prenons un dodécaèdre massif, qui est un espace
à 3 dimensions bordé. On en fait une variété close par l'identification

suivante: On identifie deux pentagones parallèles par un
mouvement hélicoïdal le long de la droite joignant leurs centres.

La rotation de ce mouvement est de ^ et son orientation la

même pour toutes les paires de pentagones. On obtient une
variété homogène, l'espace dodécaédrique
sphérique. Il apparaît aussi comme domaine de discontinuité
d'un groupe de mouvements sans points fixes de l'espace sphérique

à 3 dimensions. Le calcul de ses coefficients de torsion
montre que c'est un espace de Poincaré et qu'il a par conséquent
les mêmes groupes d'homologie que la sphère à 3 dimensions.
Le groupe de mouvements, dont il est le domaine de

discontinuité, est aussi son groupe fondamental, puisqu'il n'y a pas
de points fixes. C'est le groupe icosaédrique binaire d'ordre 120.

On obtient un domaine de discontinuité de l'espace hyperbolique,

l'espace dodécaédrique hyperbolique,
par le procédé d'identification déjà employé, où l'on remplace
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la rotation de ^ par une rotation de Son groupe fondamental

est infini comme celui de tout domaine de discontinuité d'un

groupe de mouvements sans points fixes de l'espace hyperbolique.
Il n'a pas de nombre de Betti, mais trois coefficients de torsion

égaux de valeur 5.

L'instrument le plus puissant pour caractériser, du point de

vue topologique, les domaines de discontinuité à 3 dimensions
de l'espace sphérique, est la théorie des espaces fibrés.
La raison est qu'il existe pour tout groupe discontinu £) de

mouvements rigides de l'espace sphérique, un groupe continu
à un seul paramètre et qui est permutable avec chaque élément
h de

h Rh-1 £

Les mouvements rigides du groupe £) conservent l'ensemble des

trajectoires de ß et ne font que les échanger entre elles. Il s'en

suit que le domaine de discontinuité de est fibré par les

trajectoires de

Je vais m'occuper maintenant des espaces fibrés et donner
d'abord un exemple montrant l'importance des variétés fibrées.

Prenons une courbe de l'espace euclidien fermée et possédant
deux dérivées continues. En un point de cette courbe les extrémités

des normales unitaires forment un cercle. Si nous choisissons

l'unité de longueur suffisamment petite, l'ensemble de ces cercles

engendre une sorte de tore. Cette surface est fibrée par les

cercles; nous l'appellerons la variété-voisinage de la courbe
gauche. Il est clair que nous avons le produit de la courbe gauche
et du cercle.

Passons à un espace dont la dimension est plus grande d'une
unité. Considérons une surface possédant deux dérivées continues
et immergée dans R4. Elevons encore les normales unitaires en
un point quelconque. Leurs extrémités formeront de nouveau
un cercle. Mais cette fois les cercles engendrent une variété-
voisinage à 3 dimensions, qui est un espace à 3 dimensions fibré
par les cercles. On peut démontrer que cet espace fibré est ici
encore le produit topologique de notre surface et du cercle.
Une conséquence de cet état de choses est que toute surface
de l'espace à 4 dimensions possédant deux dérivées continues,
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peut être transformée en une surface algébrique par une
déformation arbitrairement petite. Il existe dans les espaces de

dimensions supérieures à 4 des exemples, où la variété-voisinage
n'est plus le produit topologique de la variété immergée et d'une
sphère, qui dans le cas général est à plus de une dimension. Ici
il n'est donc plus possible de conclure à la déformabilité en variété
algébrique. Par exemple le plan projectif complexe, variété à

4 dimensions, ne peut être immergé dans aucun espace euclidien,
de telle sorte que la variété-voisinage soit ce produit topologique1.

Que sait-on des espaces fibrés en général et comment peut-on
les construire Fibrer l'espace euclidien à n dimensions

par des hyperplans parallèles de dimension /, c'est le

remplir simplement et sans lacunes par les hyperplans. Ceci

posé, une variété à n dimensions et close sera dite fibrée-î quand
elle remplira les conditions suivantes:

1° Les points de la variété se répartissent sur des variétés de

dimension /, les fibres, de telle sorte que par chaque point passe
une et une seule fibre;

2° Chaque point possède un voisinage qu'on peut représenter
topologiquement et en conservant les fibres sur un voisinage
d'un point de l'espace euclidien à n dimensions fîbré-/. (Cette
condition peut être appelée la « fibrabilité » locale).

Cette notion est, il est vrai, bien trop générale pour en tirer
des résultats.

Nous exigerons donc:
3° Les fibres sont des sphères à / dimensions, et (au lieu

de 2) nous exigerons la fibrabilité globale;
4° Toute fibre possède un voisinage de fibres, qu'on peut

représenter topologiquement en conservant les fibres sur le produit
topologique fibré d'une sphère à / dimensions et d'un élément à

(n — /) dimensions. Nous poserons n — f d.

Dans ce cas les fibres elles-mêmes forment, sous certaines
conditions, une variété à d dimensions. C'est la « variété de

décomposition » de la fîbration.
Nous avons maintenant devant nous un problème de géométrie

abordable et qui peut se poser comme suit: Construire tous les

i Cet exemple a été traité par M. E. Stiefel.
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espaces fibrés à n dimensions, dont on connaît la variété de

décomposition de dimension d.
Le problème peut être résolu complètement pour les cas

suivants: 1° La variété de décomposition est à une, deux ou
trois dimensions et la fibre une sphère de dimension quelconque.
2° La variété de décomposition est de dimension arbitraire et la
fibre à une dimension. Dans le cas d 2, / 1, donc n 3,

on obtient pour toute surface close un nombre infini d'espaces
fibrés de dimension 3, espaces complètement caractérisés par
la surface de décomposition et un nombre entier non négatif b.

Pour b 0 on a le produit topologique de la surface de

décomposition et du cercle. Pour b > 0 on a un espace possédant un
coefficient de torsion égal à b. Si la surface de décomposition
est la sphère, on obtient certains espaces lenticulaires qui sont
fibrés (sans fibre singulière) et dont le groupe fondamental
est cyclique d'ordre b 3

Le problème des espaces fibrés s'énonce dans
toute sa généralité: Déterminer tous les espaces fibrés qu'on
ne peut pas représenter topologiquement l'un sur l'autre e n
conservant les fibres.

Sous cette forme le problème est comparable au problème
d'homéomorphie, mais il est plus facilement abordable. Il est
vrai que la solution du problème énoncée, n'apporterait pas la
solution du problème d'homéomorphie. Ceci parce qu'il arrive
que des espaces topologiquement équivalents ne peuvent être
représentés l'un sur l'autre en conservant les fibres. De plus il
existe des espaces qu'on ne peut même pas recouvrir de fibres.
La théorie des espaces fibrés a cependant fait progresser la
topologie des variétés de points à trois dimensions.

Il est vrai qu'on opère alors avec une généralisation de la
notion d'espace fibré, notion qu'il n'est pas aisé d'étendre à

plus de 3 dimensions. On doit permettre l'existence de fibres
singulières autour desquelles les fibres voisines s'enroulent
plusieurs fois. Plus exactement, un espace fibré est une variété
close à 3 dimensions dont les points se groupent en courbes
fermées, les fibres. Par chaque point passe une et une seule fibre.

i Voir aussi: H. Whitney, Sphere-Spaces. Proc. Nat. Acad. Sei. U.S.A. 21 (1935),
p. 464-468.
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Toute fibre possède un voisinage de fibres, c'est-à-dire un sous-
ensemble de fibres qu'on peut représenter topologiquement et
en conservant les fibres sur un tore massif fibré. On
obtient un tore massif fibré de la manière suivante: On part
d'un cylindre circulaire massif, dont les fibres sont les segments
parallèles à l'axe. On identifie alors les deux bases après les

avoir fait tourner de 2 n — l'une par rapport à l'autre, (jl et v

sont deux nombres entiers premiers entre eux satisfaisant à

0 < v < g,. Si v 0, la fibre axiale est dite régulière, sinon
elle est singulière, avec les nombres caractéristiques et v.
Parmi les espaces fibrés définis de cette façon, se trouvent
plusieurs espaces importants, déjà connus par ailleurs.

Pour les espaces fibrés il est possible d'établir complètement
le système des invariants des transformations
topologiques conservant les fibres. On pourra donc dire, quand
deux de ces espaces donnés peuvent être représentés l'un sur
l'autre en conservant les fibres. S'il est possible de le faire pour
deux espaces donnés, ceux-ci seront, à plus forte raison, homéo-

morphes. On peut aussi montrer que si des espaces de Poincaré,
la sphère S3 exceptée, sont susceptibles d'être fibrés, ils ne le sont

que d'une seule manière. Il s'en suit que les espaces de Poincaré
fibrés sont univoquement caractérisés par leurs invariants de

fibration. Par exemple l'espace dodécaédrique sphérique et le

premier espace de Poincaré, découvert par Poincaré lui-même,
peuvent être fibrés. Puisque les invariants de fibration, dont
nous avons parlé plus haut, sont les mêmes pour les deux

espaces, ceux-ci sont homéomorphes. Il est peu probable qu'on
eût atteint ce résultat sans la théorie des espaces fibrés. On peut
démontrer de plus que l'espace dodécaédrique sphérique est le
seul espace de Poincaré à groupe fondamental fini, et que la
sphère à 3 dimensions est le seul espace susceptible d'être fibré
et dont le groupe fondamental ne contienne que l'élément unité.
La sphère à 3 dimensions est donc le seul espace simplement
connexe susceptible d'être fibré.

On a étudié récemment des espaces fibrés à 3 dimensions qui
outre les fibres possèdent encore des lignes de tourbillons L On

i W. Hantzsche u. II. Wendt. Dreidim. wirbelgefasserte Raiïme. Math. Zeitschr.
40 (1936).
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les obtient à partir des espaces fibrés ordinaires en enlevant les

fibres d'un tore massif fibré. On engendre ainsi une variété
dont le bord est un tore fibré. Prenons maintenant un cylindre
massif fibré possédant une ligne de tourbillons; c'est un cylindre
fibré par les trajectoires du groupe des rotations autour de son

axe. C'est son axe qui est la ligne de tourbillons. Nous obtenons

par l'identification des deux bases un tore massif fibré à l'intérieur
duquel se trouve une ligne de tourbillons fermée. Sa surface est

un tore fibré, qu'on peut représenter topologiquement et en

conservant les fibres sur le bord de la variété décrite plus haut.
En identifiant les points correspondants on obtient encore un
espace clos fibré et possédant une ligne de tourbillons. Si l'on
recherche le système complet des invariants de tous les espaces
fibrés possédant une ligne de tourbillons, on arrive à un résultat
des plus étonnants. Les espaces fibrés sans ligne de tourbillons
nous avaient conduits à une foule d'exemplaires intéressants:
les domaines de discontinuité sphériques, beaucoup d'espaces
dérivés des nœuds et une infinité d'espaces de Poincaré. La
présence d'une ligne de tourbillons rend triviale la structure
topologique des espaces. On a alors la somme topologique
d'espaces lenticulaires et de deux autres espaces de structure
également fort simple, désignés par anse à 3 dimensions orientable
et non-orientable.

Le diagramme de Heegaard est un autre
procédé pour construire des espaces à 3 dimensions. Mais le
problème de trouver tous les diagrammes de Heegaard tracés sur
une surface donnée n'est résolu à l'heure actuelle que pour le
tore. Dans ce cas on retombe sur les espaces lenticulaires et sur
le produit topologique de la sphère et du cercle. Pour une surface
de genre h 2 on ne connaît que des exemples de diagrammes
de Heegaard. Parmi ceux-ci se trouve un diagramme, trouvé
par Poincaré, de l'espace dodécaédrique sphérique.

Pour nous rapprocher de la solution du problème d'homéo-
morphie, nous n'avons envisagé jusqu'à maintenant que quelques
procédés de construction et nous nous sommes bornés à des
classes restreintes de variétés. Pour terminer, j'aimerais indiquer
une autre voie qui consiste à chercher des invariants,
calculables pour une variété quelconque.
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Je laisse de côté le groupe fondamental et les groupes d'homo-
logie, ainsi que les invariants d'enlacement que M. Seifert a
déjà employés lors de sa conférence. Je me borne aux invariants
nouveaux de M. Reidemeister qui résolvent le problème d'ho-
méomorphie des espaces lenticulaires. Pour exposer cette
méthode, considérons un espace clos à 3 dimensions, subdivisé
en cellules orientées. Les cellules seront:

k indique la dimension et prend les valeurs 0 1 2 3 ; [x est l'indice
du simplexe et varie de 1 à ocfe, où ocfe est le nombre de simplexes
de dimension k. Formons, comme en homologie, des chaînes de
cellules

uh 2 *

[X

où les A^ sont entiers. Les chaînes forment un groupe abélien
libre qui est engendré par autant d'éléments qu'il y a de cellules
à k dimensions dans la variété.

Passons maintenant à la variété de recouvrement universelle
et calquons sur elle la subdivision en cellules données.

Soient f1f2, les éléments du groupe fondamental et en
même temps les mouvements de superposition de la variété de

recouvrement universelle. Choisissons un domaine de discontinuité

et désignons ses cellules par les mêmes symboles akK.

Les chaînes du recouvrement universel peuvent s'écrire sous la
forme

2 \vfval •

Les coefficients X ^ sont des entiers et les coefficients de aj, à

savoir ya SA[jVfv1 forment ce qu'on appelle un groupe-
anneau (Gruppenring), et ils se composent en respectant les

règles de multiplication du groupe fondamental.
On peut considérer le groupe des chaînes à k dimensions de

la variété de recouvrement universelle comme un groupe
avec opérateurs. Ce groupe est engendré par les

a\ et le domaine des opérateurs est le groupe-anneau.
A chaque chaîne correspond une frontière et les frontières

sont entièrement données dans la variété fondamentale par les
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relations d'incidence
Rd < S aV ;

V

où e^"1 prend les valeurs 0, + 1 ou — 1- Ces relations d'incidence

se calquent également sur la variété de recouvrement et
elles y prennent la même forme; cependant eh~l représente
maintenant un élément du groupe-anneau.

Du point de vue purement algébrique, les relations d'incidence
fournissent une représentation homéomorphe du groupe des

chaînes à k dimensions sur le groupe des chaînes à k — 1 dimensions:

à chaque chaîne de dimension k il faut faire correspondre
sa chaîne frontière k k — 1 dimensions. L'ensemble de ces

quatre groupes de chaînes à k dimensions (k 0, 1, 2, 3) avec
les relations d'incidence est appelé: anneau d'homotopie.

On peut dès lors entrevoir comment l'anneau d'homotopie se

transforme lorsqu'on subdivise les cellules. L'ensemble de tous
les anneaux d'homotopie qu'on obtient par subdivision ou par
l'opération inverse de l'espace donné est évidemment un invariant

de l'espace considéré.

Jusqu'ici nous n'avons fait que définir cet invariant. Mais
définir un invariant sans donner le moyen de le calculer, c'est
émettre des billets sans couverture. Pourtant, dans le cas d'un
groupe fondamental cyclique on réussit à en tirer des invariants
numériques calculables et qui permettent de distinguer les

espaces lenticulaires.
** *

Au cours de la discussion M. G. de Rham a donné une méthode
de calcul qui est valable pour les espaces lenticulaires à n dimensions.

Elle est intéressante par le fait qu'elle applique des
théorèmes modernes d'algèbre. La place me manque pour en
donner un exposé ici. Je dois me borner à renvoyer le lecteur
à une conférence de M. de Rham au Congrès de topologie de
Moscou et à une publication du même auteur qui paraîtra
sous peu.

On trouvera la bibliographie des questions traitées ci-dessus
dans les cours de topologie de Seifert-Threlfall (Leipzig,
1934) et de Alexandroff-Hopf (Berlin, 1936).
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