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220 G. DE RHAM

d'une fonction uniforme sur une surface donnée S, dont le lapla-
cien soit égal à une fonction donnée / telle que /fda 0.

s

3. — Principe de la démonstration du théorème I.

Considérons, pour fixer les idées, une variété à 3 dimensions
sur laquelle on a un cycle à 2 dimensions c2 non homologue à

zéro. Il s'agit de construire une forme exacte de degré 2, régulière

sur toute la variété, dont la période relative à c2 ne soit
pas nulle. Une telle forme

co A dy dz + B dzdx + Cdxdy

peut être considérée comme l'expression du débit élémentaire
d'un courant électrique (stationnaire) de volume, son intégrale
étendue à un champ c à 2 dimensions est alors le débit total à

traver-s c et la condition que la forme soit exacte (oL 0 ou

+ By + C'z 0) exprime que le courant est conservatif.
Notre problème consiste donc à construire un courant de

volume, régulier et conservatif sur toute la variété, dont le débit
total à travers c2 ne soit pas nul.

D'après le théorème de dualité de Poincaré, il existe un cycle
à une dimension c\ dont le nombre algébrique des points
d'intersections avec c2 n'est pas nul: l (c2. c1) ^±0. Imaginons que
les lignes constituant c1 (lignes fermées et orientées) soient des

fils métalliques parcourus par un courant électrique d'intensité
constante égale à un. Le débit de ce courant à travers c2 est égal
à I (c2 c1), donc non nul. Ce courant est d'ailleurs conservatif
(car c1 est fermé). On conçoit ensuite la possibilité d'étaler un

peu ce courant, de manière qu'il remplisse une sorte de tube
entourant c1, avec une intensité de volume continue à l'intérieur
du tube et nulle sur sa frontière. La forme to, égale au débit
élémentaire de ce courant dans le tube et nulle en dehors,
satisfait à toutes les conditions requises.

On voit que, dans l'espace ordinaire, une même entité
physique (le courant électrique), est représentée dans un cas par
un champ à une dimension (courant linéaire), dans un autre
cas par une forme de degré deux (courant de volume). Cela
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suggère l'idée que dans une variété à n dimensions V, un p-champ
et une (n — p)-forme doivent être deux aspects d'une même
notion plus générale, que j'appellerai courant à p dimensions.
Telle est l'idée qui m'a conduit à la démonstration des trois
théorèmes dont on vient de parler. Je vais maintenant esquisser
la théorie de ces courants et montrer comment elle conduit de

manière très naturelle à la théorie des résidus d'intégrales
doubles.

4. — Théorie des courants.

Définitions. — Un p-courant élémentaire est l'ensemble
(cp+fe, cùk) d'un (p + &)-champ cv+k et d'une k-forme co (définie

j au moins sur cv+k). p est la dimension du courant. Comme

| 0 ^ p -f h ^ n et 0 ^ k ^ n1 l'entier k ne peut prendre que
y les n — p + 1 valeurs 0, 1, (n — p) ; il y a (n — p + 1)

types de p-courants élémentaires.

| Un p-courant est la réunion d'un nombre fini de p-courants
f élémentaires.

1 Addition et multiplication par un nombre. — La somme C3 + C2
de deux p-courants C3 et C2 est le p-courant formé par la réunion

é des p-courants élémentaires constituant G1 et C2.

I Le produit du p-courant élémentaire C (c, co) par le nombre X

I le p-courant élémentaire C — (c, Aoo). Pour multiplier un
I courant quelconque par X, on multipliera chacun des courants

élémentaires qui le constitue par X.

Conventions de simplification.

(e, co) 0 si c 0 ou si co 0 sur c

(X C CO) «aap X (C CO)

(cl> Co) + (c2, co) (cx + c2, co) (c, coj + (c, co2) — (c, cox -h co2)

Produit de deux courants. — Le produit du p-courant élémentaire

(cp+&, iùh) par le g-courant élémentaire {cq+\ co*) est le
(p + g — ft)-courant élémentaire.

(cV+h C0fe) (C«+1 co*) (— i)Hn-q-l) (cv+k cq+l J^
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