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TOPOLOGIE ET INTEGRALES MULTIPLES 225

5. — THEORIE DES RESIDUS.

Nous avons supposé que les formes « introduites dans la
théorie des courants étaient partout réguliéres sur la variété V.
Si Pon admet des formes qui présentent des singularités, pour
que les lois essentielles de la théorie subsistent, la définition du
dérivé doit étre complétée. Lorsque o présente des singularités,
le dérivé de (V, ) se compose non seulement de (V, ') — ce qui
serait le cas si o était réguliere —, mais encore d’autres termes
provenant des singularités de » et qu’on peut appeler les résidus
de w.

Je vais examiner & ce point de vue les formes différentielles
algébriques dans le domaine complexe, ce qui nous conduira &
la théorie des résidus de Cauchy et de Poincaré. Cette étude est
basée sur la formule suivante.

Soient C; et C, deux courants dont la somme des dimensions
est (n + 1), n étant la dimension de la variété considérée;
C; . G, est alors un 1-courant, et 'indice de son dérivé d(C; . C,)
est nul, ce qui donne

1(CydGy) = 4= I(CpdCy) . (A)

Cette formule est trés importante. Si C; et Gy sont des champs,
elle traduit la pseudo-commutativité du coefficient d’enlacement
des deux cycles dC; et dC,. S1 C; et C, sont des formes, c’est la
formule d’intégration par parties. Si G, est un champ et C, une
forme, c’est la formule de Stokes. Dans les cas que nous allons
examiner, elle se réduira aux formules des résidus de Cauchy et
Poincaré.

Considérons d’abord une différentielle rationnelle f(z)dz sur
la sphére de Riemann S de la variable complexe z. Soient
z, (k= 1,2, ...) ses points singuliers, r, les résidus correspon-
dants. Nous définissons le dérivé du 1-courant C' = (S, f (z) dz)
par la formule

dCt = >\ (g, 2inry)
k
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226 G. DE RHAM

Soit ¢ un domaine sur S (ou 2-champ) de frontiére c'; ¢2 est un
2-courant dont le dérivé est ¢'. Appliquons la formule (A). On a

Gl-de* = (8, fla)dz) - (', 1) = — (¢, f(2)dz) ,
done
1(CL de?) = ff(z) dz
&
Ensuite
- dCt = (2, 1) - D\ (5, 2imry) = > (- 7, 2inr,) .
k k

Comme 2.z, = z, ou 0 suivant que z, est a l'intérieur ou a
3 R 3
Iextérieur de ¢2, il vient

I{c?.dCl) = 2in (somme des résidus intérieurs a c2)

et la formule (A) se réduit a la formule des résidus de Cauchy.
La formule I(dC!) = 0 exprime que la somme des résidus est
nulle.

Considérons ensuite un élément d’intégrale double

o = f(x, y)dedy ,

f (xz,y) étant une fonction rationnelle, z et y des coordonnées
non homogenes dans le plan projectif complexe V a 4 dimensions
réelles. Sa dérivée est nulle, mais elle a des points singuliers qui
forment un nombre fini de courbes algébriques (donc des
2-champs) Sy, Sy, S;, ... Ce sont les courbes polaires de la fonc-
tion f(x, y) et éventuellement la droite de 'infini.

Poincaré a montré qu’a chacune de ces courbes est attachée

une différentielle abélienne déterminée par w. Si par exemple
_ Play) : A oy .
f= Q) Ry’ P, Q, R étant des polynomes, la différentielle

attachée a la courbe Q = 0 est

2:wP - dx
b 5G9
R_b?/‘
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Soit «, la différentielle attachée a S,. Nous définissons le
dérivé du 2-courant C2 = (V, o) par la formule

dcz = D\ (S, o) -
R

Soit ¢3 un champ 4 3 dimensions sur V, dont la frontiére ¢* ne
rencontre pas les courbes singuliéres S, .c® est un 3-courant
dont le dérivé est c2. Appliquons la formule (A). On a

C2.dC* = (V, o) - (¢, 1) = (&, o) ,
d’ou
1(C2 - dC?) = — j "
c2
Ensuite
C3-dC2 = (3, 1) - D\ (S, wp) = D)8y, wp)
kR k
d’out

et la formule (A) devient

fff(xy)dxdy = + > f oy -

k 03.Sk

C’est la formule de réduction (de Poincaré) d’une période polaire
d’intégrale double a des périodes (polaires ou cycliques) des
intégrales abéliennes attachées aux courbes S,.

En résumé, si les résidus d’une intégrale simple attachée a
une courbe algébrique apparaissent comme un systéme de points
affectés de coefficients, les résidus d’une intégrale double attachée
a une surface algébrique se présentent sous la forme d’un systéme
de courbes algébriques affectées d’intégrales simples. Plus
généralement, les résidus d’une intégrale p-uple attachée & une
variété algébrique & n dimensions (complexes) apparaissent
comme un systéme de variétés algébriques & (n — 1) dimensions
(complexes) affectées d’intégrales (p — 1)-uples.
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