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LA NOTION DE CONNEXITÉ LOCALE EN TOPOLOGIE 1

PAR

Casimir Kuratowski (Varsovie).

Il y a une dizaine d'années la Topologie était divisée en deux

parties: la Topologie « ensembliste » et la Topologie « combina-
toire ». La première, édifiée sur le terrain de la théorie des

ensembles de Georg Cantor, avait pour objet l'étude des

propriétés topologiques des ensembles de points les plus généraux,
la deuxième, fondée sur les idées de Henri Poingare: celles

d'homologies, de groupe de Betti, du groupe fondamental,
concernait les polyèdres ou polytopes à n dimensions. La
deuxième semblait inapplicable dans l'étude des ensembles
arbitraires (autres que les polytopes), tandis que la première paraissait

impuissante en face de l'étude de certaines propriétés
topologiques extérieures des figures géométriques situées dans l'espace
euclidien à n> 2 dimensions, telles que le nombre des domaines

complémentaires, enlacements d'ensembles, etc.
Les deux topologies se développaient indépendamment l'une

de l'autre: non seulement les objets de leurs études étaient
différents, mais il y avait aussi une différence frappante entre
leurs méthodes: l'une était fmitiste, l'autre était par contre liée
à la notion de continuité.

Dès lors l'état des choses a complètement changé. En s'inspi-
rant des idées de M. Brouwer, MM. Alexandroff et Vietoris
ont réussi à définir dans le domaine de la topologie ensembliste
(pour les espaces compacts les plus généraux) lesmotions combi-

1 Conférence faite le 22 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de G-enève; série consacrée à
Quelques questions de Géométrie et de Topologie.
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natoires d'homologie, de groupe de Betti, d'enlacements, etc.
Ainsi « unifiée »1 et enrichie de nouvelles méthodes, la topologie
a pu attaquer des problèmes qui paraissaient jusqu'ici inabordables.

Elle n'est pas non plus sans intérêt pour l'étude des

figures aussi régulières que les polytopes: il y a en effet des

propriétés dont l'étude demande la considération de certains
autres espaces (par ex. des espaces des transformations, H.
Hopf, W. Hurewicz) qui, en général, sont non-compacts, ont
un nombre infini de dimensions et qui rentrent dans le domaine
de la topologie ensembliste.

A l'heure actuelle les deux topologies, ensembliste et combi-
natoire, se confondent de plus en plus. Une délimitation rigoureuse

entre elles ne paraît plus applicable et d'autres critères
commencent à intervenir dans la classification des méthodes
topologiques (par ex. homologie, homotopie, groupe des
transformations en circonférence, etc.). En particulier, la théorie de

la connexité locale, qui constitue le sujet de cette conférence,
est un chapitre de la topologie unifiée, où l'ancienne distinction
ne semble plus possible.

1. — Connexité en Topologie ensembliste. —• La notion de

connexité est une des notions fondamentales de la Topologie
ensembliste. Rappelons sa définition: un ensemble est dit
connexe s'il ne se décompose pas en deux ensembles fermés
dans lui (non vides) et sans point commun. La notion de

connexité étant intrinsèque, on peut considérer au lieu d'«
ensemble connexe » 1'« espace connexe ». Soit, en effet, E un espace
métrique donné 2, c'est-à-dire espace où la distance | a — b \ de

chaque couple de points a et b est définie; l'espace E est dit
connexe lorsqu'il ne se décompose pas en deux ensembles fermés

sans point commun. Si cet espace est, en ouHe, compact (c'est-
à-dire que chaque ensemble infini admet un point d'accumulation),

il est dit un continu. Telles sont, en particulier, les lignes
et les surfaces bornées considérées en géométrie.

1 Cf. la conférence très intéressante de M. Wilder sur la Topologie unifiée publiée
dans le Bull. Amer. Math. Soc., 1932.

2 Par espace nous entendons ici toujours un espace métrique séparable (c'est-à-dire
admettant un ensemble dense dénombrable).
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La localisation de la définition précédente conduit à la
connexité locale: un espace est dit localement connexe au point p

lorsqu'il existe un entourage connexe de p aussi petit qu'on le

veut. Tel est, par exemple, le plan euclidien, le cercle de centre p
et de rayon s étant connexe. Il en est encore de même des

polyèdres ou polytopes, mais il n'en est pas ainsi de la courbe

y sin î jx, 0 < x ^ t, augmentée de l'intervalle — 1, +1
de l'axe des y; aux points de cet intervalle la courbe n'est pas
localement connexe.

La notion de connexité locale, introduite indépendamment

par Hahn et par M. Mazurkxewicz, a servi, à côté de la
connexité même (qui remonte à C. Jordan), de point de départ
de nombreuses recherches topologiques et a permis d'approfondir

l'étude de la structure d'ensembles de points (pour ne

citer que la théorie des courbes 1).

Parmi les nombreux théorèmes de la théorie de la connexité
locale, citons les deux suivants: la condition suffisante et nécessaire

pour qu'un continu soit localement connexe, est qu'il
soit une image continue d'un intervalle 2. Ainsi, la propriété du
carré d'admettre une représentation paramétrique continue sur
l'intervalle, propriété découverte par Peano et qui paraissait
tellement paradoxale, s'est montrée une propriété caractéristique

des continus localement connexes (continus nommés à

présent « péaniens »).

La deuxième propriété est la connexité par arcs intégrale et
locale des continus péaniens: à savoir, chaque couple de points
d'un continu péanien se laisse unir dans ce continu par un arc
(c'est-à-dire par un ensemble homéomorphe à l'intervalle); de

plus, si les deux points en question sont suffisamment voisins,
l'arc peut être supposé aussi petit qu'on le veut3.

La notion de continu péanien définit dans la variété de tous
les ensembles de points une famille d'ensembles qui se distinguent
par certaines régularités (elles se manifestent, par exemple,
dans les deux théorèmes précités). Cette régularité est surtout

1 Voir K. Menoer, « Kurventhéorie », Leipzig-Berlin, 1932.
2 Cf. W. Sierpinski, Fund. Math., I (1920), p. 44 et S. Mazurkiewicz, ibid.,

p. 166.
3 S. Mazurkiewicz, ibid., p. 201 et R. L. Moore, Bull. Amer. Math. Soc., 23 (1917)

p. 233.
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visible lorsqu'il s'agit des propriétés intrinsèques des ensembles
considérés. En ce qui concerne leurs propriétés extérieures,
c'est-à-dire lorsqu'on suppose le continu péanien immergé dans
l'espace euclidien à n dimensions, le cas n 2 diffère complètement

du cas n> 2. Ainsi, par exemple1, si C est un continu
péanien situé sur le plan, la frontière de chaque domaine
complémentaire de C est un continu péanien et chaque point de
cette frontière est accessible du domaine considéré; si, en
particulier, C est la frontière de deux domaines complémentaires,
elle est une courbe simple fermée. Aucune de ces propriétés ne
se laisse étendre à l'espace euclidien à 3 dimensions; en passant
du plan à l'espace à 3 dimensions, l'hypothèse de la connexité
locale est devenue bien moins efficace pour l'étude des propriétés
extrinsèques 2. De ce point de vue on trouvera avantageux de

se servir de la notion de connexité locale en dimension n, dont
nous nous occuperons à présent.

2. — Connexité locale en dimension n. — Désignons par Sn la
sphère à n dimensions, à savoir l'ensemble des points de l'espace
euclidien à n + 1 dimensions tels que + ••• + xn+i 1- En
remplaçant dans la définition précédente le signe par on
définit le sphéroïde (massif) à n + 1 dimensions, que nous
désignons par Qn+1.

Disons, pour l'instant, qu'un espace Y est connexe en dimension

n lorsque chaque transformation continue / de la sphère Sn

en sous-ensemble de Y se laisse étendre en une transformation
continue /* du sphéroïde Qn+1 tout entier (en sous-ensemble
de Y). On voit aussitôt que la connexité en dimension 0 n'est
autre chose que la connexité par arcs, considérée auparavant
(puisque Qx désigne un intervalle et S0 le couple de ses

extrémités). Pour avoir un exemple d'un ensemble qui n'est pas
connexe en dimension 1, considérons la circonférence du
cercle Q2: en admettant pour / l'identité, on constate facilement

1 Cf. Schönfliess, «Bericht über die Entwicklung der Mengenlehre, II », Leipzig,
1908, p. 199 et ss., B. v. Kerékjârtô, Abh. Math. Sem. Hamburg, IV (1925), p. 164,
H. Hahn, M. Torhorst, Math. Zft., 9 (1921) et ma note des Fund. Math., 16 (1930),
p. 180.

2 Cela tient, entre autres, au fait que chaque ensemble compact devient péanien
par l'adjonction d'une suite infinie d'arcs simples (qui n'altère pas en général les
propriétés extérieures de l'ensemble donné, dans l'espace à n > 2 dimensions).
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qu'il n'existe aucune transformation du cercle en circonférence

qui soit une identité sur cette circonférence. D'une façon générale

Sn est connexe en dimensions k < n mais n'est pas connexe

en dimension n.
La définition précédente peut être aussi formulée en termes

de Yhomotopie. L'espace Y est connexe en dimension n lorsque
chaque transformation / de la sphère Sn en sous-ensemble de Y
est homotope à 0, c'est-à-dire se laisse réduire à une constante

par une déformation continue; plus précisément, lorsqu'il existe

une fonction continue 9 de deux variables: x parcourant Sn

et t parcourant l'intervalle 01, telle que la fonction 9 (#, 0)
coïncide avec f(x) et que la fonction cp(x, 1) soit une constante1.

La localisation de la définition précédente conduit à la
définition de la connexité locale en dimension n au point p 2. Cette

propriété appartient à l'espace Y lorsqu'à chaque s > 0 correspond

un 7] > 0 tel que, chaque transformation continue / de Sn

en sous-ensemble de Y assujettie à l'inégalité | f(x) —p | < 73,

admette une extension /* telle que | /* (x) — p | < s où x
parcourt Qn+1 (ce qui revient à dire que l'homotopie de la fonction /
à la constante p se laisse effectuer sur un chemin très petit).

On constate, comme auparavant, que la connexité locale en
dimension 0 coïncide avec la connexité locale par arcs. En
particulier, les espaces compacts connexes et localement connexes
en dimension 0 coïncident avec les espaces péaniens. Cela donne
lieu à la dénomination suivante: un espace est dit péanien en
dimension n lorsqu'il est connexe et localement connexe en
dimension n.

A chaque espace Y on peut faire correspondre un coefficient
entier c (Y) (ou ct(Y)), à savoir la plus grande dimension n
jusqu'à laquelle Y est péanien (ou localement connexe). Dans
le cas où l'espace Y est péanien en chaque dimension, le coeffi-

1 Pour s'en convaincre on pose /*[x.(l — t)] ?(x, t).
2 Cette notion est due à M. Lefschetz. Voir «Topology », New-York, 1930, p. 91.

A côté de cette définition on peut considérer la connexité locale « au sens de l'homo-
logie », en entendant par cela que chaque petit cycle n-dimensionnel est homologue à 0
dans un petit voisinage du point p. Cette notion est due à M. Alexander et à
M. Alexandroff (voir «Gestalt u. Lage», Annals of Math., 30, 1928, p. 81). Tout
récemment elle fut étudiée par M. Alexandroff dans Annals of Math., 36 (1935), p. 1
et par M. Cech dans Compos. Math., 2 (1935), p. 1.

Cf. aussi Whyburn, Fund. Math., 25 (1935), p. 408.
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oient c(Y) est infini. Comme on verra, deux genres d'infinités
peuvent se présenter.

3 1. — Extensions des fonctions continues. Afin d'abréger
l'écriture, nous allons nous servir du symbole Yx pour désigner
la famille de toutes les transformations continues de l'espace X
en sous-ensembles de Y. Comme nous avons vu, la connexité
en toutes les dimensions ^ n s'exprime par l'hypothèse, qu'à
chaque fonction / appartenant à YSk correspond une extension
/* appartenant à YQfe+C quel que soit k gZ n. Or, si l'on remplace
dans cette condition Qk+i par un espace métrique séparable X
tout-à-fait arbitraire et Sk par un sous-ensemble fermé A de X
tel que dim (X — A) ^ n -j- 1 2, on parvient à une condition
qui caractérise les espaces péaniens en dimensions k ^ n (condition

qui ne fait intervenir aucun élément étranger à la topologie
ensembliste). En d'autres termes, l'inégalité c(Y) ^ n équivaut
à l'hypothèse suivante: A étant un sous-ensemble fermé d'un
espace métrique séparable X assujetti à la condition
dim (X — A) ^ n -j- 1, à chaque fonction / dans YA correspond
une extension /* dans Yx. Si cette extension est toujours
possible, sans que l'on fasse l'hypothèse sur la dimension de X — A,
nous posons c(Y) X0; si ceci a lieu pour chaque n fini, nous

posons c(Y) oo.

Les deux cas infinis peuvent se présenter effectivement:
d'après un théorème connu de M. Tietze, chaque fonction à

valeurs réelles définie sur un sous-ensemble fermé d'un espace
métrique se laisse étendre sur l'espace métrique tout entier;
donc Y désignant la droite, c (Y) X0. D'autre part, pour
avoir un espa.ce Y tel que c (Y) co, considérons — avec
M. Borsuk — dans l'espace de Hilbert à une infinité de dimensions

une suite infinie de sphères S0, Sl7 placées de manière

que chaque sphère n'ait qu'un seul point commun avec la
suivante et que la suite converge vers un point p situé en dehors
de cette suite. Soit q le point (1, 0, 0, 0, l'abscisse de chaque

1 Pour les énoncés des n08 3-7, voir ma note des Fund. Math., 24 (1935), p. 269,
où l'on trouvera les renvois bibliographiques nécessaires.

2 Le symbole dim X désigne la dimension de l'ensemble X dans le sens de Menger-
Urysohn.
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Sn étant supposée nulle. L'ensemble Y se compose de tous les

segments unissant q aux points des sphères Sn, ainsi que du

segment qp. Ici c (Y) co.

En ce qui concerne la connexité locale, on montre que
l'inégalité Cj(Y) ^ n équivaut à l'hypothèse que, A, X et / ayant
le même sens qu'auparavant, il existe dans X un entourage E

de A et une extension /* de / qui appartient à YE. Tout comme

auparavant on doit distinguer entre ch (Y) oo et cx (Y)
Un problème non-résolu, fort intéressant, qui s'y rattache, est

le suivant: l'égalité ^(Y) S0, est-elle une conséquence de la
connexité locale uniforme en toutes les dimensions n 1 (nous
entendons par cela qu'à chaque s > 0 correspond un v) > 0 tel
qu'à chaque fonction / dans Y&n satisfaisant2 à S[/(Sn)] < 73

correspond une fonction /* telle que §[/* (Qn+i)] < s).

4. —Rétraction des ensembles. — Un autre critère des ensembles

péaniens en dimension n (ou bien localement connexes) se laisse
énoncer à l'aide de la notion très utile de « rétraction », due à

M. Borsuk 3. Rappelons la définition: un sous-ensemble Y
de X en est un rétracte lorsque X se laisse transformer en Y
à l'aide d'une fonction continue / telle que / (x) x pour
chaque x appartenant à Y. Par exemple, le cercle est un rétracte
du plan qui le contient; tandis que la circonférence n'est pas
un rétracte du cercle 4.

Or, on démontre que l'inégalité c (Y) ^ n équivaut à

l'hypothèse que Y est un rétracte de chaque espace X qui
le contient, dans lequel Y est fermé et pour lequel on a
dim (X — Y) ^ n + 1. En particulier, l'égalité c (Y) K0

équivaut à l'hypothèse que Y est un rétracte de chaque sur-espace
dans lequel Y est fermé (Y est nommé dans ce cas, selon
M. Borsuk, un rétracte « absolu »).

1 Ce problème est traité par M. Lefschetz dans Annals of Math., 35 (1934), p. 118.
2 H (X) désigne le diamètre de l'ensemble X, c'est-à-dire la borne supérieure des

distances entre ses éléments.
3 Fund. Math., 17 (1931), p. 153.
4 D'une façon générale, pour qu'un sous-ensemble fermé Y d'un espace compact X

en soit un rétracte, il faut et il suffit que l'espace X se laisse métriser (sans altérer sa
topologie) de façon qu'à chaque point x de X corresponde un et un seul point f (x)
de Y qui soit le plus rapproché parmi les points de Y. Voir ma Note qui paraîtra dans
les C. R. de la Soc. des Se. de Varsovie (1936).
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On parvient à une condition qui équivaut à l'inégalité

ct (Y) ^ n en supposant que Y est un rétracte, non de l'espace X
tout entier mais d'un de ses entourages (dans X). L'égalité
cL (Y) — S0 signifie que dans chaque sur-espace X dans lequel Y
est fermé il existe un entourage de Y dont Y est un rétracte (c'est
donc un rétracte « absolu de voisinage »).

5. — Opérations. — Nous allons tâcher de répondre à présent
aux problèmes suivants: étant donnés les coefficients c des

ensembles A et B, calculer les coefficients c(A 4- B), c(A x B),
c (AB) etc. De même pour cx.

Dans cet ordre d'idées on a d'abord le théorème suivant:
A et B étant deux ensembles fermés dans leur somme A + B, les

inégalités c (A) ^ n, c (B) ^ n, c (AB) ^ n — 1, entraînent

c(A + B) ^ n.
Le théorème reste valable lorsqu'on substitue X0 à n \ On

peut aussi remplacer le coefficient c par ct.
Ainsi, par exemple, en décomposant la sphère Sn par 1'« équa-

teur » en deux hémisphères, on conclut du théorème
précédent par induction que c(Sn) ^ n — 1. Le fait, qui intervient
dans cette démonstration, que le coefficient c pour l'hémisphère
est ^ n— 1, même plus encore, qu'il est égal à X0, est une
conséquence de la propriété de Qn (qui est homéomorphe à l'hémisphère

considérée) d'être un rétract absolu. L'égalité c(Qn) >30

résulte aussi du théorème suivant.
Avant de l'énoncer, remarquons encore que c (Sn) < n1 donc

que c(Sn) n — 1. En effet, si c(Sn) était ^ Sn serait un
rétracte de Qn+1. Mais alors, la rétraction et la transformation
antipodique de Sn donneraient une transformation continue de

Qn+1 en Sn sans point invariant, — ce qui, d'après un théorème
classique de M. Brouwer, est impossible.

Passons, à présent, à l'opération du produit cartésien. Le

produit cartésien de deux espaces métriques X et Y est l'espace
des couples (x, y) métrisé par la formule adoptée en géométrie
analytique. Une généralisation convenable de cette formule
permet d'étendre la notion de produit cartésien à un nombre fini

i Cf. N. Aronszajn et K. Borsuk, Fund. Math., 18 (1932), p. 194.
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arbitraire ou même à une suite infinie de facteurs. Or, on

démontre que

e(Y1 x Y2 x mine(Y^ et cl(Y1 x Y2) min [^(Yx) ^(Y2)]

La deuxième formule ne se généralise pas à une suite infinie
de facteurs, comme le montre l'exemple de l'ensemble non-dense

de Cantor qui peut être regardé comme la « puissance >30-ème »

d'un ensemble composé de deux éléments (donc ayant le coefficient

Ct N0).
La puissance Yx désigne, comme nous l'avons déjà dit, l'espace

des transformations continues de l'espace X en sous-ensembles

de Y. L'espace X étant supposé compact, la distance entre
deux fonctions-éléments de Yx est donnée par la formule
| / — g| max I / (x) — g {x) | 1. Or, on a la formule remarquable

suivante
c (Yx) ^ c (Y) ^ c (Yx) + dim X

La formule reste valable en remplaçant le coefficient c par cx.

Dans le cas où c(Y) X0, on a c(Yx) >30; si cx(Y) >ï0,

on a cx(Yx) >50. Ainsi, par exemple, l'espace des fonctions
continues à valeurs réelles définies sur l'intervalle (ou sur un
espace compact arbitraire) est un rétracte absolu. L'espace des

transformations d'un espace compact arbitraire en sous-ensembles
d'un polytope est un rétract absolu de voisinage (çt >30).

Remarquons enfin que la connexité en dimension n de l'espace
Y se ramène à la connexité par arcs des espaces fonctionnels
YSo,..., YSm. En effet, la connexité locale par arcs de tous ces

espaces est une condition nécessaire et suffisante pour que l'on
ait ct(Y) ^ n; en admettant en outre la connexité intégrale
par arcs, on obtient une condition équivalente à l'inégalité
c (Y) ^ n.

6. — Rapport aoec Vhomologie. — On démontre facilement
que, Y étant un espace compact arbitraire, Vinégalité c(Y) ^ n

i Les formules suivantes justifient l'emploi de la notation Yx:
Yx X Zx (Y X Z)x (Yx)z ^ Yx Xz Ya X Yb YA+B

où A et B sont fermés et disjoints et où ^ désigne l'homéomorphie.
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implique que tous les groupes dhomologie d'ordres ^ n s'annulent,
La réciproque n'est pas vraie: le polytope bien connu de
Poincaré dont les nombres de Betti de dimension 0 et 1

s'annulent et dont le groupe fondamental ne s'annule pas n'est pas
péanien en dimension 1 (bien qu'il le soit « dans le sens de l'homo-
logie »). Dans cet ordre d'idées un résultat fort remarquable a

été trouvé tout récemment par M. Hurewicz 1: dans l'hypothèse
que c (Y) ^ 1, le fait que tous les groupes d'homologie d'ordres

^ n s'annulent implique (est donc équivalent à) l'inégalité
c{Y) ^ n.

Des rapports analogues ont lieu entre le coefficient cx et la
connexité locale au sens de l'homologie. Ajoutons que l'inégalité
cx(Y) ^ n implique que les nombres de Betti de dimensions ^ n
de Y sont finis 2.

7. — Rapport açee Vhomotopie des ensembles. — Un ensemble
est dit homotope à un point dans un espace donné lorsqu'il se

laisse réduire dans cet espace au point considéré par une déformation

continue. Si chaque ensemble fermé de dimension n est

homotope à un point, l'espace est dit contractile en dimension n.

L'homotopie d'un ensemble étant un cas particulier de l'homo-
topie des fonctions (cas où la fonction est une identité), l'inégalité
c(Y) ^ n entraîne la contractilité (intégrale et locale) de

l'espace Y en dimensions ^ n. La réciproque n'est pas vraie:
l'exemple suivant dû à M. Borsuk 3, est un espace compact E à

3 dimensions, contractile localement (on a même cx(E) N0),

contractile intégralement en dimensions ^ 2 et, cependant, non
péanien en dimension 2; plus encore, le deuxième nombre de

Betti de E est égal à 1. Pour obtenir l'ensemble E, on transforme
d'abord un arc L situé sur la surface sphérique S2 en Q3 par une
transformation continue / et on identifie ensuite, pour chaque
point y de Q3, tous les x tels que f(x) y (plus précisément,
E est l'espace de la décomposition de S2 en points individuels de

1 A paraître dans le volume jubilaire des Fund. Math. (25).
2 Plus encore: leurs groupes de Retti sont des images homéomorphes des groupes

correspondants d'un polytope à n dimensions. Voir K. Borsuk, Fund. Math., 24 (1935),
p. 311.

3 Ibid., p. 257.
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l'ensemble S2 — L et en ensembles f~{ (y) où y parcourt
l'ensemble Q3).

On voit .ainsi combien la condition d'homotopie de fonctions
est plus restrictive que celle d'homotopie d'ensembles. Reste à

remarquer que dans le cas particulier où l'espace compact Y
(supposé de dimension finie) est localement contractile en toute
dimension, on a ^(Y) }s!0; et, s'il en est, en outre, ainsi de

la contractilité intégrale, il vient c (Y) X0. Le problème —
si l'hypothèse de dimension finie de Y peut être omise dans le
dernier énoncé — reste ouvert; il se rattache à celui de la
connexité locale uniforme (du n° 3).

8. — Propriétés extérieures des ensembles localement connexes

plongés dans Vespace euclidien à n dimensions. — Ces propriétés
n'ont été étudiées jusqu'à présent que dans le cas où l'ensemble
fermé considéré F est localement connexe en toute dimension
^Ln — 1 (donc où il est un rétracte absolu de voisinage). On
démontre 1 dans ce cas que F coupe Vespace en un nombre fini
(^ 1) de domaines (cela est d'ailleurs une conséquence du fait
que le n-ème nombre de Betti de F est fini). En outre, si p est

un point de F appartenant à la frontière d'un de ces domaines,

p en est accessible. Puis, la frontière de F est localement connexe
(en dimension 0).

9. — Problèmes quantitatifs. Groupes d'homotopie. — Si

l'espace n'est pas connexe en dimension n, le problème s'impose
de calculer le degré de non-connexité. Dans le cas n — 0, c'est
bien le nombre des composantes de l'espace (c'est-à-dire des
ensembles connexes saturés) qui donne la réponse à ce problème.
Pour n arbitraire la réponse, au point de vue de l'homologie,
est donnée par le ft-ième nombre de Betti (et d'une façon plus
précise: par le ft-ième groupe de Betti). Au point de vue de

l'homotopie, on n'était renseigné sur ce problème jusqu'à
présent que dans le cas n 1, notamment, par le groupe
fondamental de Poincaré (que l'on pourrait nommer le premier groupe

i K. Borsuk, ibid., t. 19 (1932), p. 230-234.
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d'homotopie). Une étude systématique du zz-ème groupe d'homotopie

n'a été entreprise que tout récemment par M. Hurewicz F
Voici la définition du zz-ème groupe d'homotopie. Soit Y un

espace connexe et localement contractile; soient b un point fixe
de Y et a un point fixe de Sn-1 (par exemple le point 1, 0, 0, 0).

Considérons, dans l'espace Y8**-1, le sous-ensemble Fn composé
de fonctions / telles que f(a) b. Le ?z-ème groupe d'homotopie
de Y est par définition le groupe fondamental de l'ensemble Fn.
On constate facilement que ce groupe ne dépend pas du choix
des points a et b et que pour n — 1 il coïncide avec le groupe
de Poincaré.

Bien entendu, si c(Y) zz, c'est-à-dire si l'espace est péanien
jusqu'à la dimension zz, tous les groupes d'homotopie jusqu'au
zz-ième s'annulent. Si cette égalité n'a pas lieu, les groupes
d'homotopie permettent d'approfondir l'étude de la structure
de l'espace Y au point de vue de la connexité, bien que cet

espace ne soit pas connexe en certaines dimensions.
Un nouveau chapitre de la théorie générale de la connexité

se trouve ainsi inauguré.

i Proceed. Akad. Amsterdam, 38 (1935), p. 112. Pour la définition, cf. aussi E. Cech,
C. B. Congrès Int. Math. Zurich, 1932, vol. 2, p. 194.
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