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LA NOTION DE CONNEXITE LOCALE EN TOPOLOGIE*

PAR

Casimir KuraTowskr (Varsovie).

I1 y a une dizaine d’années la Topologie était divisée en deux
parties: la Topologie « ensembliste » et la Topologie « combina-
toire ». La premiére, édifiée sur le terrain de la théorie des
ensembles de Georg CANTOR, avait pour objet I’étude des pro-
priétés topologiques des ensembles de points les plus généraux,
la deuxiéme, fondée sur les idées de Henri Poincarg: celles
d’homologies, de groupe de Betti, du groupe fondamental,
concernait les polyédres ou polytopes & » dimensions. La
deuxiéme semblait inapplicable dans I’étude des ensembles arbi-
traires (autres que les polytopes), tandis que la premiére parais-
sait impuissante en face de I’étude de certaines propriétés topo-
logiques extérieures des figures géométriques situées dans I’espace
euclidien & n > 2 dimensions, telles que le nombre des domaines
complémentaires, enlacements d’ensembles, etc.

Les deux topologies se développaient indépendamment 1'une
de l'autre: non seulement les objets de leurs études étaient
différents, mais il y avait aussi une différence frappante entre
leurs méthodes: I'une était finitiste, autre était par contre liée
& la notion de continuité.

Deés lors I’état des choses a complétement changé. En §’inspi-
rant des idées de M. BRouwER, MM. ALEXANDROFF et VIETORIS
ont réussi & définir dans le domaine de la topologie ensembliste
(pour les espaces compacts les plus généraux) les-notions combi-

1 Conférence faite le 22 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par 1’Université de Genéve; série consacrée A
Quelques questions de Géométrie et de Topologie.
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natoires d’homologie, de groupe de Betti, d’enlacements, etc.
Ainsi «unifiée » * et enrichie de nouvelles méthodes, la topologie
a pu attaquer des problémes qui paraissaient jusqu’ici inabor-
dables. Elle n’est pas non plus sans intérét pour I’étude des
figures aussi réguliéres que les polytopes: il y a en effet des
propriétés dont I’étude demande la considération de certains
autres espaces (par ex. des espaces des transformations, H.
Horr, W. HureEwicz) qui, en général, sont non-compacts, ont
un nombre infini de dimensions et qui rentrent dans le domaine
de la topologie ensembliste.

A Theure actuelle les deux topologies, ensembliste et combi-
natoire, se confondent de plus en plus. Une délimitation rigou-
reuse entre elles ne parait plus applicable et d’autres critéres
commencent a Intervenir dans la classification des méthodes
topologiques (par ex. homologie, homotopie, groupe des trans-
formations en circonférence, etc.). En particulier, la théorie de
la connexité locale, qui constitue le sujet de cette conférence,
est un chapitre de la topologie unifiée, ot 'ancienne distinction
ne semble plus possible.

1. — Connexité en Topologie ensembliste. — La notion de
connexité est une des notions fondamentales de la Topologie
ensembliste. Rappelons sa définition: un ensemble est dit
connexe s’il ne se décompose pas en deux ensembles fermés
dans lui (non vides) et sans point commun. La notion de
connexité étant intrinseque, on peut considérer au lieu d’«en-
semble connexe » I’« espace connexe ». Soit, en effet, E un espace
métrique donné 2, c’est-a-dire espace ou la distance | a— b | de
chaque couple de points a et b est définie; I'espace E est dit
connexe lorsqu’il ne se décompose pas en deux ensembles fermés
sans point commua. S1 cet espace est, en outre, compact (c’est-
a-dire que chaque ensemble infini admet un point d’accumula-
tion), il est dit un continu. Telles sont, en particulier, les lignes
et les surfaces bornées considérées en géométrie.

*

1 Cf. la conférence trés intéressante de M. WILDER sur la Topologie unifiée publiée
dans le Bull. Amer. Math. Soc., 1932.

2 Par espace nous entendons ici toujours un espace métrique séparable (c’est-a-dire
admettant un ensemble dense dénombrable).
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La localisation de la définition précédente conduit & Ia
connexité locale: un espace est dit localement connexe au point p
lorsqu’il existe un entourage connexe de p aussi petit qu’on le
veut. Tel est, par exemple, le plan euclidien, le cercle de centre p
et de rayon ¢ étant connexe. Il en est encore de méme des
polyédres ou polytopes, mais il n’en est pas ainsi de la courbe
y=g¢in 1/z, 0 <z =<1, augmentée de l'intervalle —1, + 1
de I'axe des y; aux points de cet intervalle la courbe n’est pas
localement connexe.

La notion de connexité locale, introduite indépendamment
par Haun et par M. Mazurrkiewicz, a servi, a coté de la
connexité méme (qui remonte & C. JorpAN), de point de départ
de nombreuses recherches topologiques et a permis d’appro-
fondir I’étude de la structure d’ensembles de points (pour ne
citer que la théorie des courbest).

Parmi les nombreux théorémes de la théorie de la connexite
locale, citons les deux suivants: la condition suffisante et néces-
saire pour qu’'un continu soit localement connexe, est qu’il
soit une image continue d’un intervalle 2. Ainsi, la propriété du
carré d’admettre une représentation paramétrique continue sur
I'intervalle, propriété découverte par PraNo et qui paraissait
tellement paradoxale, s’est montrée une propriété caractéris-
tique des continus localement connexes (continus nommés a
présent « péantens »).

La deuxiéme propriété est la connexité par arcs intégrale et
locale des continus péaniens: & savoir, chaque couple de points
d’un continu péanien se laisse unir dans ce continu par un arec
(c’est-a-dire par un ensemble homéomorphe a Dintervalle); de
plus, si les deux points en question sont suffisamment voisins,
Parc peut étre supposé aussi petit qu’on le veut 3.

La notion de continu péanien définit dans la variété de tous
les ensembles de points une famille d’ensembles qui se distinguent
par certaines régularités (elles se manifestent, par exemple,
dans les deux théorémes précités). Cette régularité est surtout

1 Voir K. MENGER, « Kurventheorie », Leipzig-Berlin, 1932.
2 Cf. W. SierpiNskI, Fund. Math., T (1920), p. 44 et S. MAzZURKIEWICZ, ibid.,
p. 166.

3 S. MAZURKIEWICZ, ibid., p. 201 et R. L. MOORE, Bull. Amer. Math. Soc., 23 (1917),
p. 233.




232 C. KURATOWSKI

visible lorsqu’il s’agit des propriétés intrinséques des ensembles
considérés. En ce qui concerne leurs propriétés extérieures,
c¢’est-a-dire lorsqu’on suppose le continu péanien immergé dans
I’espace euclidien & n dimensions, le cas n = 2 différe compléte-
ment du cas n > 2. Ainsi, par exemple?!, si C est un continu
péanien situé sur le plan, la frontiére de chaque domaine com-
plémentaire de C est un continu péanien et chaque point de
cette frontiére est accessible du domaine considéré: si, en par-
ticulier, C est la frontiere de deux domaines complémentaires,
elle est une courbe simple fermée. Aucune de ces propriétés ne
se laisse étendre a 'espace euclidien a 3 dimensions; en passant
du plan & I’espace & 3 dimensions, ’hypothése de la connexité
locale est devenue bien moins efficace pour I’étude des propriétés
extrinséques 2. De ce point de vue on trouvera avantageux de
se servir de la notion de connexité locale en dimension n, dont
nous nous occuperons a présent.

2. — Connexité locale en dimension n. — Désignons par S, la
sphére & n dimensions, a savoir ’ensemble des points de ’espace
euclidien & n + 1 dimensions tels que zj + ... + 2, = 1. En
remplacant dans la définition précédente le signe = par =<, on
définit le sphéroide (massif) & » 4+ 1 dimensions, que nous
désignons par Q, ..

Disons, pour I'instant, qu’un espace Y est connexe en dimen-
ston n lorsque chaque transformation continue f de la sphére S,
en sous-ensemble de Y se laisse étendre en une transformation
continue f* du sphéroide Q, ., tout entier (en sous-ensemble
de Y). On voit aussitot que la connexité en dimension 0 n’est
autre chose que la connexité par arcs, considérée auparavant
(puisque Q, désigne un intervalle et S, le couple de ses extré-
mités). Pour avoir un exemple d’un ensemble qui n’est pas
connexe en dimension 1, considérons la circonférence S; du
cercle Q,: en admettant pour f I'identité, on constate facilement

1 Cf. ScuONFLIESS, « Bericht tiber die Entwicklung der Mengenlehre, 11 », Leipzig,
1908, p. 199 et ss., B. v. KEREKJARTO, Abh. Math. Sem. Hamburg, IV (1925), p. 164,
H. HauN, M. TorHORST, Math. Zft., 9 (1921) et ma note des Fund. Math., 16 (1930),
p. 180.

2 Cela tient, entre autfres, au fait que chaque ensemble compact devient péanien
par ’adjonction d’une suite infinie d’arcs simples (qui n’altére pas en général les pro-
priétés extérieures de I’ensemble donné, dans ’espace & n > 2 dimensions).
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qu’il n’existe aucune transformation du cercle en circonférence
qui soit une identité sur cette circonférence. D’une fagon géné-

rale S, est connexe en dimensions £ < n mais n’est pas connexe

en dimension A.
La définition précédente peut étre aussi formulée en termes

de Phomotopie. 1’espace Y est connexe en dimension n lorsque
chaque transformation f de la sphére S, en sous-ensemble de Y
est homotope a 0, c’est-a-dire se laisse réduire & une constante
par une déformation continue; plus précisément, lorsqu’il existe
une fonction continue ¢ de deux variables: x parcourant S,
et t parcourant l'intervalle 01, telle que la fonction ¢ (z, 0)
coincide avec f(z) et que la fonction o (x, 1) soit une constante®.

La localisation de la définition précédente conduit & la défi-
nition de la connexité locale en dimension n au point p 2. Cette
propriété appartient a I’espace Y lorsqu’a chaque ¢ > 0 corres-
pond un v > 0 tel que, chaque transformation continue f de S,
en sous-ensemble de Y assujettie & I'inégalité | f(z) —p | < =,
admette une extension f* telle que | f*(x) — p | < e ou «x par-
court Q. (ce qui revient a dire que I’homotopie de la fonction f
& la constante p se laisse effectuer sur un chemin trés petit).

On constate, comme auparavant, que la connexité locale en
dimension O coincide avec la connexité locale par ares. En parti-
culier, les espaces compacts connexes et localement connexes
en dimension 0 coincident avec les espaces péaniens. Cela donne
lieu & la dénomination suivante: un espace est dit péanien en
dimension n lorsqu’il est connexe et localement connexe en
dimension n.

A chaque espace Y on peut faire correspondre un coefficient
entier ¢ (Y) (ou ¢(Y)), a savoir la plus grande dimension n
Jusqu’d laquelle Y est péanien (ou localement connexe). Dans
le cas ou I’espace Y est péanien en chaque dimension, le coeffi-

1 Pour s’en convaincre on pose f*[x.(1 — )] = o(x, 1).

2 Cette notion est due & M. LErscHETZ. Voir « Topology », New-York, 1930, p. 91.
A cote de cette définition on peut considérer la connexité locale « au sens de I’homo-
logie », en entendant par cela que chaque petit cycle n-dimensionnel est homologue a 0
dans un petit voisinage du point p. Cette notion est due 4 M. ALEXANDER et &
M. ALEXANDROFF (voir « Gestalt u. Lage», Annals of Math., 30, 1928, p. 81). Tout
récemment elle fut étudiée par M. ALEXANDROFF dans Annals of Math., 36 (1935), p. 1
et par M. Cecu dans Compos. Math., 2 (1935), p. 1.

Cf. aussi WHYBURN, Fund. Math., 25 (1935), p. 408.
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cient ¢(Y) est infini. Comme on verra, deux genres d’infinités
peuvent se présenter. .

3 1. — LExtensions des fonctions continues. — Afin d’abréger
Pécriture, nous allons nous servir du symbole Y* pour désigner
la famille de toutes les transformations continues de Iespace X
en sous-ensembles de Y. Comme nous avons vu, la connexité
en toutes les dimensions << n s’exprime par I'hypothése, qu’a
chaque fonction f appartenant & Y®* correspond une extension
f* appartenant & Y?+1 quel que soit k = n. Or, sil’on remplace
dans cette condition ), , par un espace métrique séparable X
tout-a-fait arbitraire et S, par un sous-ensemble fermé A de X
tel que dim (X — A)=n 4 12 on parvient a une condition
qul caractérise les espaces péaniens en dimensions k = n (condi-
tion qui ne fait intervenir aucun élément étranger & la topologie
ensembliste). En d’autres termes, I'inégalité ¢ (Y) > n équivaut
a I’hypothese suivante: A étant un sous-ensemble fermé d’un
espace métrique séparable X assujetti a la condition
dim (X — A) =< n + 1, a chaque fonction f dans Y* correspond
une extension f* dans Y*. Si cette extension est toujours pos-
sible, sans que ’on fasse I’hypotheése sur la dimension de X -— A,
nous posons c(Y) = N,; si cect a lieu pour chaque n fini, nous
posons ¢(Y) = w.

Les deux cas infinis peuvent se présenter effectivement:
d’aprés un théoréme connu de M. Tierze, chaque fonction &
valeurs réelles définie sur un sous-ensemble fermé d’un espace
métrique se laisse étendre sur l’espace métrique tout entier;
donc Y désignant la droite, ¢ (Y) = N,. D’autre part, pour
avoir un espace Y tel que ¢(Y) = o, considérons — avec
M. Borsuk — dans l’espace de Hilbert a une infinité de dimen-
sions une suite infinie de sphéres S,, S;, ... placées de maniére
que chaque spheére n’ait qu'un seul point commun avec la sui-
vante et que la suite converge vers un point p situé en dehors
de cette suite. Soit ¢ le point (1, 0, 0, 0, ...), ’abscisse de chaque

1 Pour les énoncés des nos 3-7, voir ma note des Fund. Math., 24 (1935), p. 269,
oll I’on trouvera les renvois bibliographiques nécessaires.

2 Le symbole dim X désigne la dimension de I’ensemble X dans le sens de MENGER-
URYSOHN.
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S, étant supposée nulle. L’ensemble Y se compose de tous les
segments unissant ¢ aux points des sphéres S,, ainsi que du
segment gp. Ici ¢ (Y) = o. |
En ce qui concerne la connexité locale, on montre que 1'iné-
galité ¢, (Y) > n équivaut & I’hypothese que, A, X et [ ayant
le méme sens qu’auparavant, il existe dans X un entourage E
de A et une extension f* de f qui appartient & Y*. Tout comme
auparavant on doit distinguer entre ¢;(Y) = o et ¢ (Y) = N,.
Un probléme non-résolu, fort intéressant, qui s’y rattache, est
le suivant: Pégalité ¢, (Y) = W,, est-elle une conséquence de la
connexité locale uniforme en toutes les dimensions n ? 1 (nous
entendons par cela qu’a chaque ¢ > 0 correspond un = > 0 tel
qu’a chaque fonction f dans Y5 satisfaisant2 a §[f(S,)] < 7
correspond une fonction f* telle que S[f/* (Q, )] < ¢).

4. — Rétraction des ensembles. — Un autre critére des ensembles
péaniens en dimension 7 (ou bien localement connexes) se laisse
énoncer a l'aide de la notion trés utile de «rétraction », due a
M. Borsuk 3. Rappelons la définition: un sous-ensemble Y
de X en est un rétracte lorsque X se laisse transformer en Y
a l'aide d’une fonction continue [ telle que f(z) = z pour
chaque = appartenant & Y. Par exemple, le cercle est un rétracte
du plan qui le contient; tandis que la circonférence n’est pas
un rétracte du cercle 4.

Or, on démontre que I'inégalité c(Y) > n équivaut a
Phypothése que Y est un rétracte de chaque espace X qui
le contient, dans lequel Y est fermé et pour lequel on a
dim (X —Y) = n + 1. En particulier, Pégalité ¢ (Y) = N,
équivaut & ’hypothése que Y est un rétracte de chaque sur-espace
dans lequel Y est fermé (Y est nommé dans ce cas, selon
M. Borsuk, un rétracte « absolu »).

1 Ce probléme est trait¢ par M. LerscHETZ dans Annals of Math., 35 (1934), p. 118.

2 § (X) désigne le diamétre de I'ensemble X, c’est-a~dire la borne supérieure des
distances entre ses éléments.

3 Fund. Math., 17 (1931), p. 153.

4 D’une facon geénérale, pour qu'un sous-ensemble fermé Y d’un espace compact X
en soit un rétracte, il faut et il sufiit que I'espace X se laisse métriser (sans altérer sa
topologie) de facon gqu’d chaque point x de X corresponde un ef un seul point f (x)
de Y qui soit le plus rapproché parmi les points de Y. Voir ma Note qui paraitraldans
les C. R. de la Sac. des Sc. de Varsovie (1936). '
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On parvient & une condition qui équivaut & I'inégalité
¢, (Y) = n en supposant que Y est un rétracte, non de ’espace X
tout entier mais d’un de ses entourages (dans X). L’égalité
¢ (Y) = N, signifie que dans chaque sur-espace X dans lequel Y
est fermé il existe un entourage de Y dont Y est un rétracte (c’est.
donc un rétracte « absolu de voisinage »).

5. — Opérations. — Nous allons tacher de répondre a présent.
aux problémes suivants: étant donnés les coefficients ¢ des
ensembles A et B, calculer les coefficients ¢ (A + B), ¢(A X B),
c(A®) etc. De méme pour ¢.

Dans cet ordre d’idées on a d’abord le théoréme suivant:
A et B étant deux ensembles fermés dans leur somme A 4 B, les
- tnégalités ¢ (A) >n, ¢(B)>n, ¢ (AB)>n—1, enirainent
¢c(A + B) > n.

Le théoréme reste valable lorsqu’on substitue X, a n'. On
peut aussi remplacer le coefficient ¢ par ¢;.

Ainsi, par exemple, en décomposant la sphére S, par '« équa-
teur» S, ; en deux hémisphéres, on conclut du théoreme pré-
cédent par induction que ¢(S,) > n — 1. Le fait, qui intervient
dans cette démonstration, que le coefficient ¢ pour 'hémisphére
est > n— 1, méme plus encore, qu’il est égal a W, est une consé-
quence de la propriété de Q, (qui est homéomorphe & I’hémi-
sphére considérée) d’étre un rétract absolu. L’égalité ¢(Q,) = N,
résulte aussi du théoréme suivant.

Avant de I’énoncer, remarquons encore que c(S,) < r, donc
que ¢(S,) = n — 1. En effet, si ¢(S,) était > n, S, serait un
rétracte de Q,.,. Mais alors, la rétraction et la transformation
antipodique de S, donneraient une transformation continue de
Q,.1 en S, sans point invariant, — ce qui, d’aprés un théoréeme
classique de M. BROUWER, est impossible.

Passons, & présent, a Vopération du produit cartésien. Le
produit cartésien de deux espaces métriques X et Y est 'espace
des couples (z, y) métrisé par la formule adoptée en géométrie
analytique. Une généralisation convenable de cette formule
permet d’étendre la notion de produit cartésien & un nombre fini

1 Cf. N. AronszaIN et K. Borsuk, Fund. Math., 18 (1932), p. 194.
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arbitraire ou méme a une suite infinie de facteurs. Or, on
démontre que ‘

e(Yy x Y, x ..) =minec(Y;) et ¢(Y; x Y, = min[¢(Yy), ¢(Ya)] .

La deuxiéme formule ne se généralise pas & une suite infinie
de facteurs, comme le montre Pexemple de I’ensemble non-dense
de Cantor qui peut étre regardé comme la «puissance Ny-éme»
d’un ensemble composé de deux éléments (donc ayant le coeffi-
cient ¢, = N,).

La puissance Y* désigne, comme nous ’avons déja dit, 'espace
des transformations continues de lespace X en sous-ensembles
de Y. L’espace X étant supposé compact, la distance entre
deux fonctions-éléments de Y* est donnée par la formule
|f— gl =max|f(x) —g(x)|* Or, on a la formule remar-
quable suivante

c(Y®) £ ¢(Y) £ ¢(Y¥) + dim X .

La formule reste valable en remplagant le coeflicient ¢ par ¢;.
Dans le cas ou ¢(Y) = ¥,, on a ¢(Y¥) = N;; s1 ¢(Y) = N,,
on a ¢(Y*) = N,. Ainsi, par exemple, ’espace des fonctions
continues a valeurs réelles définies sur I'intervalle (ou sur un
espace compact arbitraire) est un rétracte absolu. L’espace des
transformations d’un espace compact arbitraire en sous-ensembles
d’un polytope est un rétract absolu de voisinage (¢, = W).

Remarquons enfin que la connexité en dimension n de I’espace
Y se ramene a la connexité par arcs des espaces fonctionnels
Y%, ..., Y®. En effet, la connexité locale par arcs de tous ces
espaces est une condition nécessaire et suffisante pour que I'on
ait ¢, (Y) > n; en admettant en outre la connexité intégrale

par arcs, on obtient une condition équivalente a D'inégalité
c(Y) > n.

6. — Rapport avec ’homologie. — On démontre facilement
que, Y étant un espace compact arbitraire, 'inégalité ¢(Y) > n

1 Les formules suivantes justifient ’emploi de la notation YX:
YX X ZX (Y X 2)%, (YX)?2— YXXZ YA x YBe YA+B

ol A et B sont fermés et disjoints et ol — dééigne ’homéomorphie.
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implique que tous les groupes d’homologie d’ordres = n s’annulent.
La réciproque n’est pas vraie: le polytope bien connu de
PoincarE dont les nombres de Betti de dimension 0 et 1 s’an-
nulent et dont le groupe fondamental ne s’annule pas n’est pas
péanien en dimension 1 (bien qu’il le soit « dans le sens de I’homo-
logie »). Dans cet ordre d’idées un résultat fort remarquable a
été trouvé tout récemment par M. Hurewicz : dans 'hypothese
que ¢ (Y) > 1, le fait que tous les groupes d’homologie d’ordres
= n s’annulent implique (est donc équivalent a) Pinégalité
c(Y) = n.

Des rapports analogues ont lieu entre le coefficient ¢, et la
connexité locale au sens de I’homologie. Ajoutons que I'inégalité
¢;(Y) > n 1mmplique que les nombres de Betti de dimensions = »n
de Y sont finis 2.

7. — Rapport avec ’homotopie des ensembles. — Un ensemble
est dit homotope a un point dans un espace donné lorsqu’il se
laisse réduire dans cet espace au point considéré par une déforma-
tion continue. Si chaque ensemble fermé de dimension n est
homotope & un point, I’espace est dit contractile en dimension n.
L’homotopie d’un ensemble étant un cas particulier de I’homo-
topie des fonections (cas ou la fonction est une identité), I'inégalité
c¢(Y) > n entraine la contractilité (intégrale et locale) de
I’espace Y en dimensions = n. La réciproque n’est pas vraie:
I'exemple suivant di & M. Borsuxk 3, est un espace compact E a
3 dimensions, contractile localement (on a méme ¢, (E) = N),
contractile intégralement en dimensions =< 2 et, cependant, non
péanien en dimension 2; plus encore, le deuxiéme nombre de
Betti de E est égal a 1. Pour obtenir I’ensemble E, on transforme
d’abord un arc L situé sur la surface sphérique S, en (; par une
transformation continue f et on identifie ensuite, pour chaque
point y de Qg, tous les x tels que f(x) = y (plus précisément,
E est espace de la décomposition de S, en points individuels de

1 A paraitre dans le volume jubilaire des Fund. Math. (25).

2 Plus encore: leurs groupes de Betti sont des images homéomorphes des groupes
correspondants d’un polytope & n dimensions. Voir K. Borsuk, Fund. Math., 24 (1935),
p. 311.

3 Ibid., p. 257.
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Pensemble S, — L et en ensembles ™ (y) ou y parcourt I'en-
semble ;).

On voit .ainsi combien la condition d’homotopie de fonctions
est plus restrictive que celle d’homotopie d’ensembles. Reste &
remarquer que dans le cas particulier ou I’espace compact Y
(supposé de dimension finie) est localement contractile en toute
dimension, on a ¢ (Y) = N,; et, s’il en est, en outre, ainsi de
la contractilité intégrale, il vient ¢ (Y) = N;. Le probléme —
si Phypothése de dimension finie de Y peut étre omise dans le
dernier énoncé — reste ouvert; il se rattache a celui de la
connexité locale uniforme (du n° 3).

8. — Propriétés extérieures des ensembles localement connexes
plongés dans Uespace euclidien ¢ n dimensions. — Ces propriétés
n’ont été étudiées jusqu’a présent que dans le cas ou 'ensemble
fermé considéré F est localement connexe en toute dimension
=< n—1 (donc ou il est un rétracte absolu de voisinage). On
démontre ! dans ce cas que I coupe l'espace en un nombre fint
(= 1) de domaines (cela est d’ailleurs une conséquence du fait
que le n-éme nombre de Betti de F est fini). En outre, si p est
un point de F appartenant o la frontiére d’un de ces domaines,
p en est accessible. Puis, la frontiere de F est localement connexe
(en dimension 0).

9. — Problémes quantitatifs. Groupes d’homotopie. — Si
Pespace n’est pas connexe en dimension n, le probléme s’impose
de calculer le degré de non-connexité. Dans le cas n = 0, c’est
bien le nombre des composantes de P’espace (c’est-a-dire des
ensembles connexes saturés) qui donne la réponse & ce probléme.
Pour n arbitraire la réponse, au point de vue de I’homologie,
est donnée par le n-ieme nombre de Betti (et d’une fagon plus
précise: par le n-iéme groupe de Betti). Au point de vue de
’homotopie, on n’était renseigné sur ce probléeme jusqu’a
présent que dans le cas » = 1, notamment, par le groupe fonda-
mental de Poincaré (que I’on pourrait nommer le premier groupe

1 K. BORSUK, ibid., t. 19 (1932), p. 230-234.
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d’homotopie). Une étude systématique du n-eme groupe d’homo-
topie n’a été entreprise que tout récemment par M. Hurewicz L.

Voici la définition du n-éme groupe d’homotopie. Soit Y uun
espace connexe et localement contractile; soient b un point fixe
de Y et @ un point fixe de S,_, (par exemple le point 1, 0, 0, ..., 0).
Considérons, dans I’espace Y1, le sous-ensemble F, composé
de fonctions f telles que f(a) = b. Le n-eme groupe d’homotopie
de Y est par définition le groupe fondamental de I’ensemble F,,.
On constate facilement que ce groupe ne dépend pas du choix
des points a et b et que pour n = 1 il coincide avec le groupe
de Poincaré.

Bien entendu, si ¢(Y) = n, c’est-a-dire s1 I’espace est péanien
jusqu’a la dimension n, tous les groupes d’homotopie jusqu’au
n-ieme s’annulent. Si cette égalité n’a pas lieu, les groupes
d’homotopie permettent d’approfondir 1’étude de la structure
de 'espace Y au point de vue de la connexité, bien que cet
espace ne soit pas connexe en certaines dimensions.

Un nouveau chapitre de la théorie générale de la connexité
se trouve ainsi inauguré.

1 Proceed. Akad. Amsterdam, 38 (1935), p. 112. Pour la définition, cf. aussi E. CecH,
C. R. Congrés Int. Math. Zurich, 1932, vol. 2, p. 194.
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