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LA THEORIE DES NEUDS?

PAR

H. SerrerT (Dresde).

Le probléme essentiel de la théorie des nceuds peut étre
formulé comme suit: Soit donné un noeud dans 'espace euclidien
& trois dimensions; c’est-a-dire une chaine de segments fermée
simple, donc un polygone. Il est utile de fermer ’espace euclidien
par un point a l'infini. Autrement dit on se trouvera par la suite
sur une variété close, la sphére a trois dimensions S. Soit donc %
un neeud de S et £’ un autre noeud d’une sphére a trois
dimensions S’. Nous nous demanderons alors: Existe-t-il une
représentation topologique de S sur S’, transformant % en £ ?
Si c’est le cas, k et &' seront dit équivalents.

Rappelons d’abord les invariants de neeud les plus importants?.

1. Si k et k" sont équivalents, leurs espaces complémentaires
S — ket S"— k' devront étre homéomorphes. Ceci nous fournit
le groupe du neceud de DERN, c’est-a-dire le groupe fondamental
de S — k, qui est un des invariants de nceud les plus efficaces.
Dehn a montré qu’il est aisé de trouver des éléments générateurs
et des relations caractéristiques de ce groupe, quand le nceud

1 Conference faite le 21 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par 1’Université de Genéve; série consacrée a
Quelques questions de Géométrie et de Topologie. — Traduction rédigée par M. M. RUEFF
(Zurich).

2 K. REIDEMEISTER, Knotentheorie (Berlin, 1932). On y trouve un index bibliogra-
phique jusqu’ad 1932.

H. SerrerT, Verschlingungsinvarianten. Sitzber. Preuss. Akad. Wiss, 26 (1933). —
Ueber das Geschlecht von Knoten. Math. Ann., 110 (1934). — Die Verschlingungs-~
invarianten der zyklischen Knoteniiberlagerungen. Abh. Math. Sem. Hamburg, 11
(1935).

J. W. ALEXANDER, A matrix knot invariant. Proc. Nat. Acad. Sci. U.S.A., 19 (1933).
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est donné par sa projection plane. Mais comme il n’existe pas de
procédé général permettant de distinguer des groupes donnés
par des éléments et relations génératrices, le groupe du noeud
est d’une importance moindre. On a tout simplement remplacé
le probleme des nceuds non-résolu par un probléme, non résolu
également, de la théorie des groupes.

2. ALExANDER et REIDEMEISTER ont touché a d’autres
invariants par le procédé suivant: On considére, au lieu de S — £,
les variétés de recouvrement de S — % sans ramification, ou, ce
qui revient au méme, les variétés de recouvrement de S ramifiées le
long de k. Ces variétés ont des groupes d’homologie qui en général
sont différents pour des nceuds différents. Il s’agit avant tout ici
des recouvrements cycliques de nceuds, dont je donnerai plus
tard la définition. Le recouvrement cyclique & une infinité de
feuillets a une importance toute particuliere. Comme nous le
verrons, ¢’est des groupes d’homologie de ce dernier recouvrement
qu’on tire invariant polynomial d’Alexander A (z), ou comme on
I’appelle tout court, le polynome L du neeud. C’est un polynome
a coeflicients entiers A(z) = ay + a,2 + ... + a,2" qui est lié
au nocud d’une facon invariante.

3. Les invariants d’enlacement des variétés cqycliques de
recouvrement sont d’autres invariants de nceud. Nous savons
qu’il est possible d’attacher & toute paire d’éléments du groupe
de torsion d’une variété a 3 dimensions orientée, un coefficient
d’enlacement rationnel bien déterminé. Ces coeflicients d’enla-
cement permettent de calculer les invariants d’enlacement.
Ce sont des invariants du noceud, dont ’espace complémentaire
posséde une orientation spaciale déterminée, et ils changent en
général avec cette orientation. A ’aide de ces invariants d’enla-
cement on peut parfois démontrer qu'un nceud n’est pas défor-
mable en son symétrique par rapport & un plan. Au moyen de ces
invariants on a par exemple démontré que le nceud des trefles
(Kleeblattschlinge) gauche et droit me peuvent étre déformés
P'un dans Pautre (fig. 1); Dehn 'avait d’ailleurs déja démon-
trer en considérant les automorphismes du groupe de noeud.
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4. Citons finalement encore un invariant de nceud qui, il est
vrai, n’est pas d’une grande importance pour distinguer des
nceuds, mais qui se trouve en relation trés étroite avec les inva-
riants d’homologie 2. Il s’agit du genre du nceud qui est défini
comme suit: Nous savons qu’il existe, pour tout noceud %, une
surface orientable, sans singularités et sous-tendue par k.

Autrement dit il existe une surface orientable et sans singu-
larités D, possédant un trou tel que le bord du trou soit juste-
ment k. Si k est équivalent au cercle on pourra choisir comme
surface un élément & deux dimensions (fig. 2). Dans tous les
autres cas D sera d’un genre supérieur, ¢’est-a-dire une sphére
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avec h.anses et un trou. Par exemple le noeud du tréfle est le bord
d’un tore troué (fig. 3). Il est clair qu’on pourra faire passer
par tout noeud une surface de genre arbitrairement grand,
puisqu’on peut ajouter n’importe ou, une anse a une surface
qu’on aurait déja sous-tendu par k. 1l existe, par contre, pour
tout noeud %, une surface de genre minimum, sous-tendue par k.
(’est ce genre la qu’on appelle le genre du nceud. Ce genre est, il
est clair, un invariant du nceud. Le cercle est de genre 0, alors
que le nceud du tréfle est du genre 1.

Connaissant ce systéme d’invariants, deux questions s’imposent
avant tout.

A. Dans quelle mesure les nceuds sont-ils caractérisés par ces
inyariants ?

B. Ces wnvariants sont-ils indépendants ? Sinon quelles sont les
relations qui existent entre eux ?

J’aimerais vous exposer les résultats auxquels on est parvenu
jusqu’a aujourd’hui. Tout d’abord une chose est claire: C’est
que les groupes d’homologie 2) y compris le polynome L, sont
déterminés par le groupe du noeud 1). Ceci parce que les groupes
fondamentaux des variétés de recouvrement de S — % sont des
sous-groupes du groupe du nceud. Il en est autrement des
invariants d’enlacement. Ceux-ci ne sont pas déterminés par le
groupe du noeud. Par exemple: Le groupe du nceud est le méme
pour le produit de deux noeuds du trefle droits et pour le produit

d’un nceud du treéfle droit par un gauche (fig. 4), alors que
les invariants d’enlacement de ces produits sont différents.
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Il ne faudrait toutefois pas croire que le groupe du noeud est
contenu dans les invariants d’enlacement. Nous rencontrerons,
au contraire, une infinité de nceuds, dont les invariants d’enlace-
ment sont les mémes, et qui pourtant pourront étre distingués
les uns des autres grace au groupe du nceud.

Nous savons que ALEXANDER ET Bricgs ont calculé les
groupes d’homologie des recouvrements a 2 et 3 feuillets, ainsi
que le polynome L de tous les nceuds comptant jusqu’a 9 recou-
pements. Parmi ces 84 nceuds on rencontre 3 paires seulement,
qu’on ne peut distinguer par les invariants d’homologie; pour
ces S paires le groupe du nceud pourtant est efficace. Ceci montre
la portée des invariants d’homologie.

Pour avoir d’autres résultats concernant la portée des inva-
riants 2) et 3), il est nécessaire de représenter ces derniers
explicitement par des formules. Dans ce but nous partons du
fait qu’il est possible de trouver pour tout nceud k une surface
D orientable et sans singularités, sous-tendue par k. Soit D

de genre £, ¢’est-a-dire une sphére avec 4 anses et un trou. Une
telle surface avec un seul trou peut toujours étre considérée
comme un élément & 2 dimensions auquel on a ajouté 2% rubans.
Pour le voir développons la surface close de genre % en son

-polygone fondamental (fig. 6, h = 2). On obtiendra un trou
~de la surface en découpant les angles du polygone. En identi-
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fiant les cOtés correspondants on obtient bien un élément a
2 dimensions auquel on a ajouté 24 rubans. Il est vrai que
la surface D n’aura pas toujours la position simple de la figure 6.
Les rubans peuvent s’enlacer et se tordre. La figure 7 montre
une surface de genre 1 avec un trou, immergée d’une maniére
un peu plus compliquée dans I’espace.
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Par contre on pourra toujours atteindre la configuration
suivante: 1) La projection de I’élément sur le plan est un disque.
2) En projection, les rubans n’ont que leurs attaches en commun

avec le disque; un ruban ne pourra
donc jamais traverser le disque. 3)
On peut admettre que les rubans ne
sont pas tordus en projection, puis-
qu'un tour pourra toujours étre
remplacé par un recoupement du
ruban (fig. 8).

On parvient a la variété cyclique
de recouvrement S, de la maniere
suivante: On coupe 'espace & trois

va 3 dimensions S, dans lequel se trouve

D, le long de D; S devient une

variété 4 trois dimensions bordée, un feuillet & 3 dimensions S.
Le bord de S est formé par les deux cotés de la section que

CHaCTTE L
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nous appellerons D et zD. A tout point P du coté gauche cor-
respond un point zP du coté droit et nous pourrons nous
figurer que P et 2P sont projetés sur un méme point du plan.
Les deux surfaces D et 2D sont soudées I'une & l'autre le long
de & et forment ensemble une surface close qui est la sphere
avec 2k anses. Aprés la coupe de ’espace on doit se représenter
I’élément & deux dimensions comme une spheére et les rubans
comme des tuyaux; ce que nous avons indiqué dans la figure .7
par de petits cercles méridiens autour des tuyaux. Le feuillet S
est la région extérieure & la surface fermée D 4 zD.

Le recouvrement cyclique & g feuillets S, s’obtient de la fagon
suivante. On prend g exemplaires d’un tel feuillet, on soude le
bord droit du feuillet ¢ au bord gauche du feuillet 7 4 1 et
finalement le bord droit du feuillet g au bord gauche du premier
feuillet. Si mnous désignons en suivant les feuillets par
S, a8, ..., #9715, le bord droit z**' D de ;S sera identique au
bord gauche de 2! S, et en tournant autour du noeud % on aura
le cycle suivant:

D,S, 2D, 2S, ..., 291D, xg_ig, D .

Ces g feuillets forment la variété de recouvrement cyclique a g
feuillets S, de S ramifiée le long de k. Quoique la surface D ait
joué un role prépondérant dans sa construction, on voit aisément
que S, est indépendant du choix de D. On peut également
caractériser S, par la propriété suivante indépendamment de la
surface sous-tendue: S, est une variété de recouvrement de
Iespace euclidien ramifié le long du noeud & g feuillets; une
courbe w dans S, correspondante & une courbe fermée w, de
Pespace euclidien n’est fermée que lorsque w, et le nceud ont
un ceefficient d’enlacement divisible par g.

Pour calculer le groupe d’homologie de S, nous cherchons tout
d’abord le groupe d’homologie de S. Il est, pour cela, nécessaire
d’avoir un systéme d’éléments générateurs ainsi qu’un systéme
de relations spécifiques.

Comme courbes de base nous choisirons les suivantes: Tracons
sur D, donc sur le bord gauche du feuillet S, 24 paires de coupes
conjuguées fermées simples.

al 3 a2, cee g azh_,l 3 a?’h .
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Chacune parcourt un ruban et sera orientée comme dans la
figure 6. Soient za,, ..., za,, les courbes correspondantes de zD.
On voit aisément que ces 4k courbes

Uy s ees Qopy By, ooy Tdop (1)
2h

engendrent le groupe d’homologie de S.
"Nous donnons sans démonstration les relations:

g o (949 @1 — 04 Ga) + oo F (95 op Bop g — 95 opy aop) —

(homologie en S, =1, .., 2h) , (2)

ou ¢;, désigne le coefficient d’enlacement du i-ieme ruban avec
le %k-1éme. Plus exactement: Nous considérons en projection les
rubans a; et a, en tous les endroits ou a, passe sur a;. Si g,
passe de gauche a droite sur a;, nous donnerons a ce croisement
I'indice + 1, dans le cas contraire — 1 (fig. 9). ¢, est alors la

ik

a‘: aL
+1 -

\/:j 9

somme de ces indices. Dans la figure 7 on a par exemple:
0y = — 1, 099 = 1, 05y = 0, 95, = 0. Il est possible d’écrire
plus simplement la relation (2):

2h
\\
k=1
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Nous verrons que le groupe d’homologie et les invariants
d’enlacement de S, peuvent étre exprimés au moyen de la
matrice I' = (v;5.).

En effet. Le groupe dhomologle de S, sera engendré par
les 2 gh courbes

a;, xa;, ..

L, 29, (i=1, .., 2h)

qui sont respectivement situées sur les surfaces:

D, 2D, 291D .

e 9

On a sur le premier feuillet S les relations (2') entre les
a; et les za;; sur le deuxiéme feuillet entre za; et z2a; les
relations analogues, qu’on obtient & partir de (2') par multipli-
cation symbolique par z. On obtient ainsi le systéme suivant de
relations:

a; o Ty, (@, — zap)

za; oo Ly, (za, — 2% ay) (3)

2971 a; > Ty, (x91a, — ap) .

\ : 9 .
On peut montrer aprés coup que le groupe d’homologie S, est
engendré déja par les 24 courbes a,, ..., ay;; on peut donc éli-
miner les za,, ..., 29! a,. On arrive ainsi 4 un systéme de relations
entre les a;, dont la matrice des coefficients est:

(' —E)7—19, (%)

ou E désigne la matrice unitaire & 24 lignes.
La situation est toute pareille pour le recouvrement S

une infinité de feuillets. Son groupe d’homologie sera engendré
par I'infinité de courbes:

5
3
l

1, .., 2h (5)
p=20, £1,

et les relations prennent la forme:

At a; oo ZYz‘k (z* ay, — gotd ah) . (6)

L’Enseignement mathém., 35me année, 1936. 14
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On peut considérer le symbole z qui jusqu’a présent n’avait été
introduit que formellement, comme un opérateur du groupe
d’homologie. On peut, en effet, I'interpréter comme le mouve-
ment de superposition de S, sur lui-méme, transformant chaque
feuillet dans le suivant. Cette représentation topologique
de S, sur lui-méme conduit & un automorphisme du groupe
d’homologie; x est donc un opérateur du groupe. En envisageant =
sous cet angle, on peut prendre comme éléments générateurs
les 2k courbes ay, ..., a,;,, car les autres en découlent par 'opéra-
tion z. De méme les relations (6) découlent de (2") par ’application
de z; la matrice des coefficients de (2) est:

E—T+4 2T . (7)

D’apres un théoreme de la théorie des groupes, le déterminant de
cette matrice est un invariant du groupe avec opérateurs. Cet
mmvariant n’est, il est vrai, déterminé qu’a une unité du domaine
des coefficients pres, c’est-a-dire qu’a =+ 2" pres. Le déter-
minant

IE—T 4 2T (8)

est, & ce facteur arbitraire pres, justement le polynome L du
noeud ; son degré est évidemment = 24.

Passons maintenant aux invariants d’enlacement de S,. Pour
calculer les invariants d’enlacement d’une variété quelconque
orientable M3, on a besoin de:

’
Un systéme d’éléments générateurs

Ay s wey Gy

du groupe d’homologie de dimension 1. On a entre les a; certaines

homologies
2 (th ak ~ 0.

Il existe done des chaines A; a deux dimensions dont le bord est
S «;, @,. Soient maintenant a;, ..., ,, des courbes fermées resp.
homologues a a,, ..., a,, mais n’ayant aucun point commun
avec elles. @, n’a donc aucun point commun avec le bord de A;.
Sous ces conditions le coefficient d’intersection (Schnitizahl) est

S (A ) = Bap -
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Les matrices (o) et (B;,) étant connues, on peut calculer les
coefficients d’enlacements par un procédé purement algébrique.
Dans le cas du recouvrement du nceud S, la matrice (e;;,) devient:

() = ([ —E)! —T9, (9)

alors que la matrice ({;;) est

)

(Bir) = (T — E)A (10)

ou A est la matrice constante suivante:

0-1.0 0
1 0.0 0
A = . ’
0 0.0-1
0 0.1 0

Les formules (&), (8), (9), (10) montrent que le polynome L, le
groupe d’homologie et les invariants d’enlacement de tous les
recouvrements cycliques S,, sont donnés par la mairice I', donc
finalement par les coefficients d’enlacement ¢, des rubans de la
surface D sous-tendue par k.

On voit par 1a qu’il existe une infinité de nceuds, dont les
invariants 2) et 3) coincident. Car la position relative des rubans
n’est déterminée en aucune facon par la connaissance des ¢;, .
Il est méme possible de donner une infinité de positions de surface
enrubannées, dont les ¢;;, sont les mémes, mais qu'on ne peut
déformer I'une dans I'autre. On peut en particulier construire
des neeuds dont les invariants 2) et 3) sont ceux du cercle. G’est-a-dire
qu’il existe des noeuds dont les recouvrements cycliques S, sont
des spheres ou des espaces de Poincaré. Il est alors nécessaire
de considérer le groupe du nceud pour pouvoir les distinguer.

Pour terminer, disons encore un mot sur le genre du nceud.
Il n’existe pas de procédé général pour calculer le genre d’un
nceud. Par contre il est facile de trouver des limites pour le genre.
Sile nceud est donné par sa projection plane, on peut immédiate-
ment trouver une limite supérieure, en faisant passer une
surface par le noeud; pour le faire on dispose d’un procédé treés
simple. Des limites inférieures seront données par les formules
du groupe d’homologie et du polynome L. Si % est le genre du
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nceud %, et si I’on a fait passer par &k une surface de genre A,
alors la matrice I' est a 24 lignes, et le polynome L aura au plus
le degré 2h. Donc:

Degré du polynome L. < double du genre du neeud. (11)

D’autre part le groupe d’homologie de S, est engendré par
2h courbes ay, ..., aq,- On a donec:

Nombre minitmal des éléments générateurs du groupe d’homologie
de S, < double du genre du neeud.

Si par hasard la limite inférieure coincide avec la limite supé-
rieure, on a le genre du nceud. Ce cas se présente pour la
tresse 4 deux brins avec m croise-

LN TN ments (m impaire, dans la fig. 10).
/ "\ %
/ \/ \ La surface hachurée de la figure 10 a
[ ) \ m— 1
I[ \/< \\ le genre —— qu’on trouve en comp-
- tant les points, les arétes et les facettes.
D’autre part, le groupe d’homologie
\ | du recouvrement S, a m feuillets,
\ ] \
\ \/ 7 possede exactement (m — 1) coefli-
\\ \I/\ // cients de torsion de valeur 2;le nombre
e e minimal des éléments générateurs est
Sig. 10 par conséquent m — 1. Le nceud est

donc de genre . Comme m est

2
impair arbitraire, on a démontré par la l'existence de noceuds

d’un genre quelconque. On trouvera de la méme facon le
genre des autres noeuds du tore ainsi que des 84 noeuds énu-
mérés par Alexander et Briggs. |
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