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220 G. DE RHAM

d’une fonction uniforme sur une surface donnée S, dont le lapla-

cien soit égal & une fonction donnée f telle que [ fdo = 0.
S

3. — PRINCIPE DE LA DEMONSTRATION DU THEOREME I.

Considérons, pour fixer les idées, une variété a 3 dimensions
sur laquelle on a un cycle a4 2 dimensions ¢ non homologue a
zéro. 1l s’agit de construire une forme exacte de degré 2, régu-
liere sur toute la variété, dont la période relative & ¢* ne soit
pas nulle. Une telle forme

o = Adydz + Bdzdx + Cdxdy

peut étre considérée comme I’expression du débit élémentaire
d’un courant électrique (stationnaire) de volume, son intégrale
étendue & un champ ¢ & 2 dimensions est alors le débit total a
travers ¢ et la condition que la forme soit exacte (o" = 0 ou
A, + B, + C, = 0) exprime que le courant est conservatif.
Notre probléme consiste donc & construire un courant de
volume, régulier et conservatif sur toute la variété, dont le débit
total & travers c¢2 ne soit pas nul.

D’aprés le théoréme de dualité de Poincaré, 1l existe un cycle
a une dimension ¢!, dont le nombre algébrique des points d’in-
tersections avec ¢ n’est pas nul: I(c?.c')>=0. Imaginons que
les lignes constituant ¢! (lignes fermées et orientées) soient des
fils métalliques parcourus par un courant électrique d’intensité
constante égale & un. Le débit de ce courant a travers c* est égal
a I(c?.cl), donc non nul. Ce courant est d’ailleurs conservatif
(car ¢! est fermé). On concoit ensuite la possibilité d’étaler un

~ peu ce courant, de maniére qu’il remplisse une sorte de tube

entourant ¢!, avec une intensité de volume continue a 'intérieur
du tube et nulle sur sa frontiére. La forme o, égale au débit
élémentaire de ce courant dans le tube et nulle en dehors,
satisfait & toutes les conditions requises.

On voit que, dans ’espace ordinaire, une méme entité phy-
sique (le courant électrique), est représentée dans un cas par
un champ a une dimension (courant linéaire), dans un autre
cas par une forme de degré deux (courant de volume). Cela




TOPOLOGIE ET INTEGRALES MULTIPLES 221

suggére I’idée que dans une variété a n dimensions V, un p-champ
et une (n — p)-forme doivent étre deux aspects d’une méme
notion plus générale, que j’appellerai courant a p dimensions.
Telle est I'idée qui m’a conduit & la démoustration des trois
théorémes dont on vient de parler. Je vais maintenant esquisser
la théorie de ces courants et montrer comment elle conduit de
maniére trés naturelle & la théorie des résidus d’intégrales
doubles.

4. — THEORIE DES COURANTS.

D&riNiTioNs. — Un p-courant élémentaire est ’ensemble
(P, ") d’un (p + k)-champ c®** et d’une k-forme  (définie
au moins sur ¢®**). p est la dimension du courant. Comme
O=Zp+k=net 0=Fk=n, Pentier k£ ne peut prendre que
les n—p + 1 valeurs 0,1, ..., (n —p); il y a (n—p + 1)
types de p-courants élémentaires.

Un p-courant est la réunion d’un nombre fini de p-courants
élémentaires.

Addition et multiplication par un nombre. — La somme C; + C,
de deux p-courants C; et C, est le p-courant formé par la réunion
des p-courants élémentaires constituant C; et C,.

Le produit du p-courant élémentaire G = (¢, ) par le nombre A
est le p-courant élémentaire C = (¢, Aw). Pour multiplier un
courant quelconque par A, on multipliera chacun des courants
élémentaires qui le constitue par A.

Conventions de simplification.

(c,w) =0 si ¢c=0 ousi @w =0 surec.
(Ae, o) = Ale, o) .
(cla C‘)) T (02’ (.0) - (cl + Ca) “)) . (C, (’)1;' —+ (C, (")2) = (C, 0, + (’*)2) .
Produit de deuz courants. — Le produit du p-courant élémen-

taire (c’**, ") par le g-courant élémentaire (c?*. ') est le
(p + ¢ — n)-courant élémentaire.

(cp+k, mh) (cq+l : wl) — (___ ,l)h('n~q—-l) (cp—l—k . Cq+.l , wl wh)
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