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QUELQUES RESULTATS RECENTS
DE LA TOPOLOGIE DES VARIETES!?

PAR

W. THRELFALL (Dresde).

Nous savons tous que le probléme d’homéomorphie des
variétés a n dimensions, posé par PoINCARE, est un des plus
intéressants et des plus importants de la Géométrie. Il est inté-
ressant en soi, car il a donné naissance a la Topologie combina-
toire ou algébrique, théorie comparable par son importance a la
Théorie des fonctions classique. Il est important parses appli-
cations a la Cosmologie, ou 1l s’agit de déterminer I'aspect de
I’espace de notre intuition et de la physique. Dés I'instant ou le
physicien a envisagé la possibilité de considérer ’espace de notre
intuition, espace ou nous vivons, comme clos, la tdche du mathé-
maticien est de lul proposer un choix d’espaces clos, et méme de
les énumeérer tous, comme il le ferait pour les polyédres réguliers.
De plus, les variétés qui ont trait au probléme d’homéomorphie,
se présentent comme variétés de solutions de systemes d’équa-
tions différentielles et sont de ce fait importantes pour les
questions de stabilité. Elles sont encore plus importantes pour
la géométrie algébrique.

Malheureusement le probléme n’est completement résolu que
pour deux dimensions. Je vals vous exposer maintenant les
recherches qui ont été faites récemment et qui ont pour but la
solution du probléme pour trois dimensions et plus. Pour sim-
plifier ma téche, je vais toutefois me borner a des variétés closes

1 Conférence faite le 22 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par I’Université de Genéve; série consacrée i
Quelques guestions de Géométrie et de Topologie. — Traduction revue par M. M. RUEFF
(Zurich).
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et homogeénes; ce sont des variétés qu’il est possible de construire
au moyen d’un nombre fini de simplexes & » dimensions et dont
chaque point posséde un voisinage homéomorphe a la spheére
massive & n dimensions.

Comme les variétés de points & n dimensions ne nous sont pas
accessibles dans toute leur généralité, nous nous demanderons
ou elles se présentent dans la nature, et s’il ne nous serait pas
possible de connaitre a fond certaines classes plus restreintes
qu’on entrevoit dans les applications. Nous restreindrons donc
la notion trop générale, sinon dans son étendue, du moins dans
son contenu. Nous nous bornerons a des variétés qui possédent
une métrique de RiemANN, ou bien sont homéomorphes & des
variétés algébriques. Ainsi, par exemple, en partant des espaces
métriques, nous ferons apparaitre des variétés & n dimensions
comme domaines de discontinuité de groupes de mouvements.
On les obtient aussi comme espaces des phases de systémes
mécaniques, en particulier comme espaces dont les points sont
des éléments d’arcs, de surfaces ou d’autres espaces bien connus;
dans ce cas les variétés sont fibrées. Les «fibres» sont composées
des éléments d’arcs passant par un méme point. Ou encore, on
considere des espaces dont les points représentent des mouve-
ments rigides de la sphere & n» dimensions. On peut aussi étudier
des hypersurfaces algébriques, ou encore des variétés groupes,
qu'on généralise ensuite et dont les points représentent les
transformations d’un groupe de Lie. Ou bien, finalement, on
recherche les conditions nécessaires pour qu’une variété a
n dimensions puisse étre immergée dans un espace euclidien
a n dimensions.

Voyons d’abord les variétés & 3 dimensions. Au premier coup
d’cell on pourrait espérer les obtenir toutes en étudiant, pour la
sphere, I’espace euclidien et ’espace hyperbolique, les domaines
de discontinuité des groupes de mouvements sans points fixes.
Pour deux dimensions, toute surface close peut &tre obtenue
comme domaine de discontinuité d’un groupe de mouvements
sans points fixes, ou de la sphére, ou du plan euclidien, ou du
‘plan hyperbolique. En d’autres termes, on peut imposer a toute

surface close une métrique de courbure constante égale & 1,0
ou — 1.
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On pourrait donc espérer retrouver les mémes propriétés pour
les espaces a 3 dimensions. Malheureusement il n’en est rien.
Le plus simple exemple du contraire est le produit topo -
logique de la spheére et du cercle qui ne se
trouve pas parmi les domaines de discontinuité. Ceci parce que
sa variété de recouvrement universelle posséde deux extrémités
a l'infini. Donc le nombre de Betti a 2 dimensions du recouvre-
ment universel est p2 = 1L Or, rappelons le théoréeme impor-
tant suivant: Le groupe fondamental d’un domaine de disconti-
nuité est le groupe facteur du groupe de mouvements, engendrant
ce domatine de discontinuité, par rapport au plus petit sous-groupe
contenant tous les mouvements a points fizes.

Done, s1 le produit topologique cité plus haut était le domaine
de discontinuité d’un groupe de mouvements sans points fixes,
le groupe de mouvements serait son groupe fondamental. Le
recouvrement universel serait par conséquent ou la sphére a
3 dimensions ou l’espace euclidien ou I’espace hyperbolique.
Mais ces trois espaces ont un nombre de Betti p? = 0 et ne
peuvent donc étre homéomorphes au recouvrement universel de
notre produit topologique. Par contre, ce produit topologique
est, pour l'espace euclidien, domaine de discontinuité d’un
groupe de mouvements & points fixes qui peut étre engendré par
les trois transformations sulvantes, exprimées en coordonnées
cartésiennes:

I. ¥ =—y+1, vy =2, 7 =z
In. 2 =—y—1, y =2, 7z = a
I, 2’ =« , y =y, 3 =z+ 1.

L’étude de tous les domaines de discontinuité des groupes de
mouvements sans points fixes ne nous fournira pas tous les
espaces a trois dimensions. Mais, contrairement au cas de deux
dimensions, déja I’étude des domaines de discon-
tinuité de la spheére nous donne des espaces inté-
ressants. On sait que I'existence de points fixes, dans un mou-
vement de la sphére a n dimensions S" sur elle-méme, conservant

1 Tes indices supérieurs indiquent toujours la dimension et ne sont pas 4 confondre
avec des exposants.
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Porientation, est liée & la parité de n. Tout mouvement sera a
points fixes si n est pair. Dans ce cas le groupe facteur, du groupe
des mouvements par rapport au plus petit sous-groupe contenant
tous les mouvements & points fixes, sera formé d’un seul
élément. Et en vertu du théoréme énoncé plus haut, le groupe
fondamental du domaine de discontinuité n’est également
composé que de P’élément unité. Mais pour deux dimensions,
seule la sphére parmi les surfaces closes posséde ce groupe
fondamental. Par conséquent, pour deux dimensions, les
domaines de discontinuité des groupes de mouvement conser-
vant orientation ne sont rien de neuf; ils sont tous homéo-
morphes a la sphere & deux dimensions. Le seul groupe de
transformations métriques de la sphére & deux dimensions, sans
points fixes, est d’ordre 2, et son seul élément différent de
I’élément unité est la permutation des points diamétraux.
C’est une transformation inversant 'orientation. Son domaine
de discontinuité est donc une surface non-orientable, & savoir
le plan projectif. Pour 3 dimensions les représentations de la
sphere sur elle-méme, inversant 1’orientation, possédent des
points fixes. Par conséquent on n’obtiendra aucun nouveau
domaine de discontinuité clos et non-orientable de l’espace
sphérique. On sait d’une part que les groupes discontinus de
mouvements de la spheére a 3 dimensions sont finis, et d’autre
part que les espaces non-orientables a 3 dimensions ont des
groupes fondamentaux infinis. On voit donc que les espaces
non-orientables & 3 dimensions ne peuvent apparaitre comme
domaines de discontinuité de la sphére a 3 dimensions. D’ailleurs,
les domaines de discontinuité des groupes de transformations
de S® inversant l'orientation ne sont pas méme des variétés
homogenes.

Il existe par contre des mouvements sans points fixes de S3
sur elle-méme qui conservent l’orientation. Imaginons notre
sphére comme sphére a 3 dimensions et de rayon 1, immergée
dans I'espace euclidien R4 Exprimée en coordonnées cartésiennes
son équation aura la forme:

2 2 2 2
xl_{_xz"f—x,;“l‘x;:'l
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Un mouvement sans points fixes sera donné, par exemple, par
la transformation:

Zy = 2, COS 2 q/p — x4 SiN 27 q/p
x; = x, Sin 27 qg/p + x5 cOS 27 q/p

Ty = I3 COS 2m/p — x, SIin 27/p

8
=
H

Xy sin 27/p 4- x, cos 2x/p .

Elle fait tourner le plan z,x, de I'angle 27 ¢/p et le plan z;z,
2w

eux et sati[s)faisant a: 0 = ¢ < p. La transformation envisagée
engendre un groupe cyclique de mouvements, groupe dont
Pordre est p. Tous ces mouvements sont sans points fixes,
I'identité exceptée.

On peut se faire une idée du domaine de discontinuité en
projetant la sphére stéréographiquement sur un
hyperplan z, = 0 avec le point (z; 2, 23 2,) = (00 0 1) comme
centre de projection. Ce plan z, = 0 est un espace euclidien a
3 dimensions, dans lequel nous introduirons des coordonnées
cartésiennes xyz de telle sorte que les axes zyz coincident respec-
tivement avec les axes x; x, 5. Par la projection stéréographique
nous imposons artificiellement a ce plan la métrique sphérique
que la spheére avait recue de I’espace a 4 dimensions dans lequel
elle fut immergée. Au groupe des mouvements rigides de la
sphére S3 sur elle-méme correspond alors dans le plan 2z, = 0
un groupe de «représentations sphériques » de cet espace i,

Les intersections de la sphére unité S® avec les hyperplans,
passant par lorigine de R%, c’est-a-dire les grands «hyper-
cercles » de la sphére unité, sont représentés sur des sphéres
diamétrales de la sphére unité. Ces sphéres diamétrales sont les
sphéres qui coupent la sphére 2? + y? 4- 22 = 1 suivant un
grand cercle. Le groupe des représentations sphériques mentionné
est caractérisé par le fait que I'application d’un de ses éléments
ne fait que permuter les spheres diamétrales de la sphére unité.

L’intersection de la sphére unité avec le plan z; x, est repré-

de I'angle = . Nous supposerons p et ¢ entiers, premiers entre

1 Voir par ex. J. Hapamarp, Géométrie anallagmatique. Nouv. Ann. (6), 2,
p. 257-270.
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sentée sur le cercle unité du plan des zy, celle avec les plans
des x, z, est représentée sur axe des z qui posséde dans la
métrique sphérique la longueur 27. Un mouvement rigide de la
sphére unité S3, tel que seul le plan des 2, z, soit tourné d’angle o,
est donc représenté sur une rotation rigide du cercle unité du
plan des zy. Cette rotation est une rotation rigide autour de
laxe des z. Considérons maintenant le mouvement de la sphere
unité qui ne fait que tourner le plan des x; x, d’un angle ¢. Ce
mouvement est représenté par la transformation qui n’a pour
effet que de faire glisser axe des z sur lui-méme de ¢, grandeur
mesurée sphériquement. Le cercle unité du plan des zy et I'axe
des z ne se distinguent, sphériquement parlant, en aucune fagon.
Par une transformation sphérique du type considéré on peut
méme les transformer Pun dans I'autre. Un mouvement rigide
de la sphére unité, faisant tourner simultanément les plans des
2, %, et des z; z, d’un angle ¢, est représenté par un « mouvement
hélicoidal sphérique » qui fait tourner le cercle unité sur lui-méme
et glisser 'axe des z d’une méme grandeur ¢. On peut donc
choisir dans Pespace zyz comme domaine de discontinuité de
notre groupe cyclique une lentille massive, limitée par deux
calottes passant par le cercle unité du plan des zy, situées
symétriquement par rapport & ce plan et formant entre elles

5]
I’angle 7”. Le mouvement hélicoidal dont nous avons parlé,

ordonne deux & deux les points des deux calottes et ceci de la
fagon suivante: deux points correspondants s’obtiennent par une

. 2n ’ . Ly
rotation de -T{L autour de ’axe des z suivie d’une symétrie par

rappport au plan équatorial de la lentille, le plan deszy. Sinous
identifions deux points équivalents, la lentille devient le domaine
de discontinuité clos qu’est [l'espace lenticulaire (p, q). Deux

. A o /4 /4 2
points de 1'aréte de la lentille séparés par un arc de longueur — |
p
sont équivalents. Un tel arc représente donc dans I’espace
lenticulaire clos une courbe fermée, qui pour la premiére fois sera
un bord lorsqu’on 'aura parcourue p fois, & savoir le bord de la

calotte. :

1 M. G. de Rham nomme « espaces cycliques » ce que j’appelle « espaces lenticu-
laires ».
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Pour p = 1 et p = 2 on obtient deux espaces & trois dimen-
sions bien connus, l’espace sphérique (sphére &
3 dimensions) et 1’espace projectif. Dans ce der-
nier cas I'aréte de la lentille est une droite projective parcourue
deux fois et sur la lentille qui est une sphére on a & identifier
les points diamétraux. On obtient ces deux espaces en fermant
Pespace euclidien respectivement par un point infini et un plan
mfini. C’est par ce fait qu’ils revétent toute leur importance, car
dans ces espaces fermés les transformations conformes, ou pro-
jectives, sont biunivoques.

Pour un p quelconque on obtient un espace clos a 3 dimen-
sions, dont le groupe fondamental est cyclique d’ordre p. Comme
les groupes fondamentaux sont des invariants topologiques, deux
espaces lenticulaires issus de p différents, sont différents. C’est
un probleme des plus difficiles que de dire quand deux espaces
de méme p mais de ¢ différents sont homéomorphes ou non.
Ce probléme vient d’étre résolu par M. Reidemeister a 1'aide de
nouveaux invariants; nous y reviendrons.

Donnons encore deux exemples de domaines de discontinuité
a 3 dimensions. Prenons un dodécaédre massif, qui est un espace
a 3 dimensions bordé. On en fait une variété close par I'1dentifi-
cation suivante: On identifie deux pentagones paralléles par un
mouvement hélicoidal le long de la droite joignant leurs centres.

. ™ @ "
La rotation de ce mouvement est de E et son orientation la

méme pour toutes les paires de pentagones. On obtient une
variété homogeéne, 1’espace dodécaédrique sphé-
rique. Il apparait aussi comme domaine de discontinuité
d’un groupe de mouvements sans points fixes de I’espace sphé-
rique & 3 dimensions. Le calcul de ses coefficients de torsion
montre que ¢’est un espace de Poincaré et qu’il a par conséquent
les mémes groupes d’homologie que la sphére a 3 dimensions.
Le groupe de mouvements, dont il est le domaine de discon-
tinuité, est aussi son groupe fondamental, puisqu’il n’y a pas
de points fixes. C’est le groupe icosaédrique binaire d’ordre 120.
On obtient un domaine de discontinuité de I’espace hyperbo-
lique, 1’espace dodécaédrique hyperbolique,
par le procédé d’identification déja employé, ou l'on remplace
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. 3
la rotation de g par une rotation de ?n . Son groupe fondamental

est infini comme celui de tout domaine de discontinuité d’un
groupe de mouvements sans points fixes de espace hyperbolique.
Il n’a pas de nombre de Betti, mais trois coefficients de torsion
égaux de valeur 5.

L’instrument le plus puissant pour caractériser, du point de
vue topologique, les domaines de discontinuité & 3 dimensions
de I’espace sphérique, est la théorie des espaces fibrés.
La raison est qu’il existe pour tout groupe discontinu § de
mouvements rigides de ’espace sphérique, un groupe continu &
4 un seul paramétre et qui est permutable avec chaque élément

h de 9:
@ h R 1 = & .

Les mouvements rigides du groupe § conservent 1’ensemble des
trajectoires de & et ne font que les échanger entre elles. 11 s’en
suit que le domaine de discontinuité de § est fibré par les
trajectoires de §.

Je vais m’occuper maintenant des espaces fibrés et donner
d’abord un exemple montrant 'importance des variétés fibrées.

Prenons une courbe de ’espace euclidien fermée et possédant
deux dérivées continues. En un point de cette courbe les extré-
mités des normales unitaires forment un cercle. Sinous choisissons
I'unité de longueur suffisamment petite, ’ensemble de ces cercles
engendre une sorte de tore. Cette surface est fibrée par les
cercles; nous I’appellerons la variété-voisinage de la courbe
gauche. Il est clair que nous avons le produit de la courbe gauche
et du cercle.

Passons a un espace dont la dimension est plus grande d’une
unité. Considérons une surface possédant deux dérivées continues
et immergée dans R%. Elevons encore les normales unitaires en
un point quelconque. Leurs extrémités formeront de nouveau
un cercle. Mais cette fois les cercles engendrent une variété-
voisinage & 3 dimensions, qui est un espace & 3 dimensions fibré
par les cercles. On peut démontrer que cet espace fibré est ici
encore le produit topologique de notre surface et du cercle.
Une conséquence de cet état de choses est que toute surface
de I'espace & 4 dimensions possédant deux dérivées continues,
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peut étre transformée en une surface algébrique par une défor-
mation arbitrairement petite. Il existe dans les espaces de
dimensions supérieures a 4 des exemples, ou la variété-voisinage
n’est plus le produit topologique de la variété immergée et d’une
spheére, qui dans le cas général est a plus de une dimension. Ici
il n’est donc plus possible de conclure a la déformabilité en variété
algébrique. Par exemple le plan projectif complexe, variété &
4 dimensions, ne peut étre immergé dans aucun espace euclidien,
de telle sorte que la variété-voisinage soit ce produit topologique™.

Que sait-on des espaces fibrés en général et comment peut-on
les construire ? Fibrer 1’espace euclidien & n dimen-
sions par des hyperplans paralléles de dimension f, c’est le
remplir simplement et sans lacunes par les hyperplans. Ceci
posé, une variété a n dimensions et close sera dite fibrée-f quand
elle remplira les conditions suivantes:

10 Les points de la variété se répartissent sur des variétés de
dimension f, les fibres, de telle sorte que par chaque point passe
une et une seule fibre;

20 Chaque point posséde un voisinage qu’on peut représenter
topologiquement et en conservant les fibres sur un voisinage
d’un point de V’espace euclidien & n dimensions fibré-f. (Cette

condition peut étre appelée la « fibrabilité » locale).
- Cette notion est, il est vrai, bien trop générale pour en tirer
des résultats.

Nous exigerons done: ,

30 Les fibres sont des spheéres a f dimensions, et (au lieu

de 2) nous exigerons la fibrabilité globale;
49 Toute fibre possede un voisinage de fibres, qu’on peut repré-
senter topologiquement en conservant les fibres sur le produit
topologique fibré d’une sphére & f dimensions et d’un élément a
(n — f) dimensions. Nous poserons n — f = d.

Dans ce cas les fibres elles-mémes forment, sous certaines
conditions, une variété & d dimensions. C’est la «pariété de
décomposition » de la fibration.

Nous avons maintenant devant nous un probléme de géométrie
abordable et qui peut se poser comme suit: Construire tous les

1 Cet exemple a été traité par M. E. STIEFEL,
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espaces fibrés a n dimensions, dont on connait la variété de décom-
position de dimension d. |

Le probléme peut étre résolu complétement pour les cas
suivants: 1° La variété de décomposition est & une, deux ou
trois dimensions et la fibre une sphére de dimension quelconque.
20 La variété de décomposition est de dimension arbitraire et la
fibre & une dimension. Dans le cas d = 2, f = 1, donc n = 3,
on obtient pour toute surface close un nombre infini d’espaces
fibrés de dimension 3, espaces complétement caractérisés par
la surface de décomposition et un nombre entier non négatif b.
Pour b = 0 on a le produit topologique de la surface de décom-
position et du cercle. Pour 6 > 0 on a un espace possédant un
coefficient de torsion égal & b. Si la surface de décomposition
est la sphere, on obtient certains espaces lenticulaires qui sont
fibrés (sans fibre singuliere) et dont le groupe fondamental
est cyclique d’ordre b .? |

Le probléme des espaces fibrés s’énonce dans
toute sa généralité: Déterminer tous les espaces fibrés qu’on
ne peut pas représenter topologiquement l'un sur l'autre en
conservant les fibres.

Sous cette forme le probléme est comparable au probléme
d’homéomorphie, mais il est plus facilement abordable. Il est
vrai que la solution du probleme énoncée, n’apporterait pas la
solution du probléme d’homéomorphie. Ceci parce qu’il arrive
que des espaces topologiquement équivalents ne peuvent &tre
représentés I'un sur I'autre en conservant les fibres. De plus il
existe des espaces qu’on ne peut méme pas recouvrir de fibres.
La théorie des espaces fibrés a cependant fait progresser la
topologie des variétés de points a trois dimensions.

11 est vrai qu’on opére alors avec une généralisation de la
notion d’espace fibré, notion qu’il n’est pas aisé d’étendre a
plus de 3 dimensions. On doit permettre 1'existence de fibres
singuliéres autour desquelles les fibres voisines s’enroulent
plusieurs fois. Plus exactement, un espace fibré est une variété
close & 3 dimensions dont les points se groupent en courbes
fermées, les fibres. Par chaque point passe une et une seule fibre.

1 Voir aussi: H. WHITNEY, Sphere-Spaces. Proc. Nat. Acad. Sci. U.S.A. 21 (1935),
D. 464-468,
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Toute fibre posséde un voisinage de fibres, c’est-a-dire un sous-
ensemble de fibres qu’on peut représenter topologiquement et
en conservant les fibres sur un tore massif fibré. On
obtient un tore massif fibré de la maniére suivante: On part
d’un cylindre circulaire massif, dont les fibres sont les segments
paralleles & I'axe. On identifie alors les deux bases apres les

avolr fait tourner de ZTtg 'une par rapport a I'autre. p et v

sont deux nombres entiers premiers entre eux satisfaisant a
0=v <p. S1v=0, la fibre axiale est dite réguliere, sinon
elle est singuliere, avec les nombres caractéristiques p et v.
Parmi les espaces fibrés définis de cette facon, se trouvent plu-
sleurs espaces importants, déja connus par ailleurs.

Pour les espaces fibrés il est possible d’établir complétement
le systéme des invariants des transformations
topologiques conservant les fibres. On pourra done dire, quand
deux de ces espaces donnés peuvent étre représentés l'un sur
I’autre en conservant les fibres. S'il est possible de le faire pour
deux espaces donnés, ceux-ci seront, a plus forte raison, homéo-
morphes. On peut aussi montrer que si des espaces de Poincaré,
la spheére S® exceptée, sont susceptibles d’étre fibrés, ils ne le sont
que d’une seule maniére. Il s’en suit que les espaces de Poincaré
fibrés sont univoquement caractérisés par leurs invariants de
fibration. Par exemple 1’espace dodécaédrique sphérique et le
premier espace de Poincaré, découvert par Poincaré lui-méme,
peuvent étre fibrés. Puisque les invariants de fibration, dont
nous avons parlé plus haut, sont les mémes pour les deux
espaces, ceux-ci sont homéomorphes. 1l est peu probable qu’on
elit atteint ce résultat sans la théorie des espaces fibrés. On peut
démontrer de plus que l'espace dodécaédrique sphérique est le
seul espace de Poincaré a groupe fondamental fini, et que la
sphére a 3 dimensions est le seul espace susceptible d’étre fibré
et dont le groupe fondamental ne contienne que 1’élément unité.
La sphére & 3 dimensions est donc le seul espace simplement
connexe susceptible d’étre fibré.

On a étudié récemment des espaces fibrés a 3 dimensions qui
outre les fibres possédent encore des lignes de tourbillons . On

1 W. HAaNTzZscHE u. H. WENDT. Dreidim. wirbelgefasserte Raiime. Math. Zeitschr.
40 (1936).
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les obtient a partir des espaces fibrés ordinaires en enlevant les
fibres d’un tore massif fibré. On engendre ainsi une variété
dont le bord est un tore fibré. Prenons maintenant un cylindre
massif fibré possédant une ligne de tourbillons; ¢’est un cylindre
fibré par les trajectoires du groupe des rotations autour de son
axe. C’est son axe qui est la ligne de tourbillons. Nous obtenons
par Pidentification des deux bases un tore massif fibré a 'intérieur
duquel se trouve une ligne de tourbillons fermée. Sa surface est
un tore fibré, qu’on peut représenter topologiquement et en
conservant les fibres sur le bord de la variété décrite plus haut.
En identifiant les points correspondants on obtient encore un
espace clos fibré et possédant une ligne de tourbillons. SiI'on
recherche le systéme complet des invariants de tous les espaces
fibrés possédant une ligne de tourbillons, on arrive & un résultat
des plus étonnants. Les espaces fibrés sans ligne de tourbillons
nous avalent conduits & une foule d’exemplaires intéressants:
les domaines de discontinuité sphériques, beaucoup d’espaces
dérivés des noeuds et une infinité d’espaces de Poincaré. La
présence d’une ligne de tourbillons rend triviale la structure
topologique des espaces. On a alors la somme topologique
d’espaces lenticulaires et de deux autres espaces de structure
également fort stimple, désignés par anse & 3 dimensions orientable
et non-orientable.

Le diagramme de HEEGAARD est un autre pro-
cédé pour construire des espaces & 3 dimensions. Mais le pro-
bléme de trouver tous les diagrammes de Heegaard tracés sur
une surface donnée n’est résolu a I’heure actuelle que pour le
tore. Dans ce cas on retombe sur les espaces lenticulaires et sur
le produit topologique de la sphére et du cercle. Pour une surface
de genre & = 2 on ne connait que des exemples de diagrammes
de Heegaard. Parmi ceux-ci se trouve un diagramme, trouvé
par Poincaré, de I'espace dodécaédrique sphérique.

Pour nous rapprocher de la solution du probléme d’homéo-
morphie, nous n’avons envisagé jusqu’a maintenant que quelques
procédés de construction et nous nous sommes bornés a des
classes restreintes de variétés. Pour terminer, j’aimerais indiquer
une autre voie qui consiste a chercher des invariants,
calculables pour une variété quelconque.
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Je laisse de coté le groupe fondamental et les groupes d’homo-
logie, ainsi que les invariants d’enlacement que M. Seifert a
déja employés lors de sa conférence. Je me borne aux invariants
nouveaux de M. Reidemeister qui résolvent le probléme d’ho-
méomorphie des espaces lenticulaires. Pour exposer cette
méthode, considérons un espace clos & 3 dimensions, subdivisé
en cellules orientées. Les cellules seront:

ak

I

k indique la dimension et prend les valeurs 0 1 2 3; p est ’indice
du simplexe et varie de 1 & «", ou " est le nombre de simplexes
de dimension k. Formons, comme en homologie, des chaines de

cellules
ul = Z 7\* aff ’

ou les Ay sont entiers. Les chaines forment un groupe abélien
libre qui est engendré par autant d’éléments qu’il y a de cellules
a k dimensions dans la variété.

Passons maintenant & la variété de recouvrement universelle
et calquons sur elle la subdivision en cellules données.

Soient f, f,, ..., les éléments du groupe fondamental et en
méme temps les mouvements de superposition de la variété de
recouvrement universelle. Choisissons un domaine de discon-
tinuité et désignons ses cellules par les mémes symboles a”

.
>

Les chaines du recouvrement universel peuvent s’écrire sous la

forme
3
2 }';xv fv ap. ¢
uv
R

Les coefficients A, sont des entiers et les coeflicients de a,, &
savoir y, = X\,f,, forment ce qu'on appelle un groupe-
anneau (Gruppenring), et ils se composent en respectant les
régles de multiplication du groupe fondamental.

On peut considérer le groupe des chaines & £ dimensions de
la variété de recouvrement universelle comme un groupe
avec opérateurs. Ce groupe est engendré par les
a" et le domaine des opérateurs est le groupe-anneau.

A chaque chaine correspond une frontiere et les frontiéres

sont entiérement données dans la variété fondamentale par les
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relations d’incidence

Rd o = sfj afd

h

v

ou ¢! prend les valeurs 0, + 1 ou — 1. Ces relations d’inci-
dence se calquent également sur la variété de recouvrement et
elles y prennent la méme forme; cependant ' représente
maintenant un élément du groupe-anneau.

Du point de vue purement algébrique, les relations d’incidence
fournissent une représentation homéomorphe du groupe des
chaines & & dimensions sur le groupe des chaines a £ — 1 dimen-
sions: & chaque chaine de dimension £ il faut faire correspondre
sa chaine frontiére & £ — 1 dimensions. I’ensemble de ces
quatre groupes de chaines a £ dimensions (£ = 0, 1, 2, 3) avec
les relations d’incidence est appelé: anneau d’homotopie.

On peut dés lors entrevoir comment Panneau d’homotopie se
transforme lorsqu’on subdivise les cellules. L’ensemble de tous
les anneaux d’homotopie qu’on obtient par subdivision ou par
Popération inverse de 1’espace donné est évidemment un inva-
riant de I’espace considéré. |

Jusqu’ici nous n’avons fait que définir cet invariant. Mais
définir un invariant sans donner le moyen de le calculer, c’est
émettre des billets sans couverture. Pourtant, dans le cas d’un
groupe fondamental cyclique on réussit a en tirer des invariants
numériques calculables et qui permettent de distinguer les

espaces lenticulaires. \

*
* *

Au cours de la discussion M. G. de Ruam a donné une méthode
de calcul qui est valable pour les espaces lenticulaires & » dimen-
sions. Elle est intéressante par le fait qu’elle applique des
théorémes modernes d’algebre. La place me manque pour en
donner un exposé ici. Je dois me borner & renvoyer le lecteur
a une conférence de M. de Rham au Congrés de topologie de
Moscou et & une publication du méme auteur qui paraitra
sous peu.

On trouvera la bibliographie des questions traitées ci-dessus
dans les cours de topologie de SrrrErT-TuRELFALL (Leipzig,
1934) et de ALexaxprorr-Horr (Berlin, 1936).
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