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LA THÉORIE DES NŒUDS 1

PAR

H. Seifert (Dresde).

Le problème essentiel de la théorie des nœuds peut être
formulé comme suit: Soit donné un nœud dans l'espace euclidien
à trois dimensions; c'est-à-dire une chaîne de segments fermée

simple, donc un polygone. Il est utile de fermer l'espace euclidien

par un point à l'infini. Autrement dit on se trouvera par la suite

sur une variété close, la sphère à trois dimensions S. Soit donc k
un nœud de S et kr un autre nœud d'une sphère à trois
dimensions S'. Nous nous demanderons alors: Existe-t-il une
représentation topologique de S sur S', transformant k en k'
Si c'est le cas, k et k' seront dit équivalents.

Rappelons d'abord les invariants de nœud les plus importants2.

1. Si k et k' sont équivalents, leurs espaces complémentaires
S — k et S' — k' devront être homéomorphes. Ceci nous fournit
le groupe du nœud de Dehn, c'est-à-dire le groupe fondamental
de S — A, qui est un des invariants de nœud les plus efficaces.
Dehn a montré qu'il est aisé de trouver des éléments générateurs
et des relations caractéristiques de ce groupe, quand le nœud

1 Conférence faite le 21 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à
Quelques questions de Géométrie et de Topologie. — Traduction rédigée par M. M. Rueff
(Zurich).

2 K. Reidemeister, Knotentheorie (Berlin, 1932). On y trouve un index bibliographique

jusqu'à 1932.
H. Seifert, Verscblingungsinvarianten. Sitzber. Preuss. Ahad. Wiss, 26 (1933). —

Ueber das Geschlecht von Knoten. Math. Ann., 110 (1934). — Die Verschlingungs-
invarianten der zyklischen Knotenüberlagerungen. Abh. Math. Sem. Hamburg, 11
(1935).

J. W. Alexander, A matrix knot invariant. Proc. Nat. Acad. Sei. U.S.A., 19 (1933).
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est donné par sa projection plane. Mais comme il n'existe pas de

procédé général permettant de distinguer des groupes donnés

par des éléments et relations génératrices, le groupe du nœud
est d'une importance moindre. On a tout simplement remplacé
le problème des nœuds non-résolu par un problème, non résolu
également, de la théorie des groupes.

2. Alexander et Reidemeister ont touché à d'autres
invariants par le procédé suivant : On considère, au lieu de S — A:,

les variétés de recouvrement de S •— k sans ramification, ou, ce

qui revient au même, les variétés de recouvrement de S ramifiées le

long de k. Ces variétés ont des groupes d'homologie qui en général
sont différents pour des nœuds différents. Il s'agit avant tout ici
des recouvrements cycliques de nœuds, dont je donnerai plus
tard la définition. Le recouvrement cyclique à une infinité de

feuillets a une importance toute particulière. Comme nous le

verrons, c'est des groupes d'homologie de ce dernier recouvrement
qu'on tire 1 'invariant polynomial d'Alexander À (#), ou comme on

l'appelle tout court, le polynome L du nœud. C'est un polynome
à coefficients entiers A(x) a0 + a±x + + anxn qui est lié
au nœud d'une façon invariante.

3. Les invariants d'enlacement des variétés cycliques de

recouvrement sont d'autres invariants de nœud. Nous savons

qu'il est possible d'attacher à toute paire d'éléments du groupe
de torsion d'une variété à 3 dimensions orientée, un coefficient
d'enlacement rationnel bien déterminé. Ces coefficients
d'enlacement permettent de calculer les invariants d'enlacement.
Ce sont des invariants du nœud, dont l'espace complémentaire
possède une orientation spaciale déterminée, et ils changent en

général avec cette orientation. A l'aide de ces invariants
d'enlacement on peut parfois démontrer qu'un nœud n'est pas défor-
mable en son symétrique par rapport à un plan. Au moyen de ces

invariants on a par exemple démontré que le nœud des trèfles

(Kleeblattschlinge) gauche et droit ne peuvent être déformés
l'un dans l'autre (fig. 1); Dehn l'avait d'ailleurs déjà démontrer

en considérant les automorphismes du groupe de nœud.
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4. Citons finalement encore un invariant de nœud qui, il est

vrai, n'est pas d'une grande importance pour distinguer des

nœuds, mais qui se trouve en relation très étroite avec les
invariants d'homologie 2. Il s'agit du genre du nœud qui est défini
comme suit: Nous savons qu'il existe, pour tout nœud A, une
surface orientable, sans singularités et sous-tendue par k.

£j.4

Autrement dit il existe une surface orientable et sans
singularités D, possédant un trou tel que le bord du trou soit justement

k. Si k est équivalent au cercle on pourra choisir comme
surface un élément à deux dimensions (fig. 2). Dans tous les
autres cas D sera d'un genre supérieur, c'est-à-dire une sphère
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avec h anses et un trou. Par exemple le nœud du trèfle est le bord
d'un tore troué (fig. 3). Il est clair qu'on pourra faire passer
par tout nœud une surface de genre arbitrairement grand,
puisqu'on peut ajouter n'importe où, une anse à une surface
qu'on aurait déjà sous-tendu par k. Il existe, par contre, pour
tout nœud k, une surface de genre minimum, sous-tendue par k.
C'est ce genre là qu'on appelle le genre du nœud. Ce genre est, il
est clair, un invariant du nœud. Le cercle est de genre 0, alors

que le nœud du trèfle est du genre 1.

Connaissant ce système d'invariants, deux questions s'imposent
avant tout.

A. Dans quelle mesure les nœuds sont-ils caractérisés par ces

invariants P

B. Ces invariants sont-ils indépendants Sinon quelles sont les

relations qui existent entre eux

J'aimerais vous exposer les résultats auxquels on est parvenu
jusqu'à aujourd'hui. Tout d'abord une chose est claire: C'est

que les groupes d'homologie 2) y compris le polynome L, sont
déterminés par le groupe du nœud 1). Ceci parce que les groupes
fondamentaux des variétés de recouvrement de S — k sont des

sous-groupes du groupe du nœud. Il en est autrement des

invariants d'enlacement. Ceux-ci ne sont pas déterminés par le

groupe du nœud. Par exemple : Le groupe du nœud est le même

pour le produit de deux nœuds du trèfle droits et pour le produit

d'un nœud du trèfle droit par un gauche (fig. 4), alors que
les invariants d'enlacement de ces produits sont différents.
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Il ne faudrait toutefois pas croire que le groupe du nœud est

contenu dans les invariants d'enlacement. Nous rencontrerons,
au contraire, une infinité de nœuds, dont les invariants d'enlacement

sont les mêmes, et qui pourtant pourront être distingués
les uns des autres grâce au groupe du nœud.

Nous savons que Alexander et Briggs ont calculé les

groupes d'homologie des recouvrements à 2 et 3 feuillets, ainsi

que le polynome L de tous les nœuds comptant jusqu'à 9

recoupements. Parmi ces 84 nœuds on rencontre 3 paires seulement,
qu'on ne peut distinguer par les invariants d'homologie; pour
ces 3 paires le groupe du nœud pourtant est efficace. Ceci montre
la portée des invariants d'homologie.

Pour avoir d'autres résultats concernant la portée des
invariants 2) et 3), il est nécessaire de représenter ces derniers
explicitement par des formules. Dans ce but nous partons du
fait qu'il est possible de trouver pour tout nœud k une surface
D orientable et sans singularités, sous-tendue par k. Soit D

de genre A, c'est-à-dire une sphère avec h anses et un trou. Une
telle surface avec un seul trou peut toujours être considérée
comme un élément à 2 dimensions auquel on a ajouté 2h rubans.
Pour le voir développons la surface close de genre h en son
polygone fondamental (fig. d, h 2). On obtiendra un trou
de la surface en découpant les angles du polygone. En identi-
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fiant les côtés correspondants on obtient bien un élément à
2 dimensions auquel on a ajouté 2h rubans. Il est vrai que
la surface D n'aura pas toujours la position simple de la figure 6.

Les rubans peuvent s'enlacer et se tordre. La figure 7 montre
une surface de genre 1 avec un trou, immergée d'une manière
un peu plus compliquée dans l'espace.

Par contre on pourra toujours atteindre la configuration
suivante: 1) La projection de l'élément sur le plan est un disque.
2) En projection, les rubans n'ont que leurs attaches en commun

avec le disque; un ruban ne pourra
donc jamais traverser le disque. 3)
On peut admettre que les rubans ne
sont pas tordus en projection,
puisqu'un tour pourra toujours être

remplacé par un recoupement du
ruban (flg. 8).

On parvient à la variété cyclique
de recouvrement Sg de la manière
suivante: On coupe l'espace à trois
dimensions S, dans lequel se trouve
D, le long de D; S devient une

variété à trois dimensions bordée, un feuillet à 3 dimensions S.

Le bord de S est formé par les deux côtés de la section que
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nous appellerons D et xB. A tout point P du côté gauche

correspond un point xP du côté droit et nous pourrons nous

figurer que P et xP sont projetés sur un même point du plan.
Les deux surfaces D et xB sont soudées l'une à l'autre le long
de k et forment ensemble une surface close qui est la sphère

avec 2 h anses. Après la coupe de l'espace on doit se représenter
l'élément à deux dimensions comme une sphère et les rubans

comme des tuyaux; ce que nous avons indiqué dans la figure -7

par de petits cercles méridiens autour des tuyaux. Le feuillet S

est la région extérieure à la surface fermée D -f xB.
Le recouvrement cyclique à g feuillets Sg s'obtient de la façon

suivante. On prend g exemplaires d'un tel feuillet, on soude le

bord droit du feuillet i au bord gauche du feuillet i + 1 et
finalement le bord droit du feuillet g au bord gauche du premier
feuillet. Si nous désignons en suivant les feuillets par
S, #S, le bord droit xl+i D de xiS sera identique au
bord gauche de xl+i S, et en tournant autour du nœud k on aura
le cycle suivant :

D S xD xS x9~{ D x9~lS D

Ces g feuillets forment la variété de recouvrement cyclique à g
feuillets Sg de S ramifiée le long de k. Quoique la surface D ait
joué un rôle prépondérant dans sa construction, on voit aisément

que Sg est indépendant du choix de D. On peut également
caractériser Sg par la propriété suivante indépendamment de la
surface sous-tendue: Sg est une variété de recouvrement de

l'espace euclidien ramifié le long du nœud à g feuillets; une
courbe w dans Sg, correspondante à une courbe fermée w0 de

l'espace euclidien n'est fermée que lorsque w0 et le nœud ont
un coefficient d'enlacement divisible par g.

Pour calculer le groupe (Hhomologie de Sg, nous cherchons tout
d'abord le groupe d'homologie de S- Il est, pour cela, nécessaire
d'avoir un système d'éléments générateurs ainsi qu'un système
de relations spécifiques.

Comme courbes de base nous choisirons les suivantes: Traçons
sur D, donc sur le bord gauche du feuillet S, 2h paires de coupes
conjuguées fermées simples.

ax a2 a2h_{ a2h



208 H. SEIFERT
Chacune parcourt un ruban et sera orientée comme dans la

figure 6. Soient xax^ xa2h les courbes correspondantes de xD.
On voit aisément que ces 4h courbes

ax a2h xax xa2h (1)

engendrent le groupe d'homologie de S.

Nous donnons sans démonstration les relations:

«X ~ (Pi2«l — "il a2) + + (%2ha2h-l — —

(çi2xal "il xait ••• (vi,2hxa2h-l vi,2h-ixa2h)

(homologie en S i 1 2h) (2)

où vik désigne le coefficient d'enlacement du ï-ième ruban avec
le A-ième. Plus exactement: Nous considérons en projection les

rubans at et ak en tous les endroits où ak passe sur a%. Si ak

passe de gauche à droite sur nous donnerons à ce croisement
l'indice + 1, dans le cas contraire — 1 (fig. 9). vik est alors la

ai

- ak Ort,

-M

sfcq.9

somme de ces indices. Dans la figure 7 on a par exemple:

en — l, v12 l, c21 0, e22 0. Il est possible d'écrire

plus simplement la relation (2):

2 h

S TiftK —
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Nous verrons que le groupe d'homologie et les invariants
d'enlacement de peuvent être exprimés au moyen de la

matrice T (yik).
En effet. Le groupe d'homologie de Sg sera engendré par

les 2 gh courbes

a{, xa{, x9~{ a. (i«l, 2 h)

qui sont respectivement situées sur les surfaces:

D xD x9~{ D

On a sur le premier feuillet S les relations (2') entre les

a{ et les xa{ ; sur le deuxième feuillet entre xat et x2 ai les

relations analogues, qu'on obtient à partir de (2') par multiplication

symbolique par x. On obtient ainsi le système suivant de

relations :

a{ oo S yik(ak — xak)

xa{ oo liyik(xak — x2ak) (3)

x9~X
ct>i S Yik (x9~{ ak ah) '

On peut montrer après coup que le groupe d'homologie Sg est

engendré déjà par les 2h courbes a2h ; on peut donc
éliminer les xair„., x9~x %. On arrive ainsi à un système de relations
entre les dont la matrice des coefficients est:

(r — E)0 — (4)

où E désigne la matrice unitaire à 2h lignes.
La situation est toute pareille pour le recouvrement SOT à

une infinité de feuillets. Son groupe d'homologie sera engendré
par l'infinité de courbes:

a{ i — 1 2 h (5)

P 0, ± 1,

et les relations prennent la forme:

a{ooS yik ak — x*+l ah)

L'Enseignement mathém., 35me année, 1936.

(6)

14
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On peut considérer le symbole x qui jusqu'à présent n'avait été
introduit que formellement, comme un opérateur du groupe
d'homologie. On peut, en effet, l'interpréter comme le mouvement

de superposition de sur lui-même, transformant chaque
feuillet dans le suivant. Cette représentation topologique
de Soo sur lui-même conduit à un automorphisme du groupe
d'homologie ; x est donc un opérateur du groupe. En envisageant x
sous cet angle, on peut prendre comme éléments générateurs
les 2h courbes alt a2h, car les autres en découlent par l'opération#.

De même les relations (6) découlent de (2') par l'application
de #; la matrice des coefficients de (2') est:

E — r + xT (7)

D'après un théorème de la théorie des groupes, le déterminant de
cette matrice est un invariant du groupe avec opérateurs. Cet
invariant n'est, il est vrai, déterminé qu'à une unité du domaine
des coefficients près, c'est-à-dire qu'à ± xn près. Le
déterminant

| E — r + xT \ (8)

est, à ce facteur arbitraire près, justement le polynome L du
nœud; son degré est évidemment ^ 2h.

Passons maintenant aux invariants d'enlacement de Sg. Pour
calculer les invariants d'enlacement d'une variété quelconque
orientable M3, on a besoin de:

Un système d'éléments générateurs

alt am

du groupe d'homologie de dimension 1. On a entre les a{ certaines

homologies
Sai/A ~ 0 •

Il existe donc des chaînes Ai à deux dimensions dont le bord est

Saikak. Soient maintenant a*, a*m des courbes fermées resp.
homologues à ax, am, mais n'ayant aucun point commun
avec elles. ah n'a donc aucun point commun avec le bord de A^.
Sous ces conditions le coefficient d'intersection (Schnittzahl) est

"S (Aitah)
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Les matrices (aiÄ) et (ßiÄ) étant connues, on peut calculer les

coefficients d'enlacements par un procédé purement algébrique.
Dans le cas du recouvrement du nœud Sg la matrice (aife) devient:

(«*) (r-E)^-r^, (9)

alors que la matrice (ßiÄ) est

(ß.fe) (r — E)0A (10)

où A est la matrice constante suivante:

Les formules (4), (8), (9), (10) montrent que le polynome L, le

groupe d'homologie et les invariants d'enlacement de tous les

recouvrements cycliques Sg, sont donnés par la matrice T, donc

finalement par les coefficients d'enlacement eik des rubans de la
surface D sous-tendue par k.

On voit par là qu'il existe une infinité de nœuds, dont les

invariants 2) et 3) coïncident. Car la position relative des rubans
n'est déterminée en aucune façon par la connaissance des vik.
Il est même possible de donner une infinité de positions de surface

enrubannées, dont les vik sont les mêmes, mais qu'on ne peut
déformer l'une dans l'autre. On peut en particulier construire
des nœuds dont les invariants 2) et 3) sont ceux du cercle. C'est-à-dire

qu'il existe des nœuds dont les recouvrements cycliques sont
des sphères ou des espaces de Poincaré. Il est alors nécessaire
de considérer le groupe du nœud pour pouvoir les distinguer.

Pour terminer, disons encore un mot sur le genre du nœud.
Il n'existe pas de procédé général pour calculer le genre d'un
nœud. Par contre il est facile de trouver des limites pour le genre.
Si le nœud est donné par sa projection plane, on peut immédiatement

trouver une limite supérieure, en faisant passer une
surface par le nœud; pour le faire on dispose d'un procédé très
simple. Des limites inférieures seront données par les formules
du groupe d'homologie et du polynome L. Si h est le genre du
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nœud k, et si l'on a fait passer par k une surface de genre A,

alors la matrice T est à 2h lignes, et le polynome L aura au plus
le degré 2h. Donc:

Degré du polynome L double du genre du nœud. (11)

D'autre part le groupe d'homologie de ëg est engendré par
2h courbes al7 a2h. On a donc:

Nombre minimal des éléments générateurs du groupe d'homologie
de ^ double du genre du nœud.

Si par hasard la limite inférieure coïncide avec la limite
supérieure, on a le genre du nœud. Ce cas se présente pour la

tresse à deux brins avec m croisements

(m impaire, dans la fig. 10).
La surface hachurée de la figure 10 a

le genre qu'on trouve en comptant

les points, les arêtes et les facettes.
D'autre part, le groupe d'homologie
du recouvrement Sm à m feuillets,
possède exactement (m — 1) coefficients

de torsion de valeur 2 ; le nombre
minimal des éléments générateurs est

par conséquent m — 1. Le nœud est

donc de genre
m

2
1. Comme m est

impair arbitraire, on a démontré par là l'existence de nœuds
d'un genre quelconque. On trouvera de la même façon le

genre des autres nœuds du tore ainsi que des 84 nœuds énu-
mérés par Alexander et Briggs.

ßjf.iO
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