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alors naturel de se demander comment les périodes du produit

dépendent de celles des facteurs. La réponse est fournie par le

Théorème III. — Si et c2 sont les cycles associés à oq et w2,

le cycle associé au produit eq oq est le cycle c2 c1 intersection de c2

avec cx.

Supposons en particulier que q — n — p ; le produit oq co2

est alors une ii-forme dont la seule période fondamentale est

j'ou cù2

V

et le théorème' III se réduit à l'égalité

j cojCùa I (c2 - Cj)

V

En combinant cette égalité avec le théorème de dualité de

Poincaré, on obtient le résultat suivant:

Pour que la ip-forme exacte co1 soit homologue à zéro, il faut et il
suffit que

j OU CO 2 0

Y

quelle que soit la (n — p)-forme exacte cù2.

2. — Applications et compléments.

Voici une application intéressante de ce dernier résultat.
Supposons que V soit la riemannienne à 4 dimensions qui
correspond à une surface algébrique, et oq l'élément d'une
intégrale double de première espèce attachée à cette surface.
Si g)2 est l'imaginaire conjuguée de oq, on voit immédiatement

que

J cOjCOg > 0

Donc oq ne peut pas être homologue à zéro : une intégrale double
de première espèce ne peut pas avoir toutes ses périodes nulles.
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C'est le théorème démontré par M. W. V. D. Hodge en 1930.

(Dans cet ordre d'idées, le théorème III est le véritable fondement

topologique des relations de Riemann et de M. Hodge
entre les périodes des intégrales abéliennes.)

Dans un ordre d'idées voisin, je désire mentionner un complément

important apporté par M. Hodge au théorème I pour les
variétés V qui sont des espaces de Riemann.

Supposons d'abord que V soit une surface de genre p; le

premier nombre de Betti est égal à 2p, il y a donc 2p cycles
fondamentaux et une intégrale curviligne possède 2p périodes
fondamentales. Or, depuis Riemann, on sait dans ce cas beaucoup
plus que ce que nous apprend le théorème I, on sait en effet

qu'il existe une intégrale harmonique ayant des périodes
fondamentales arbitraires, et c'est ce théorème dé existence d'intégrales
harmoniques que M. Hodge a généralisé de la manière suivante.

Dans le plan, avec des coordonnées rectangulaires xy, la
condition pour que

J + Brfy

soit harmonique peut s'énoncer ainsi:
1° La forme to Adx + Bdy doit être exacte (to' 0 ou

Ay RX)'
2° La forme to* — Bdx -f- Ady (que j'appellerai adjointe

à to) doit être aussi exacte (to*' *** 0 ou A^ + By 0).
Si to df, la première condition est automatiquement

vérifiée et la seconde se réduit à l'équation de Laplace A/ 0.

La notion de forme adjointe n'est pas topologique comme celles
de dérivée extérieure ou de produit extérieur, mais elle fait
intervenir la métrique; on peut considérer to comme le travail
élémentaire du vecteur v (A, B), to* est alors le travail
élémentaire du vecteur c* (— B, A) qui se déduit de 9 par
une rotation de 90 degrés. Remarquons aussi que l'élément de

l'intégrale de Dirichlet, (A2 + B2) dx dy, n'est pas autre chose

que le produit de to par la forme adjointe to*.
Dans un espace de Riemann à n dimensions, toute p-forme to

peut être considérée comme le produit scalaire de l'élément de

variété à p dimensions par un système de /^-vecteurs déterminé
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en chaque point de l'espace; la forme adjointe où*, de degré

n — p, est alors le produit scalaire de l'élément de variété à

n — p dimensions par le système des (n — p)-vecteurs
supplémentaires 1. Toute p-forme où possède donc une forme adjointe
où*, de degré n — p; et le produit oùoù*, égal au produit de

l'élément de volume à n dimensions par le carré de la mesure du

système de p-vecteurs déterminant où, est une tt-forme
essentiellement positive.

On peut maintenant généraliser la notion d'intégrale harmonique

en disant que, où étant une p-forme régulière sur l'espace
de Riemann V, /où est harmonique si où et la forme adjointe où*

sont toutes deux exactes. Cette définition posée, M. Hodge
démontre l'existence d'une intégrale p-uple harmonique ayant
des périodes arbitrairement données en suivant la méthode de

Riemann-Hilbert du principe de Dirichlet. Considérant la
famille de toutes les p-formes exactes et régulières sur l'espace V
et ayant les périodes fondamentales données, il prouve qu'il y en
a une qui rend l'intégrale ft-uple / oùoù* minimum et qui fournit

y
l'intégrale harmonique cherchée. Pour s'assurer de l'unicité, il
suffit de prouver qu'une intégrale harmonique non identiquement

nulle ne peut pas avoir toutes ses périodes nulles, et cela
résulte de l'inégalité f oùoù* > 0 (même raisonnement que pour

y
les intégrales doubles de première espèce).

Voici un autre théorème qui apporte un complément analogue
au théorème II:

où étant une (p -f 1 )-forme régulière sur Vespace de Riemann V,
et homologue à zéro, il existe une forme ®, régulière sur V, telle que
W oo et dont la forme adjointe est homologue à zéro. Cette forme
unique, est caractérisée, dans la famille de toutes les formes régulières

dont la dérivée est égale à où, par la propriété de rendre Vintégrale

f ®sö* minimum.
V

Dans le cas n 2 et p 1, cela revient à affirmer l'existence

i Voir, par exemple: E. Cartan, La Géométrie des espaces de Riemann (Mémorial
des Sciences mathématiques).
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d'une fonction uniforme sur une surface donnée S, dont le lapla-
cien soit égal à une fonction donnée / telle que /fda 0.

s

3. — Principe de la démonstration du théorème I.

Considérons, pour fixer les idées, une variété à 3 dimensions
sur laquelle on a un cycle à 2 dimensions c2 non homologue à

zéro. Il s'agit de construire une forme exacte de degré 2, régulière

sur toute la variété, dont la période relative à c2 ne soit
pas nulle. Une telle forme

co A dy dz + B dzdx + Cdxdy

peut être considérée comme l'expression du débit élémentaire
d'un courant électrique (stationnaire) de volume, son intégrale
étendue à un champ c à 2 dimensions est alors le débit total à

traver-s c et la condition que la forme soit exacte (oL 0 ou

+ By + C'z 0) exprime que le courant est conservatif.
Notre problème consiste donc à construire un courant de

volume, régulier et conservatif sur toute la variété, dont le débit
total à travers c2 ne soit pas nul.

D'après le théorème de dualité de Poincaré, il existe un cycle
à une dimension c\ dont le nombre algébrique des points
d'intersections avec c2 n'est pas nul: l (c2. c1) ^±0. Imaginons que
les lignes constituant c1 (lignes fermées et orientées) soient des

fils métalliques parcourus par un courant électrique d'intensité
constante égale à un. Le débit de ce courant à travers c2 est égal
à I (c2 c1), donc non nul. Ce courant est d'ailleurs conservatif
(car c1 est fermé). On conçoit ensuite la possibilité d'étaler un

peu ce courant, de manière qu'il remplisse une sorte de tube
entourant c1, avec une intensité de volume continue à l'intérieur
du tube et nulle sur sa frontière. La forme to, égale au débit
élémentaire de ce courant dans le tube et nulle en dehors,
satisfait à toutes les conditions requises.

On voit que, dans l'espace ordinaire, une même entité
physique (le courant électrique), est représentée dans un cas par
un champ à une dimension (courant linéaire), dans un autre
cas par une forme de degré deux (courant de volume). Cela
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